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How	can	we	verify	
these	claims?

How	can	we	“prove	
quantumness”	to	
classical	machines?



Suppose	we	have	managed	to	achieve	“quantum	advantage”

Another	issue:	Building	quantum	computers	is	extremely	costly

In	the	near-term,	quantum	computing	technology	will	be	highly	concentrated	



Delegation	of	Quantum	Computation

Classical	clientQuantum	cloud

Quantum	program

𝑥,

𝑦 = 𝑄(𝑥)

𝑄

Desirable	security	properties:
• Blindness:	the	cloud	learns	nothing	about	the	client’s	input	𝑥
• Verifiability:	the	client	can	be	sure	that	the	output	𝑦 is	computed	correctly



The	Plan

• Part	1:	Quantum	background

• Part	2:	Blind	delegation	from	oblivious	state	preparation

• Part	3:	Oblivious	state	preparation	from	post-quantum	crypto

• Part	4:	Proofs	of	quantumness and	verifiable	delegation



Part	1:	Quantum	Background
ØHow	to	encrypt	quantum	states
ØQuantum	universal	gate	set



The	Bloch	Sphere

Single-qubit	state:

|𝜓⟩ = 𝛼, 0 + 𝛼/|1⟩

= 𝑟,𝑒345 0 + 𝑟/𝑒346 1 ,

(𝛼,, 𝛼/ ∈ ℂ, 𝛼, 9 + 𝛼/ 9 = 1)

= 𝑒345(𝑟, 0 + 𝑟/𝑒3(46:45) 1 )
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The	Bloch	Sphere

Single-qubit	state:

|𝜓⟩ = 𝛼, 0 + 𝛼/|1⟩

= 𝑟,𝑒345 0 + 𝑟/𝑒346 1 ,

(𝛼,, 𝛼/ ∈ ℂ, 𝛼, 9 + 𝛼/ 9 = 1)

= 𝑟, 0 + 𝑟/𝑒34 1 ,

= cos(𝜃/2) 0 + sin(𝜃/2)𝑒34 1 , 𝜃 ∈ [0, 𝜋]
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The	Bloch	Sphere

Single-qubit	state:

|𝜓⟩ = 𝛼, 0 + 𝛼/|1⟩

= 𝑟,𝑒345 0 + 𝑟/𝑒346 1 ,

(𝛼,, 𝛼/ ∈ ℂ, 𝛼, 9 + 𝛼/ 9 = 1)

= 𝑟, 0 + 𝑟/𝑒34 1 ,

= cos(𝜃/2) 0 + sin(𝜃/2)𝑒34 1 , 𝜃 ∈ [0, 𝜋]

𝜙,, 𝜙/ ∈ [0,2𝜋)

𝜙 ∈ [0,2𝜋)

Convention:	drop	normalization	factors	
when	clear	from	context

0 + |1⟩

0 − |1⟩
0 − 𝑖|1⟩

0 + 𝑖|1⟩



The	Bloch	Sphere

• Any	single-qubit	state	can	be	represented	as	a	
point	on	the	unit	sphere

• Any	single-qubit	unitary	can	be	represented	as	
a	rotation	of	the	unit	sphere

• Pauli	rotations:

𝑋 =	 0 1
1 0 “bit	flip”:	180° around	the	𝑥-axis

𝑍 = 	 1 0
0 −1 “phase	flip”:	180° around	the	𝑧-axis 𝑍: 180°

𝑋: 180°



How	to	encrypt	quantum	states

Classical	one-time	pad:

To	encrypt	a	bit	𝑏,	sample	random	
𝑟 ← {0,1},	and	output	𝑏 ⊕ 𝑟 (= 𝑋U|𝑏⟩)

“encrypting	𝜃”



How	to	encrypt	quantum	states

Classical	one-time	pad:

To	encrypt	a	bit	𝑏,	sample	random	
𝑟 ← {0,1},	and	output	𝑏 ⊕ 𝑟

Quantum	one-time	pad	[MTdW00]:

To	encrypt	a	state	|𝜓⟩,	sample	random	
𝑟, 𝑠 ← {0,1},	and	output	𝑋U𝑍X|𝜓⟩

(= 𝑋U|𝑏⟩)



How	to	encrypt	quantum	states

Classical	one-time	pad:

To	encrypt	a	bit	𝑏,	sample	random	
𝑟 ← {0,1},	and	output	𝑏 ⊕ 𝑟

Quantum	one-time	pad	[MTdW00]:

To	encrypt	a	state	|𝜓⟩,	sample	random	
𝑟, 𝑠 ← {0,1},	and	output	𝑋U𝑍X|𝜓⟩

(= 𝑋U|𝑏⟩)
𝑍|𝜓⟩

𝑋|𝜓⟩ 𝑋𝑍|𝜓⟩

Extends	to	n-qubit	states:	

Sample	𝑟, 𝑠 ← {0,1}Y,	and	output	𝑋U6𝑍X6 ⊗⋯⊗𝑋U\𝑍X\ 𝜓 ≔ 𝑋U𝑍X|𝜓⟩

“encrypting	and 𝜃 and	𝜙”



Universal	gate	set

• Consider	any	𝑛-qubit	unitary	𝑈
• Goal:	write	𝑈 (approximately)	as	a	sequence	of	one- and	two-
qubit	gates,	from	a	small	finite	set

• Claim	#1:	Any	𝑈 can	be	written	as	a	series	of	single-qubit	
rotations	and	CNOT	gates,	where	CNOT: 𝑥 𝑦 → 𝑥 |𝑥 ⊕ 𝑦⟩

• Claim	#2:	Any	single-qubit	rotation	can	be	written	
(approximately)	as	a	series	of:

• Hadamard gate	𝐻 = /
9�
1 1
1 −1

• 𝑇 gate	𝑇 = 1 0
0 𝑒3h/i

• Claim	#3	(Solovay-Kitaev):	This	approximation	is	efficient

𝐻: 180°
𝑇: 45°(A	good	reference	for	all	of	these	claims	is	Nielsen-Chuang)



• Recall:	QOTP	𝑋U𝑍X|𝜓⟩,	𝑟, 𝑠, ∈ {0,1}Y

• Clifford	group	normalizes	the	Pauli	group
• For	any	Clifford	gate	𝐶,	𝐶𝑋U𝑍X = 𝑋Um𝑍Xm𝐶

Clifford	gates



• Recall:	QOTP	𝑋U𝑍X|𝜓⟩,	𝑟, 𝑠, ∈ {0,1}Y

• Clifford	group	normalizes	the	Pauli	group
• For	any	Clifford	gate	𝐶,	𝐶𝑋U𝑍X|𝜓⟩ = 𝑋Un𝑍Xn𝐶|𝜓⟩
• Cliffords can	be	applied	directly	to	encrypted	
quantum	states,	and	the	QOTP	key	get	updated	

• Recall:	Universal	gate	set	CNOT,𝐻, 𝑇
• CNOT is	Clifford:

• 𝐻 is	Clifford:		𝐻𝑋U𝑍X = 𝑋X𝑍U𝐻
• 𝑇 is	not	Clifford:

CNOT 𝑋U6𝑍X6 ⊗ 𝑋Ut𝑍Xt
																		= 𝑋U6𝑍X6⊕Xt ⊗ 𝑋U6⊕Ut𝑍Xt CNOT

Clifford	gates

𝑇𝑋 = 𝑇9𝑋𝑇



• Recall:	QOTP	𝑋U𝑍X|𝜓⟩,	𝑟, 𝑠, ∈ {0,1}Y

• Clifford	group	normalizes	the	Pauli	group
• For	any	Clifford	gate	𝐶,	𝐶𝑋U𝑍X|𝜓⟩ = 𝑋Un𝑍Xn𝐶|𝜓⟩
• Cliffords can	be	applied	directly	to	encrypted	
quantum	states,	and	the	QOTP	key	get	updated	

• Recall:	Universal	gate	set	CNOT,𝐻, 𝑇
• CNOT is	Clifford:

• 𝐻 is	Clifford:		𝐻𝑋U𝑍X = 𝑋X𝑍U𝐻
• 𝑇 is	not	Clifford:	𝑇𝑋U𝑍X = 𝑇9 U𝑋U𝑍X𝑇

CNOT 𝑋U6𝑍X6 ⊗ 𝑋Ut𝑍Xt
																		= 𝑋U6𝑍X6⊕Xt ⊗ 𝑋U6⊕Ut𝑍Xt CNOT

Clifford	gates



• Recall:	QOTP	𝑋U𝑍X|𝜓⟩,	𝑟, 𝑠, ∈ {0,1}Y

• Clifford	group	normalizes	the	Pauli	group
• For	any	Clifford	gate	𝐶,	𝐶𝑋U𝑍X|𝜓⟩ = 𝑋Un𝑍Xn𝐶|𝜓⟩
• Cliffords can	be	applied	directly	to	encrypted	
quantum	states,	and	the	QOTP	key	get	updated	

• Recall:	Universal	gate	set	CNOT,𝐻, 𝑇
• CNOT is	Clifford:

• 𝐻 is	Clifford:		𝐻𝑋U𝑍X = 𝑋X𝑍U𝐻
• 𝑇 is	not	Clifford:	𝑇𝑋U𝑍X = 𝑃U𝑋U𝑍X𝑇
• 𝑃 is	called	the	“phase	gate”

CNOT 𝑋U6𝑍X6 ⊗ 𝑋Ut𝑍Xt
																		= 𝑋U6𝑍X6⊕Xt ⊗ 𝑋U6⊕Ut𝑍Xt CNOT

𝑃: 90°

Clifford	gates



Recap

• How	to	encrypt	quantum	states:	𝑋U𝑍X|𝜓⟩

• Universal	gate	set:	CNOT,𝐻, 𝑇

• CNOT and	𝐻 are	Clifford	gates

• Any	quantum	computation	𝑄 can	be	performed	
using	just	Clifford	computations	and	𝑇 gates

• 𝑇𝑋U𝑍X = 𝑃U𝑋U𝑍X𝑇

Key	property:	For	any	Clifford	𝐶 and	𝑟, 𝑠 ∈ {0,1}Y, there	
exists	𝑟m, 𝑠m ∈ {0,1}Y such	that	𝐶𝑋U𝑍X = 𝑋Um𝑍Xm𝐶

That	is,	𝑄 𝑥 = 𝐶}𝑇𝐶}:/ …	𝑇𝐶9𝑇𝐶/|𝑥⟩

Define	𝑓� to	be	the	“update	function”:	𝑓� 𝑟, 𝑠 = (𝑟m, 𝑠′)



Recap

• How	to	encrypt	quantum	states:	𝑋U𝑍X|𝜓⟩

• Universal	gate	set:	CNOT,𝐻, 𝑇

• CNOT and	𝐻 are	Clifford	gates

• Any	quantum	computation	𝑄 can	be	performed	
using	just	Clifford	computations	and	𝑇 gates

• 𝑇�𝑋U𝑍X = 𝑃� U𝑋U𝑍X𝑇�

Key	property:	For	any	Clifford	𝐶 and	𝑟, 𝑠 ∈ {0,1}Y, there	
exists	𝑟m, 𝑠m ∈ {0,1}Y such	that	𝐶𝑋U𝑍X = 𝑋Um𝑍Xm𝐶

That	is,	𝑄 𝑥 = 𝐶}𝑇�𝐶}:/ …	𝑇�𝐶9𝑇�𝐶/|𝑥⟩

Define	𝑓� to	be	the	“update	function”:	𝑓� 𝑟, 𝑠 = (𝑟m, 𝑠′)



Part	2:	Blind	Delegation	from	
Oblivious	BB84	State	Preparation



Quantum	server Classical	client
Sample	𝑟 ← {0,1}Y

𝑟, ⊕ 𝑥Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩ Initialize	 𝑟,, 𝑠, = (𝑟, 0Y)

(𝑥)𝑄 = 𝐶}𝑇�𝐶}:/ …	𝑇�𝐶9𝑇�𝐶/



Quantum	server Classical	client
Sample	𝑟 ← {0,1}Y

𝑟, ⊕ 𝑥Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓,

Initialize	 𝑟,, 𝑠, = (𝑟, 0Y)

Update	 𝑟/, 𝑠/ = 𝑓�6(𝑟,, 𝑠,)	

(𝑥)

= 𝑇�𝑋U6𝑍X6𝐶/|𝑥⟩

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)



Quantum	server Classical	client
Sample	𝑟 ← {0,1}Y

𝑟, ⊕ 𝑥Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓, = (𝑃�)U6,6𝑋U6𝑍X6𝑇�𝐶/|𝑥⟩

Initialize	 𝑟,, 𝑠, = (𝑟, 0Y)

Update	 𝑟/, 𝑠/ = 𝑓�6(𝑟,, 𝑠,)	

𝑟/,/

(𝑥)

|𝜓/⟩

𝑃U6,6|𝜓/⟩
Oblivious	phase	correction

𝑋U6𝑍X6𝑇�𝐶/ 𝑥 =

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)



Quantum	server Classical	client
Sample	𝑟 ← {0,1}Y

𝑟, ⊕ 𝑥Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓, = (𝑃�)U6,6𝑋U6𝑍X6𝑇�𝐶/|𝑥⟩

Initialize	 𝑟,, 𝑠, = (𝑟, 0Y)

Update	 𝑟/, 𝑠/ = 𝑓�6(𝑟,, 𝑠,)	

𝑟/,/

(𝑥)

|𝜓/⟩

𝑃U6,6|𝜓/⟩

Compute	 𝜓9 = 𝑇�𝐶9 𝜓/m = (𝑃�)Ut,6𝑋Ut𝑍Xt𝑇�𝐶9𝑇�𝐶/|𝑥⟩ Update	 𝑟9, 𝑠9 = 𝑓�t(𝑟/, 𝑠/)	

𝑟9,/
|𝜓9⟩

𝑃Ut,6|𝜓9⟩

Compute	 𝜓} = 𝐶} 𝜓}:/m

Oblivious	phase	correction

Oblivious	phase	correction
𝜓9m =

= 𝑋U�𝑍X� 𝑄 𝑥
= 𝑋U�𝑍X� 𝐶}𝑇�𝐶}:/ …𝑇�𝐶/ 𝑥

𝜓/m = 𝑋U6𝑍X6𝑇�𝐶/ 𝑥 =

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)

Update	 𝑟}, 𝑠} = 𝑓��(𝑟}:/, 𝑠}:/)	𝑟} ⊕ 𝑄(𝑥)
Recover	𝑄(𝑥)= |𝑟} ⊕ 𝑄 𝑥 ⟩



𝑟
|𝜓⟩

𝑃U|𝜓⟩
Oblivious	phase	correction

• The	previous	protocol	template	was	first	developed	by	Childs	in	2001
Ø Implemented	oblivious	phase	correction	using	two-way	quantum	

communication

• This	was	improved	by	Broadbent	in	2015	to	one-way	quantum	communication

• In	2017,	Mahadev introduced	techniques	that	allow	us	to	implement	oblivious	
phase	correction	with	only	classical	communication

Server ClientSecurity	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟



Oblivious	Phase	via	Oblivious	State	Preparation

Recall: 𝜓 = 𝛼 0 + 𝛽|1⟩
𝑃

𝜓 = 𝛼 0 + 𝑖𝛽|1⟩

“Magic	state”	based	implementation:

1.	Prepare	resource	state	 0 + 𝑖|1⟩

2.	Compute

3.	Measure	2nd qubit	→ 𝑚 ∈ {0,1}:

If	𝑚 = 0:	𝛼 0 + 𝑖𝛽|1⟩ If	𝑚 = 1:	𝑖𝛼 0 + 𝛽 1

CNOT 𝜓 (|0⟩ + 𝑖|1⟩)

Result: 𝑍�𝑃|𝜓⟩

1.	Prepare	resource	state	 0 + |1⟩

2.	Compute

3.	Measure	2nd qubit	→ 𝑚 ∈ {0,1}:

If	𝑚 = 0:	𝛼 0 + 𝛽|1⟩ If	𝑚 = 1:	𝛼 0 + 𝛽 1

CNOT 𝜓 (|0⟩ + |1⟩)

Result: |𝜓⟩

= 𝛼|00⟩ + 𝑖𝛼|01⟩ + 𝛽|11⟩ + 𝑖𝛽|10⟩

Only	difference

= 𝛼|00⟩ + 𝛼|01⟩ + 𝛽|11⟩ + 𝛽|10⟩

= 𝛼 0 − 𝑖𝛽 1
= 𝑍 𝛼 0 + 𝑖𝛽|1⟩)



Oblivious	Phase	via	Oblivious	State	Preparation

Reduces	to	

Oblivious	state	preparation
𝑟0 + 𝑖|1⟩ if	𝑟 = 1

0 + |1⟩ if	𝑟 = 0

𝑟
|𝜓⟩

𝑃U|𝜓⟩
Oblivious	phase	correction

Server ClientSecurity	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟



Oblivious	Phase	via	Oblivious	State	Preparation

Reduces	to	

Oblivious	state	preparation
𝑟

𝑟
|𝜓⟩

𝑃U|𝜓⟩
Oblivious	phase	correction

Server ClientSecurity	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟

𝑃U|+⟩

As	stated,	no	protocol	can	achieve	the	security	requirement:		
• Suppose	Server	measures	received	state	in	the	{ + , |−⟩} basis
• If	𝑟 = 0,	the	Server	will	see	|+⟩ with	probability	1
• If	𝑟 = 1,	the	Server	will	see	|+⟩ or	|−⟩ each	with	probability	½	



Oblivious	Phase	via	Oblivious	State	Preparation

Reduces	to	

|𝜓⟩

Server ClientSecurity	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟

Solution:	Allow	for	potential	phase	flip

𝑍�𝑃U|𝜓/⟩

𝑍�𝑃U|+⟩

𝑟

𝑟

𝑏

𝑏

Oblivious	state	preparation

Oblivious	phase	correction



Oblivious	Phase	via	Oblivious	State	Preparation

Reduces	to	

|𝜓⟩

Server ClientSecurity	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟

𝑍�𝑃U|𝜓/⟩

𝑍�𝑃U|+⟩

𝑟

𝑟

𝑏

𝑏

Easier	task:	Generate	BB84	states,	
and	then	rotate

Oblivious	state	preparation

Oblivious	phase	correction



Oblivious	Phase	via	Oblivious	State	Preparation

Reduces	to	

|𝜓⟩

Server ClientSecurity	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟

𝑍�𝑃U|𝜓/⟩

𝑟

𝑟

𝑏

𝑏

Easier	task:	Generate	BB84	states,	
and	then	rotate

+𝑟 = 0:

𝑟 = 1:

−

0 1

𝑏 = 0 𝑏 = 1

Oblivious	state	preparation

Oblivious	phase	correction



Oblivious	Phase	via	Oblivious	State	Preparation

Reduces	to	

|𝜓⟩

Server ClientSecurity	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟

𝑍�𝑃U|𝜓/⟩

𝑟

𝑟

𝑏

𝑏

Easier	task:	Generate	BB84	states,	
and	then	rotate

𝐻/:U|𝑏⟩
Oblivious	state	preparation

Oblivious	phase	correction



Progress	so	far…

Oblivious	BB84	
State	Preparation

Oblivious	Phase	
Correction

Blind	Delegation	of	
Quantum	Computation



Part	3:	How	to	Implement	Oblivious	
BB84	State	Preparation	with	
Classical	Communication



Key	Tool:	Trapdoor	Claw-free	Function	(TCF)

𝑓,

𝑓/

• Pair	of	injective	functions	𝑓,, 𝑓/:𝒳 → 𝒴
such	that	for	any	𝑦 ∈ 𝒴,	exists	𝑥,, 𝑥/
such	that	𝑓, 𝑥, = 𝑓/ 𝑥/ = 𝑦

• Trapdoor:	The	Gen algorithm	
𝑓,, 𝑓/, td ← Gen outputs	a	trapdoor	
such	that	for	any	𝑦 ∈ 𝒴,
Invert td, 𝑦 = 𝑥,, 𝑥/

• Claw-free:	Given	𝑓,, 𝑓/,	no	polynomial-
time	adversary	can	find	a “claw”	𝑥,, 𝑥/
such	that	𝑓, 𝑥, = 𝑓/ 𝑥/



Dual-Mode Trapdoor	Claw-free	Function	(dTCF)

𝑓,

𝑓/

𝑓,

𝑓/

≈

𝑟 = 0 𝑟 = 1

• Pair	of	injective	functions	𝑓,, 𝑓/:𝒳 → 𝒴
such	that	for	any	𝑦 ∈ 𝒴,	exists	𝑥,, 𝑥/
such	that	𝑓, 𝑥, = 𝑓/ 𝑥/ = 𝑦

• Trapdoor:	The	Gen algorithm	
𝑓,, 𝑓/, td ← Gen(𝑟) outputs	a	trapdoor	
such	that	for	any	𝑦 ∈ 𝒴,
Invert td, 𝑦 = 𝑥,, 𝑥/

• Claw-free:	Given	𝑓,, 𝑓/,	no	polynomial-
time	adversary	can	find	a “claw”	𝑥,, 𝑥/
such	that	𝑓, 𝑥, = 𝑓/ 𝑥/



Dual-Mode Trapdoor	Claw-free	Function	(dTCF)

𝑓,

𝑓/

𝑓,

𝑓/

≈

𝑟 = 0 𝑟 = 1

• Pair	of	injective	functions	𝑓,, 𝑓/:𝒳 → 𝒴
such	that	for	any	𝑦 ∈ 𝒴,	exists	𝑥,, 𝑥/
such	that	𝑓, 𝑥, = 𝑓/ 𝑥/ = 𝑦

• Trapdoor:	The	Gen algorithm	
𝑓,, 𝑓/, td ← Gen(𝑟) outputs	a	trapdoor	
such	that	for	any	𝑦 ∈ 𝒴,
Invert td, 𝑦 = 𝑥,, 𝑥/

• Mode	indistinguishability:	
𝑓,, 𝑓/,⋅ ← Gen 0 ≈ 𝑓,, 𝑓/,⋅ ← Gen(1)



Sample	 𝑓,, 𝑓/, td ← Gen(𝑟)

𝑓,, 𝑓/

𝑦

𝑟 = 0 𝑟 = 1
e ∑ 𝑏 |𝑥�⟩�

�∈{,,/} 𝑏⟩|𝑥�

|𝑏⟩

Server Client

Oblivious	BB84	state	preparation
𝑟

𝑏
𝐻/:U|𝑏⟩

Security	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟

1.	Prepare	uniform	superposition	

2.	Measure	output	of	𝑓,, 𝑓/

3.	Measure	input	register	in	Hadamard basis

1∑ 𝑏 |𝑥⟩�
�∈{,,/},�∈𝒳

1∑ 𝑏 𝑥 |𝑓� 𝑥 ⟩�
�∈{,,/},�∈𝒳

𝑑



Sample	 𝑓,, 𝑓/, td ← Gen(𝑟)

𝑓,, 𝑓/

𝑦

𝑟 = 0 𝑟 = 1
e ∑ 𝑏 |𝑥�⟩�

�∈{,,/} 𝑏⟩|𝑥�

|𝑏⟩

Server Client

1.	Prepare	uniform	superposition	

2.	Measure	output	of	𝑓,, 𝑓/

3.	Measure	input	register	in	Hadamard basis

1∑ 𝑏 |𝑥⟩�
�∈{,,/},�∈𝒳

1∑ 𝑏 𝑥 |𝑓� 𝑥 ⟩�
�∈{,,/},�∈𝒳

𝑑

What	happens	when	we	measure	the	input	register	of	
a	“claw	state”	in	the	Hadamard basis?

𝐼 ⊗ 𝐻⊗� 	 0 𝑥, + 1 |𝑥/⟩	)

= 0 � −1 �⋅�5 𝑑 + 1 � −1 �⋅�6|𝑑⟩
�

�∈{,,/}�

�

�∈{,,/}�

= � −1 �⋅�5 0 + −1 �⋅�6|1⟩ |𝑑⟩
�

�∈{,,/}� 𝑑

−1 �⋅�5 0 + −1 �⋅�6 1 = 0 + −1 �⋅(�5⊕�6)|1⟩
𝑑

𝑍�⋅ �5⊕�6 ( 0 + |1⟩)

Oblivious	BB84	state	preparation
𝑟

𝑏
𝐻/:U|𝑏⟩

Security	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟



Sample	 𝑓,, 𝑓/, td ← Gen(𝑟)

𝑓,, 𝑓/

𝑟 = 0 𝑟 = 1
e ∑ 𝑏 |𝑥�⟩�

�∈{,,/} 𝑏⟩|𝑥�
𝑑

|𝑏⟩𝑍�⋅ �5⊕�6 ( 0 + |1⟩)

𝑦, 𝑑

Server Client

𝑟 = 0 𝑟 = 1

Invert td, 𝑦 = 𝑥,, 𝑥/ Invert td, 𝑦 = 𝑏, 𝑥�

𝑏 = 𝑑 ⋅ (𝑥, ⊕ 𝑥/) 𝑏

1.	Prepare	uniform	superposition	

2.	Measure	output	of	𝑓,, 𝑓/

3.	Measure	input	register	in	Hadamard basis

1∑ 𝑏 |𝑥⟩�
�∈{,,/},�∈𝒳

1∑ 𝑏 𝑥 |𝑓� 𝑥 ⟩�
�∈{,,/},�∈𝒳

𝑑

output

𝑦

Oblivious	BB84	state	preparation
𝑟

𝑏
𝐻/:U|𝑏⟩

Security	requirement:	Server	gains	no
(or	negligible)	information	about	𝑟



Progress	so	far…

Oblivious	BB84	
State	Preparation

Blind	Delegation	of	
Quantum	ComputationdTCF



dTCF from	LWE
Basic	idea:	

Let	𝑣 = 𝐴𝑠 for	a	uniformly	random	𝑠 ∈ ℤ�Y

𝑓�,� ,, 𝑥 = 𝐴𝑥
Let On	domain	𝑥 ∈ ℤ�Y,	this	pair	of	

functions	have	the	same	image
= 𝐴(𝑥 + 𝑠)

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix		



dTCF from	LWE

Let	𝑣 = 𝐴𝑠 for	a	uniformly	random	𝑠 ∈ ℤ�Y

𝑓�,� ,, 𝑥 = 𝐴𝑥
Let

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix		

Dual-mode:	



dTCF from	LWE
Dual-mode:	

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix

𝑓�,� ,, 𝑥 = 𝐴𝑥
Let

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣

If	𝑟 = 0,	sample	𝑣 ∈ span(𝐴) If	𝑟 = 1,	sample	𝑣 ∉ span(𝐴)



dTCF from	LWE
Dual-mode:	

𝑓�,� ,, 𝑥 = 𝐴𝑥
Let

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣

have	the	same	image	if	𝑟 = 0

have	disjoint	images	if	𝑟 = 1

But… given	(𝐴, 𝑣),	it	is	easy	to	
distinguish	whether	𝑟 = 0 or	𝑟 = 1

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix

If	𝑟 = 0,	sample	𝑣 ∈ span(𝐴) If	𝑟 = 1,	sample	𝑣 ← ℤ��



dTCF from	LWE
Adding	error:	

𝑓�,� ,, 𝑥 = 𝐴𝑥
Let

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣

If	𝑟 = 0,	sample 𝑠, 𝑒 , let	𝑣 = 𝐴𝑠 + 𝑒

𝑒 ∈ −𝐵, 𝐵 �,	for	𝐵 ≪ 𝑞

If	𝑟 = 1,	sample	𝑣 ← ℤ��

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix



dTCF from	LWE
Adding	error:	

𝑓�,� ,, 𝑥 = 𝐴𝑥
Let

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣
Now,	the	𝑟 = 0 and	𝑟 = 1 cases	are	
indistinguishable	assuming	LWE!		

New	problem:	when	𝑟 = 0,	functions	no	longer	have	the	same	image

If	𝑟 = 0,	sample 𝑠, 𝑒 , let	𝑣 = 𝐴𝑠 + 𝑒 If	𝑟 = 1,	sample	𝑣 ← ℤ��

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix



dTCF from	LWE
Adding	error:	

𝑓�,� ,, 𝑥 = 𝐴𝑥
Let

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣
𝑓�,� ,,(𝑥)
𝑓 �,� ,/(𝑥)

= 𝐴 𝑥 + 𝑠 + 𝑒

If	𝑟 = 0,	sample 𝑠, 𝑒 , let	𝑣 = 𝐴𝑠 + 𝑒 If	𝑟 = 1,	sample	𝑣 ← ℤ��

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix



dTCF from	LWE
Adding	error:	

𝑓�,� ,, 𝑥 = 𝐴𝑥
Let

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣
𝑓�,� ,,(𝑥)
𝑓 �,� ,/(𝑥)

= 𝐴 𝑥 + 𝑠 + 𝑒

Solution:

If	𝑟 = 0,	sample 𝑠, 𝑒 , let	𝑣 = 𝐴𝑠 + 𝑒 If	𝑟 = 1,	sample	𝑣 ← ℤ��

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix



dTCF from	LWE
Adding	error:	

𝑓�,� ,, 𝑥 = 𝐴𝑥 + 𝑒′
Let

𝑓�,� ,,(𝑥)
𝑓 �,� ,/(𝑥)

Solution:

where	 𝑒 ≪ 𝑒m ≪ 𝑞

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣 + 𝑒′

“noisy	TCF”

If	𝑟 = 0,	sample 𝑠, 𝑒 , let	𝑣 = 𝐴𝑠 + 𝑒 If	𝑟 = 1,	sample	𝑣 ← ℤ��

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix



dTCF from	LWE
Adding	a	trapdoor:	

𝑓�,� ,, 𝑥 = 𝐴𝑥 + 𝑒′
Let

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣 + 𝑒′

If	𝑟 = 0,	sample 𝑠, 𝑒 , let	𝑣 = 𝐴𝑠 + 𝑒 If	𝑟 = 1,	sample	𝑣 ← ℤ��

Let	𝑞 be	a	large modulus,	𝑚 > 𝑛,	and	𝐴 ∈ ℤ��×Y be	a	uniformly	random	matrix



dTCF from	LWE
Adding	a	trapdoor:	

𝑓�,� ,, 𝑥 = 𝐴𝑥 + 𝑒′
Let

Sample	 𝐴, 𝑇 ← TrapGen: 𝐴 ∈ ℤ��×Y, 𝑇𝐴 = 0	mod	𝑞,	𝑇 ∈ −𝐵, 𝐵 �×� is	full	rank	

𝑓�,� ,/ 𝑥 = 𝐴𝑥 + 𝑣 + 𝑒′

Over	the	reals

Let td = 𝑇

Invert td, 𝐴𝑥 + 𝑒m : Compute	𝑇 𝐴𝑥 + 𝑒m 	mod	𝑞 = 𝑇𝑒′,	and	solve	for	𝑒′

If	𝑟 = 0,	sample 𝑠, 𝑒 , let	𝑣 = 𝐴𝑠 + 𝑒 If	𝑟 = 1,	sample	𝑣 ← ℤ��



Progress	so	far…

Oblivious	BB84	
State	Preparation

Blind	Delegation	of	
Quantum	ComputationdTCF

LWE

Cryptographic	
group	actions

[AMR22,	GV24]



Quantum	Fully-Homomorphic	Encryption	(QFHE)

• Minimally-interactive	version	of	blind	delegation

Classical	clientQuantum	cloud

𝑄, Enc(𝑥)

Enc(𝑄(𝑥))

• Observation	[Mah17]:	exists	a	classical	FHE	scheme	such	that	Enc(𝑟) is	a	
dTCF with	mode	𝑟



Dual-Regev Encryption

• KeyGen	runs	TrapGen to	obtain	pk = 𝐴, sk = 𝑇

• Enc 𝑟 ∈ {0,1} → 𝐴𝑠 + 𝑒 + 𝑟 ⋅ 𝑢,	where	𝑢 ∉ span(𝐴) is	a	public	vector

• This	scheme	can	be	extended	to	FHE	(dual-GSW)

• Letting	𝑣 = Enc 𝑟 ,	we	have	that	(𝐴, 𝑣) defines	a	dTCF with	mode	𝑟



Quantum	server Classical	client

𝑟, ⊕ 𝑥Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓, = (𝑃�)U6,6𝑋U6𝑍X6𝑇�𝐶/|𝑥⟩

(𝑥)

|𝜓/⟩

Compute	 𝜓9 = 𝑇�𝐶9 𝜓/m = (𝑃�)Ut,6𝑋Ut𝑍Xt𝑇�𝐶9𝑇�𝐶/|𝑥⟩

Compute	 𝜓} = 𝑋U�𝑍X�𝐶}𝑇�𝐶}:/ …𝑇�𝐶/ 𝑥
= 𝑋U�𝑍X� 𝑄 𝑥 = |𝑟} ⊕ 𝑄 𝑥 ⟩ 𝑟} ⊕ 𝑄 𝑥 Recover	𝑄(𝑥)

Oblivious	phase	correction

Oblivious	phase	correction

𝜓/m = 𝑍�6𝑃U6,6|𝜓/⟩

Sample	𝑟 ← {0,1}Y

Initialize	 𝑟,, 𝑠, = (𝑟, 0Y)

dTCF(𝑟/,/)

(𝑦/, 𝑑/)

(𝑟9, 𝑠9)

Update

𝜓9m = 𝑍�t𝑃Ut,6|𝜓9⟩

|𝜓9⟩

(𝑟/, 𝑠/)
Update

(𝑟}, 𝑠})

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)

td 𝑏/

dTCF(𝑟9,/)

(𝑦9, 𝑑9)
td 𝑏9 Update



Quantum	server Classical	client

𝑟, ⊕ 𝑥Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓, = (𝑃�)U6,6𝑋U6𝑍X6𝑇�𝐶/|𝑥⟩

(𝑥)

|𝜓/⟩

Compute	 𝜓9 = 𝑇�𝐶9 𝜓/m = (𝑃�)Ut,6𝑋Ut𝑍Xt𝑇�𝐶9𝑇�𝐶/|𝑥⟩

Compute	 𝜓} = 𝑋U�𝑍X�𝐶}𝑇�𝐶}:/ …𝑇�𝐶/ 𝑥
= 𝑋U�𝑍X� 𝑄 𝑥 = |𝑟} ⊕ 𝑄 𝑥 ⟩ 𝑟} ⊕ 𝑄 𝑥 Recover	𝑄(𝑥)

Oblivious	phase	correction

Oblivious	phase	correction

𝜓/m = 𝑍�6𝑃U6,6|𝜓/⟩

Sample	𝑟 ← {0,1}Y

Initialize	 𝑟,, 𝑠, = (𝑟, 0Y)

Enc(𝑟/,/)

(𝑦/, 𝑑/)

(𝑟9, 𝑠9)

Update

𝜓9m = 𝑍�t𝑃Ut,6|𝜓9⟩

|𝜓9⟩

(𝑟/, 𝑠/)
Update

(𝑟}, 𝑠})

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)

td 𝑏/

Enc(𝑟9,/)

(𝑦9, 𝑑9)
td 𝑏9 Update

Dual-Regev encryption



Quantum	server Classical	client

Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓, = (𝑃�)U6,6𝑋U6𝑍X6𝑇�𝐶/|𝑥⟩

(𝑥)

|𝜓/⟩

Compute	 𝜓9 = 𝑇�𝐶9 𝜓/m = (𝑃�)Ut,6𝑋Ut𝑍Xt𝑇�𝐶9𝑇�𝐶/|𝑥⟩

Compute	 𝜓} = 𝑋U�𝑍X�𝐶}𝑇�𝐶}:/ …𝑇�𝐶/ 𝑥
= 𝑋U�𝑍X� 𝑄 𝑥 = |𝑟} ⊕ 𝑄 𝑥 ⟩ 𝑟} ⊕ 𝑄 𝑥 Decrypt	𝑟} and	recover	𝑄(𝑥)

Oblivious	phase	correction

Oblivious	phase	correction

𝜓/m = 𝑍�6𝑃U6,6|𝜓/⟩

Sample	𝑟 ← {0,1}Y

Initialize	Enc 𝑟,, 𝑠, = Enc(𝑟, 0Y)

Enc(𝑟/,/)

(𝑦/, 𝑑/)

Enc(𝑟9, 𝑠9)

𝜓9m = 𝑍�t𝑃Ut,6|𝜓9⟩

|𝜓9⟩

Enc(𝑟/, 𝑠/)

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)

Enc(𝑟9,/)

(𝑦9, 𝑑9)

𝑟, ⊕ 𝑥

Enc(𝑟}, 𝑠})

td 𝑏/

td 𝑏9

Dual-Regev encryption



Quantum	server Classical	client

Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓, = (𝑃�)U6,6𝑋U6𝑍X6𝑇�𝐶/|𝑥⟩

(𝑥)

|𝜓/⟩

Compute	 𝜓9 = 𝑇�𝐶9 𝜓/m = (𝑃�)Ut,6𝑋Ut𝑍Xt𝑇�𝐶9𝑇�𝐶/|𝑥⟩

Compute	 𝜓} = 𝑋U�𝑍X�𝐶}𝑇�𝐶}:/ …𝑇�𝐶/ 𝑥
= 𝑋U�𝑍X� 𝑄 𝑥 = |𝑟} ⊕ 𝑄 𝑥 ⟩ 𝑟} ⊕ 𝑄 𝑥 Decrypt	𝑟} and	recover	𝑄(𝑥)

Oblivious	phase	correction

Oblivious	phase	correction

𝜓/m = 𝑍�6𝑃U6,6|𝜓/⟩

Sample	𝑟 ← {0,1}Y

Initialize	Enc 𝑟,, 𝑠, = Enc(𝑟, 0Y)

Enc(𝑟/,/)

(𝑦/, 𝑑/)

Enc(𝑟9, 𝑠9)

𝜓9m = 𝑍�t𝑃Ut,6|𝜓9⟩

|𝜓9⟩

Enc(𝑟/, 𝑠/)

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)

Enc(𝑟9,/)

(𝑦9, 𝑑9)

𝑟, ⊕ 𝑥

Enc(𝑟}, 𝑠})

Enc(td)
Enc(𝑏/)

Enc(td)
Enc(𝑏9)

Dual-Regev encryption



Quantum	server Classical	client

𝑟, ⊕ 𝑥, Enc 𝑟, , Enc(td)Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓, = (𝑃�)U6,6𝑋U6𝑍X6𝑇�𝐶/|𝑥⟩

(𝑥)

|𝜓/⟩

Compute	 𝜓9 = 𝑇�𝐶9 𝜓/m = (𝑃�)Ut,6𝑋Ut𝑍Xt𝑇�𝐶9𝑇�𝐶/|𝑥⟩

Compute	 𝜓} = 𝑋U�𝑍X�𝐶}𝑇�𝐶}:/ …𝑇�𝐶/ 𝑥
= 𝑋U�𝑍X� 𝑄 𝑥 = |𝑟} ⊕ 𝑄 𝑥 ⟩ 𝑟} ⊕ 𝑄 𝑥 , Decrypt	𝑟} and	recover	𝑄(𝑥)

Oblivious	phase	correction

Oblivious	phase	correction

𝜓/m = 𝑍�6𝑃U6,6|𝜓/⟩

Sample	𝑟 ← {0,1}Y

Initialize	Enc 𝑟,, 𝑠, = Enc(𝑟, 0Y)

Enc(𝑟/,/)

(𝑦/, 𝑑/)

Enc(𝑟9, 𝑠9)

𝜓9m = 𝑍�t𝑃Ut,6|𝜓9⟩

|𝜓9⟩

Enc(𝑟/, 𝑠/)

Enc(𝑟})

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)

Enc(td)
Enc(𝑏/)

Enc(𝑟9,/)

(𝑦9, 𝑑9)Enc(td)Enc(𝑏9)

Dual-Regev encryption



Quantum	server Classical	client

𝑟, ⊕ 𝑥, Enc 𝑟, , Enc(td)Initialize 𝜓, = 𝑟, ⊕ 𝑥 = 𝑋U5𝑍X5|𝑥⟩

Compute	 𝜓/ = 𝑇�𝐶/ 𝜓, = (𝑃�)U6,6𝑋U6𝑍X6𝑇�𝐶/|𝑥⟩

(𝑥)

|𝜓/⟩

Compute	 𝜓9 = 𝑇�𝐶9 𝜓/m = (𝑃�)Ut,6𝑋Ut𝑍Xt𝑇�𝐶9𝑇�𝐶/|𝑥⟩

Compute	 𝜓} = 𝑋U�𝑍X�𝐶}𝑇�𝐶}:/ …𝑇�𝐶/ 𝑥
= 𝑋U�𝑍X� 𝑄 𝑥 = |𝑟} ⊕ 𝑄 𝑥 ⟩ Decrypt	𝑟} and	recover	𝑄(𝑥)

Oblivious	phase	correction

Oblivious	phase	correction

𝜓/m = 𝑍�6𝑃U6,6|𝜓/⟩

Sample	𝑟 ← {0,1}Y

Initialize	Enc 𝑟,, 𝑠, = Enc(𝑟, 0Y)

Enc(𝑟/,/)

(𝑦/, 𝑑/)

Enc(𝑟9, 𝑠9)

𝜓9m = 𝑍�t𝑃Ut,6|𝜓9⟩

|𝜓9⟩

Enc(𝑟/, 𝑠/)

𝑄 = (𝐶})(𝑇�𝐶}:/)…	(𝑇�𝐶9)(𝑇�𝐶/)

Enc(td)
Enc(𝑏/)

Enc(𝑟9,/)

(𝑦9, 𝑑9)Enc(td)Enc(𝑏9)

QFHE	ciphertext

𝑟} ⊕ 𝑄 𝑥 ,

Evaluated	ciphertext

Enc(𝑟})



Part	4:	Proofs	of	Quantumness and	
Verifiable	Delegation



CHSH	(Clauser,	Horne,	Shimony,	Holt)	Game
Alice Bob

Sample	𝑥, 𝑦 ← {0,1}

𝑥 𝑦
𝑎 𝑏

They	win	if	𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦

No	communication

• One	strategy:	always	set	𝑎 = 𝑏 = 0

• Wins	with	probability	¾		

• Is	this	optimal?

• Yes:	“Classical	value”	of	CHSH	is	𝜔«¬­¬ =
®
i

Fix	any	deterministic	Alice	strategy	𝑓� 𝑥

Winning	condition
Case	1:

𝑓� 0 = 𝑓�(1)
Case	2:

𝑓� 0 ≠ 𝑓�(1)

𝑓°(0) = 𝑓�(𝑥)

𝑓°(1) = 𝑥 ⊕ 𝑓�(𝑥)

1

½	

½	

1	

¾	

Because	Bob	has	no	information	
about	Alice’s	question,	any	

strategy	is	stuck	at	¾	

Win	probability:	 ¾	



CHSH	with	quantum	entangled	strategies	
Alice Bob

Sample	𝑥, 𝑦 ← {0,1}

𝑥 𝑦
𝑎 𝑏

They	win	if	𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦

Can	they	do	better	than	¾?	

What	is	the	“quantum	value”	
𝜔«¬­¬∗ of	CHSH?No	communication



CHSH	with	quantum	entangled	strategies	
Start	with	an	EPR	pair:

0 � 0 ° + 1 � 1 ° = + � + ° + − � − °

Bob’s	view:

Alice:	if	𝑥 = 0,	measure	in	the	Hadamard basis	(𝑋)
if	𝑥 = 1,	measure	in	the	standard	basis	(𝑍)
let	𝑎 be	the	bit	measured

|0⟩

|1⟩

|+⟩ |−⟩



CHSH	with	quantum	entangled	strategies	
Start	with	an	EPR	pair:

0 � 0 ° + 1 � 1 ° = + � + ° + − � − °

Alice:	if	𝑥 = 0,	measure	in	the	Hadamard basis	(𝑋)
if	𝑥 = 1,	measure	in	the	standard	basis	(𝑍)
let	𝑎 be	the	bit	measured

Bob’s	view:

Bob:	if	𝑦 = 0,	measure	in	the	𝑋 + 𝑍 basis	
if	𝑦 = 1,	measure	in	the	𝑋 − 𝑍 basis
let	𝑏 be	the	bit	measured

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 0 𝑎 = 1

𝑎 = 0

𝑎 = 1

𝑥 = 0 𝑥 = 0

𝑥 = 1

𝑦 = 0

𝑦 = 0

𝑦 = 1

𝑦 = 1

𝑏 = 1

𝑏 = 0

𝑏 = 0

𝑏 = 1

𝑋

𝑍

𝑋 + 𝑍 𝑋 − 𝑍



CHSH	with	quantum	entangled	strategies	
Start	with	an	EPR	pair:

0 � 0 ° + 1 � 1 ° = + � + ° + − � − °

|0⟩

|1⟩

|+⟩ |−⟩
𝑎 = 0 𝑥 = 0

𝑦 = 0

𝑦 = 0

Bob’s	view:

𝑏 = 0

𝑏 = 1

Example:	𝑥 = 0, 𝑎 = 0, 𝑦 = 0 → win	when	𝑏 = 0

𝜋
8

→ Pr cos9(h
²
) ≈ 0.85

Alice:	if	𝑥 = 0,	measure	in	the	Hadamard basis	(𝑋)
if	𝑥 = 1,	measure	in	the	standard	basis	(𝑍)
let	𝑎 be	the	bit	measured

Bob:	if	𝑦 = 0,	measure	in	the	𝑋 + 𝑍 basis	
if	𝑦 = 1,	measure	in	the	𝑋 − 𝑍 basis
let	𝑏 be	the	bit	measured



CHSH	with	quantum	entangled	strategies	
Start	with	an	EPR	pair:

0 � 0 ° + 1 � 1 ° = + � + ° + − � − °

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 0

𝑦 = 1

𝑦 = 1

Bob’s	view:

𝑏 = 1

𝑏 = 0

Example:	𝑥 = 1, 𝑎 = 0, 𝑦 = 1 → win	when	𝑏 = 1 → Pr cos9(h
²
) ≈ 0.85

𝜋
8

Alice:	if	𝑥 = 0,	measure	in	the	Hadamard basis	(𝑋)
if	𝑥 = 1,	measure	in	the	standard	basis	(𝑍)
let	𝑎 be	the	bit	measured

Bob:	if	𝑦 = 0,	measure	in	the	𝑋 + 𝑍 basis	
if	𝑦 = 1,	measure	in	the	𝑋 − 𝑍 basis
let	𝑏 be	the	bit	measured



CHSH	with	quantum	entangled	strategies	
Start	with	an	EPR	pair:

0 � 0 ° + 1 � 1 ° = + � + ° + − � − °

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 0 𝑎 = 1

𝑎 = 0

𝑎 = 1

𝑥 = 0 𝑥 = 0

𝑥 = 1

𝑦 = 0

𝑦 = 0

𝑦 = 1

𝑦 = 1

Bob’s	view:

𝑏 = 1

𝑏 = 0

𝑏 = 0

𝑏 = 1

In	any	case,	they	win	with	probability	
≈ 0.85 > 𝜔«¬­¬!

Tsirelson [80]:	𝜔«¬­¬∗ = cos9 h
²
≈ 0.85

𝑋

𝑍

𝑋 + 𝑍 𝑋 − 𝑍



From	CHSH	to	proofs	of	quantumness

Completeness:	There	is	a	polynomial-
time	quantum	prover	that	causes	the	
verifier	to	accept	with	probability	𝑣 + 𝜖

Soundness:	No	polynomial-time	
classical	prover	can	cause	the	verifier	to	
accept	with	probability	greater	than	𝑣

• CHSH	can	be	considered	a	“proof	of	quantumness”	under	the	assumption	that	there	
are	two	non-communicating	provers

• But	what	about	the	single	prover	setting?	

• Shor’s	algorithm?

Quantum	prover Classical	verifier

accept	/	reject



From	CHSH	to	proofs	of	quantumness

𝑥

Oblivious	BB84	state	preparation

Quantum	prover Classical	verifier

𝑎

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 1𝑎 = 0
𝑥 = 0𝑥 = 0

𝑥 = 1

𝑎 = 0

𝑎 = 1

𝑥 ← {0,1}
+𝑥 = 0:

𝑥 = 1:

−

0 1

𝑎 = 0 𝑎 = 1



From	CHSH	to	proofs	of	quantumness

𝑥

Quantum	prover Classical	verifier

𝑎

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 1𝑎 = 0
𝑥 = 0𝑥 = 0

𝑥 = 1

𝑎 = 0

𝑎 = 1

𝑦 ← {0,1}
𝑋 + 𝑍 𝑋 − 𝑍

𝑏 = 0

𝑏 = 0

𝑏 = 1

𝑏 = 1

𝑏

𝑥 ← {0,1}

𝑦

If	𝑦 = 0,	measure	𝑋 + 𝑍
If	𝑦 = 1,	measure	𝑋 − 𝑍

Accept	if	𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦

+𝑥 = 0:

𝑥 = 1:

−

0 1

𝑎 = 0 𝑎 = 1

Oblivious	BB84	state	preparation



From	CHSH	to	proofs	of	quantumness

𝑥

Quantum	prover Classical	verifier

𝑎

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 1𝑎 = 0
𝑥 = 0𝑥 = 0

𝑥 = 1

𝑎 = 0

𝑎 = 1

𝑦 ← {0,1}
𝑋 + 𝑍 𝑋 − 𝑍

𝑏 = 0

𝑏 = 0

𝑏 = 1

𝑏 = 1

𝑏

𝑥 ← {0,1}

𝑦

If	𝑦 = 0,	measure	𝑋 + 𝑍
If	𝑦 = 1,	measure	𝑋 − 𝑍

Accept	if	𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦

+𝑥 = 0:

𝑥 = 1:

−

0 1

𝑎 = 0 𝑎 = 1

Completeness	≈ 0.85

Follows	from	correctness	of	oblivious	
BB84	state	preparation	and	the	
quantum	CHSH	strategy	analysis

Oblivious	BB84	state	preparation



From	CHSH	to	proofs	of	quantumness

𝑥

Classical prover Classical	verifier

𝑎

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 1𝑎 = 0
𝑥 = 0𝑥 = 0

𝑥 = 1

𝑎 = 0

𝑎 = 1

𝑦 ← {0,1}
𝑋 + 𝑍 𝑋 − 𝑍

𝑏 = 0

𝑏 = 0

𝑏 = 1

𝑏 = 1

𝑏

𝑥 ← {0,1}

𝑦

If	𝑦 = 0,	measure	𝑋 + 𝑍
If	𝑦 = 1,	measure	𝑋 − 𝑍

Accept	if	𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦

+𝑥 = 0:

𝑥 = 1:

−

0 1

𝑎 = 0 𝑎 = 1

Completeness	≈ 0.85

Soundness	≈ 0.75	

Follows	from	security	of	oblivious	BB84	
state	preparation	(prover	can’t	guess	𝑥)	
and	classical	CHSH	strategy	analysis	

Follows	from	correctness	of	oblivious	
BB84	state	preparation	and	the	
quantum	CHSH	strategy	analysis

Oblivious	BB84	state	preparation



From	CHSH	to	proofs	of	quantumness

𝑥

Quantum	prover Classical	verifier

𝑎

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 1𝑎 = 0
𝑥 = 0𝑥 = 0

𝑥 = 1

𝑎 = 0

𝑎 = 1

𝑦 ← {0,1}
𝑋 + 𝑍 𝑋 − 𝑍

𝑏 = 0

𝑏 = 0

𝑏 = 1

𝑏 = 1

𝑏

𝑥 ← {0,1}

𝑦

If	𝑦 = 0,	measure	𝑋 + 𝑍
If	𝑦 = 1,	measure	𝑋 − 𝑍

Accept	if	𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦

[KCVY21]
[AMMW22]
[ABCC24]

+𝑥 = 0:

𝑥 = 1:

−

0 1

𝑎 = 0 𝑎 = 1

Oblivious	BB84	state	preparation

Can	be	implemented	in	two	classical	
messages	using	any	dTCF

Completeness	≈ 0.85

Soundness	≈ 0.75	



Generalization:	The	KLVY	Compiler
Non-local	game	𝐺 = (𝐷, 𝑉)

Alice Bob

Sample	𝑥, 𝑦 ← 𝐷

𝑥 𝑦
𝑎 𝑏

Win	if	𝑉 𝑥, 𝑦, 𝑎, 𝑏 = 1

No	communication
Blind	delegation	of	
Alice’s	strategy

Quantum	prover Classical	verifier
Sample	𝑥, 𝑦 ← 𝐷

𝑥

𝑎

𝑦

𝑏

Accept	if	𝑉 𝑥, 𝑦, 𝑎, 𝑏 = 1



Generalization:	The	KLVY	Compiler
Non-local	game	𝐺 = (𝐷, 𝑉)

Alice Bob

Sample	𝑥, 𝑦 ← 𝐷

𝑥 𝑦
𝑎 𝑏

Win	if	𝑉 𝑥, 𝑦, 𝑎, 𝑏 = 1

No	communication
Blind	delegation	of	
Alice’s	strategy

Quantum	prover Classical	verifier
Sample	𝑥, 𝑦 ← 𝐷

𝑥

𝑎

𝑦

𝑏

Accept	if	𝑉 𝑥, 𝑦, 𝑎, 𝑏 = 1

Doesn’t	know	𝑦

Doesn’t	know	𝑥

*

*[KLVY22]	considered	only	two-
message	protocols	(QFHE)

[KLVY22]	showed:	
• A	QPT	quantum	prover	can	implement	

any	QPT	two-prover	strategy	for	𝐺
• Any	PPT	classical	prover	can	win	with	

probability	at	most	≈ 𝜔¹



Verifiable	Delegation	

• We	already	had	(very	simple)	proofs	of	quantumness using	the	CHSH	game,	so	
what	was	the	point	of	this	generalization?

• One	reason:	can	we	go	beyond	proofs	of	quantumness to	classical	verification	of	
quantum	computation?

Quantum	prover Classical	verifier

Completeness:	if	prover	is	
honest,	output	𝑄 𝑥

Soundness:	no	QPT	
malicious	prover	can	force	
an	output	of	1 − 𝑄 𝑥

(𝑄, 𝑥)

{0,1, ⊥}



Verifiable	Delegation	

• [RUV13],	…,	[Gri17],	…:	Given	any	BQP	computation	𝑄(𝑥),	there	exists	a	non-local	
game	𝐺 and	𝜖 = 1/poly such	that:	
• If	𝑄 𝑥 = 0,	then	𝜔¹∗ ≥ 𝑣 + 𝜖
• If	𝑄 𝑥 = 1,	then	𝜔¹∗ ≤ 𝑣

• For	proofs	of	quantumness,	we	only	needed	the	fact	that	KLVY	preserves	the	
classical	value	𝜔¹ of	the	game,	since	we	only	care	about	soundness	against	
classical	provers

• For	verifiable	delegation,	we	need	soundness	against	quantum	provers,	and	thus	
have	to	think	about	whether	the	KLVY	compiler	preserves	the	quantum value	𝜔¹∗



𝑥

Quantum	prover Classical	verifier

𝑎

|0⟩

|1⟩

|+⟩ |−⟩

𝑥 = 1

𝑎 = 1𝑎 = 0
𝑥 = 0𝑥 = 0

𝑥 = 1

𝑎 = 0

𝑎 = 1

𝑦 ← {0,1}
𝑋 + 𝑍 𝑋 − 𝑍

𝑏 = 0

𝑏 = 0

𝑏 = 1

𝑏 = 1

𝑏

𝑥 ← {0,1}

𝑦

If	𝑦 = 0,	measure	𝑋 + 𝑍
If	𝑦 = 1,	measure	𝑋 − 𝑍

Accept	if	𝑎 ⊕ 𝑏 = 𝑥 ∧ 𝑦

+𝑥 = 0:

𝑥 = 1:

−

0 1

𝑎 = 0 𝑎 = 1

Back	to	the	compiled	CHSH	game

Can	a	malicious	quantum	prover	do	
any	better	than	0.85?
[BGKPV23,	NZ23]:	No!

“Rigidity”:	In	order	to	achieve	
0.85,	the	prover’s	measurements	
must	be	at	a	maximum	angle

Verifier	can	test	that	the	prover	is	
applying	(rotated)	standard	and	
Hadamard basis	measurements	

Oblivious	BB84	state	preparation



Verifiable	delegation

How	do	the	[RUV13],[Gri17]	non-local	games	work?

• Ingredient	#1:	Circuit-to-Hamiltonian	
• 𝑄, 𝑥 → 𝐻¿,� = ∑ 𝐻3�

3 ,	where	each	𝐻3 contains	only	𝑋 or	𝑍 terms
• If	𝑄 𝑥 = 0,	∃|𝜓⟩ s.t. 𝜓 𝐻¿,� 𝜓 ≥ 𝑣 + 𝜖
• If	𝑄 𝑥 = 1,	∀|𝜓⟩,	 𝜓 𝐻¿,� 𝜓 ≤ 𝑣

• Ingredient	#2:	Quantum	teleportation
|𝜓⟩



Verifiable	delegation

How	do	the	[RUV13],[Gri17]	non-local	games	work?

• Ingredient	#1:	Circuit-to-Hamiltonian	
• 𝑄, 𝑥 → 𝐻¿,� = ∑ 𝐻3�

3 ,	where	each	𝐻3 contains	only	𝑋 or	𝑍 terms
• If	𝑄 𝑥 = 0,	∃|𝜓⟩ s.t. 𝜓 𝐻¿,� 𝜓 ≥ 𝑣 + 𝜖
• If	𝑄 𝑥 = 1,	∀|𝜓⟩,	 𝜓 𝐻¿,� 𝜓 ≤ 𝑣

• Ingredient	#2:	Quantum	teleportation

• Ingredient	#3:	Rigidity 𝑟, 𝑠

𝑋U𝑍X|𝜓⟩
measure



Verifiable	delegation:	Highly	simplified
Non-local	game	for	𝑄, 𝑥

𝑥 𝑦
𝑎 𝑏

Sample	𝑔 ← {Hamiltonian, CHSH}

|𝜓⟩

If	𝑔 = Ham: 𝑥 = Tel,	𝑎 = (𝑟, 𝑠), 𝑦 = 𝐻3, 𝑏 = ⟨𝜓 𝑋U𝑍X𝐻3𝑍X𝑋U 𝜓⟩
accept	if	average	of	measurement	results	≥ 𝑣 + 𝜖

If	𝑔 = CHSH: play	many	copies	of	CHSH	game
accept	if	average	win	probability	≈ 0.85

Can	only	win	if	|𝜓⟩ is	a	valid	witness	that	𝑄 𝑥 = 0

Either	standard	or	Hadamard
basis	measurements

Ensures	that	Bob	is	honestly	
performing	the	standard	and	

Hadamard basis	measurements	



Verifiable	delegation:	Highly	simplified
Non-local	game	for	𝑄, 𝑥

𝑥 𝑦
𝑎 𝑏

Sample	𝑔 ← {Hamiltonian, CHSH}

|𝜓⟩

If	𝑔 = Ham: 𝑥 = Tel,	𝑎 = (𝑟, 𝑠), 𝑦 = 𝐻3, 𝑏 = ⟨𝜓 𝑋U𝑍X𝐻3𝑍X𝑋U 𝜓⟩
accept	if	average	of	measurement	results	≥ 𝑣 + 𝜖

If	𝑔 = CHSH: play	many	copies	of	CHSH	game
accept	if	average	win	probability	≈ 0.85

[NZ23]
Blind	delegation	of	
Alice’s	strategy

Quantum	prover Classical	verifier

𝑔,…	

𝑎

𝑦

𝑏

Key:	Doesn’t	know	which	
game	is	being	played

𝑄, 𝑥

|𝜓⟩

Sample	𝑔 ← {Ham, CHSH}

Will	only	accept	if	𝑄 𝑥 = 0

*

*[NZ23]	considered	only	
two-message	protocols	
(QFHE)

Can	only	win	if	|𝜓⟩ is	a	valid	witness	that	𝑄 𝑥 = 0



Oblivious	BB84	
State	Preparation

Blind	Delegation	of	
Quantum	ComputationdTCF

LWE

Cryptographic	
group	actions

Recap

Proofs	of	quantumness

Verifiable	Delegation	of	
Quantum	Computation

Crypto “Bridge”
Classical-client	quantum-

server	protocols
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