

Encrypted Quantum Computation: Cryptography for the Quantum Cloud

James Bartusek

UC Berkeley

Hello quantum world! Google publishes landmark quantum supremacy claim

The company says that its quantum computer is the first to perform a calculation that would be practically impossible for a classical machine.

How can we “prove quantumness” to classical machines?

How can we verify these claims?

TECH

IBM and Google disagree on quantum computing achievement

PUBLISHED WED, OCT 23 2019 2:16 PM EDT | UPDATED WED, OCT 23 2019 4:00 PM EDT

Suppose we have managed to achieve “quantum advantage”

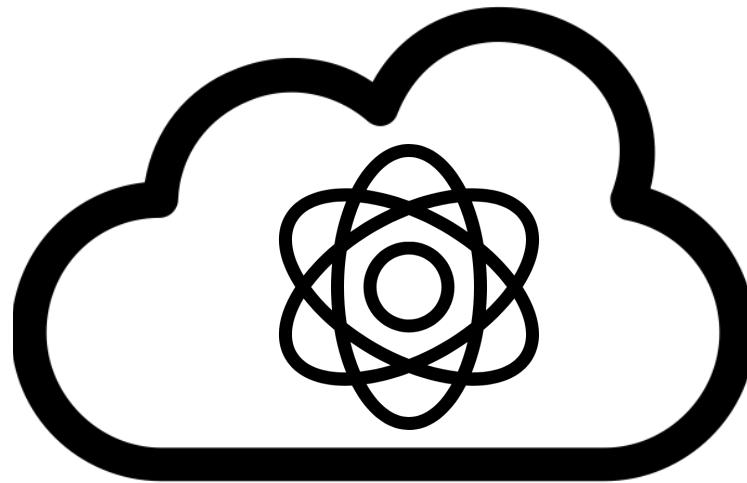
Another issue: Building quantum computers is extremely costly

In the near-term, quantum computing technology will be highly concentrated

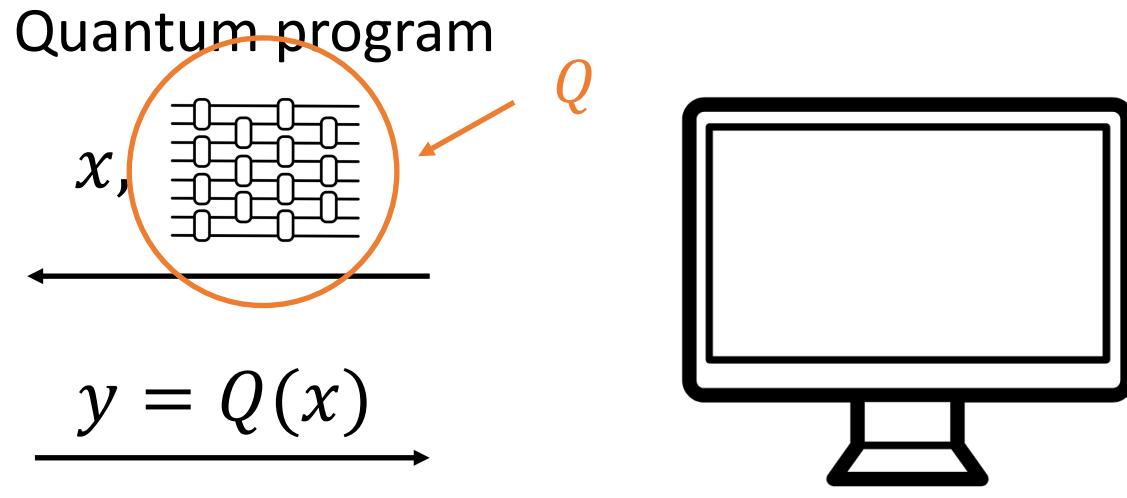
Google AI
Quantum

IBM Quantum

Delegation of Quantum Computation



Quantum cloud



Classical client

Desirable security properties:

- Blindness: the cloud learns nothing about the client's input x
- Verifiability: the client can be sure that the output y is computed correctly

The Plan

- Part 1: Quantum background
- Part 2: Blind delegation from oblivious state preparation
- Part 3: Oblivious state preparation from post-quantum crypto
- Part 4: Proofs of quantumness and verifiable delegation

Part 1: Quantum Background

- How to encrypt quantum states
- Quantum universal gate set

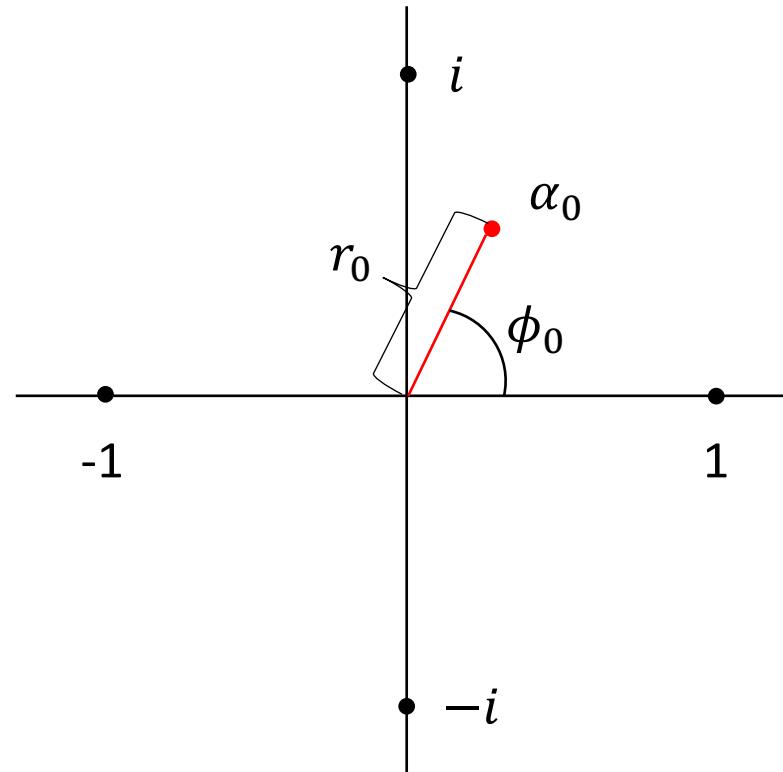
The Bloch Sphere

Single-qubit state:

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle \quad (\alpha_0, \alpha_1 \in \mathbb{C}, |\alpha_0|^2 + |\alpha_1|^2 = 1)$$

$$= r_0 e^{i\phi_0}|0\rangle + r_1 e^{i\phi_1}|1\rangle, \quad \phi_0, \phi_1 \in [0, 2\pi)$$

$$= e^{i\phi_0}(r_0|0\rangle + r_1 e^{i(\phi_1-\phi_0)}|1\rangle)$$



The Bloch Sphere

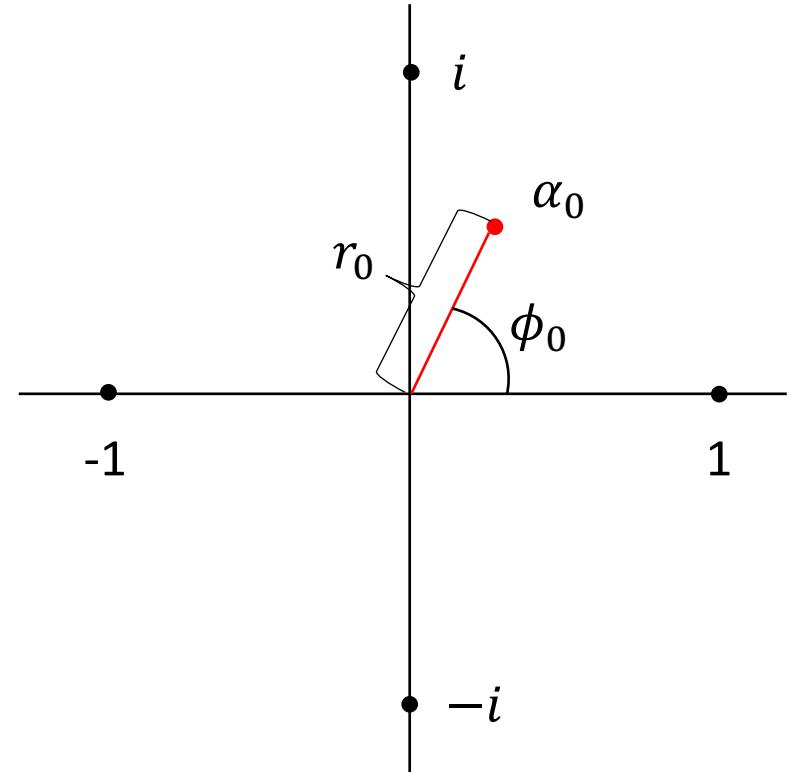
Single-qubit state:

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle \quad (\alpha_0, \alpha_1 \in \mathbb{C}, |\alpha_0|^2 + |\alpha_1|^2 = 1)$$

$$= r_0 e^{i\phi_0}|0\rangle + r_1 e^{i\phi_1}|1\rangle, \quad \phi_0, \phi_1 \in [0, 2\pi)$$

$$= r_0|0\rangle + r_1 e^{i\phi}|1\rangle, \quad \phi \in [0, 2\pi)$$

$$= \cos(\theta/2)|0\rangle + \sin(\theta/2)e^{i\phi}|1\rangle, \quad \theta \in [0, \pi]$$



The Bloch Sphere

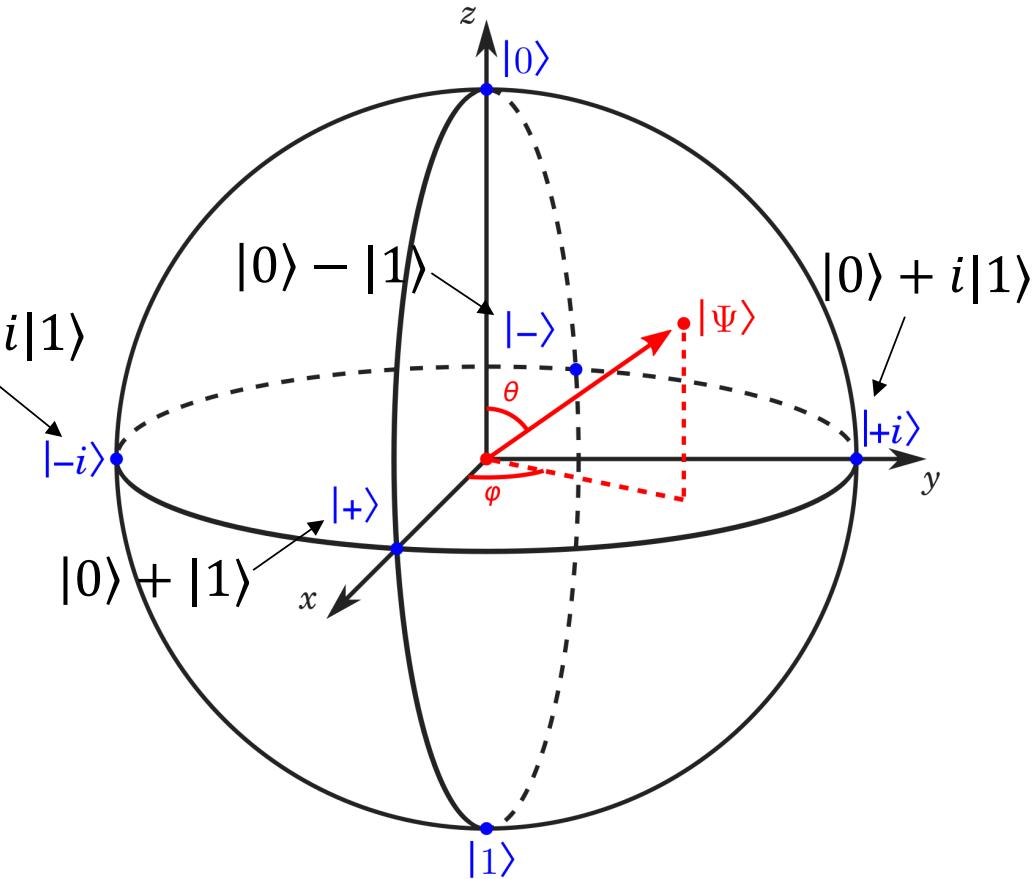
Single-qubit state:

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle \quad (\alpha_0, \alpha_1 \in \mathbb{C}, |\alpha_0|^2 + |\alpha_1|^2 = 1)$$

$$= r_0 e^{i\phi_0}|0\rangle + r_1 e^{i\phi_1}|1\rangle, \quad \phi_0, \phi_1 \in [0, 2\pi)$$

$$= r_0|0\rangle + r_1 e^{i\phi}|1\rangle, \quad \phi \in [0, 2\pi)$$

$$= \cos(\theta/2)|0\rangle + \sin(\theta/2)e^{i\phi}|1\rangle, \quad \theta \in [0, \pi]$$



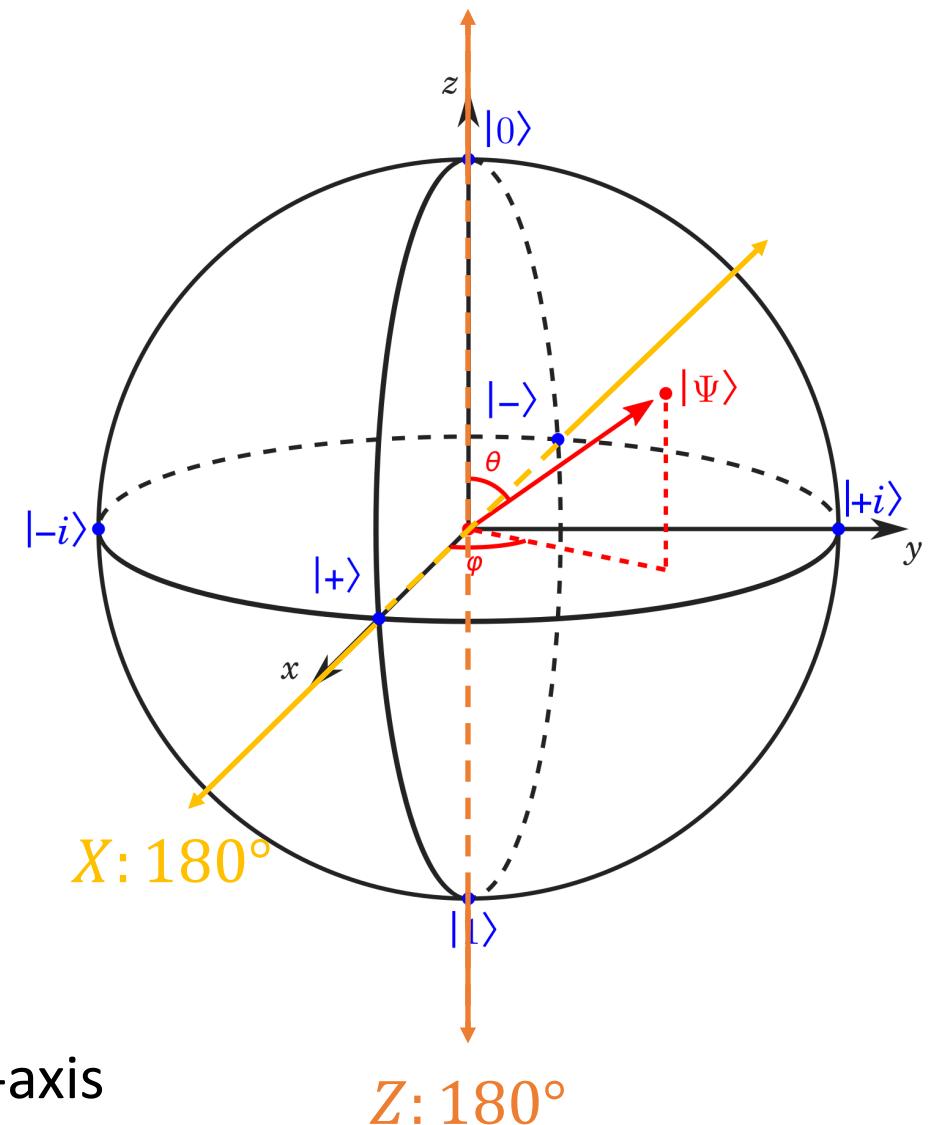
Convention: drop normalization factors
when clear from context

The Bloch Sphere

- Any single-qubit state can be represented as a point on the unit sphere
- Any single-qubit unitary can be represented as a rotation of the unit sphere
- Pauli rotations:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ “bit flip”: } 180^\circ \text{ around the } x\text{-axis}$$

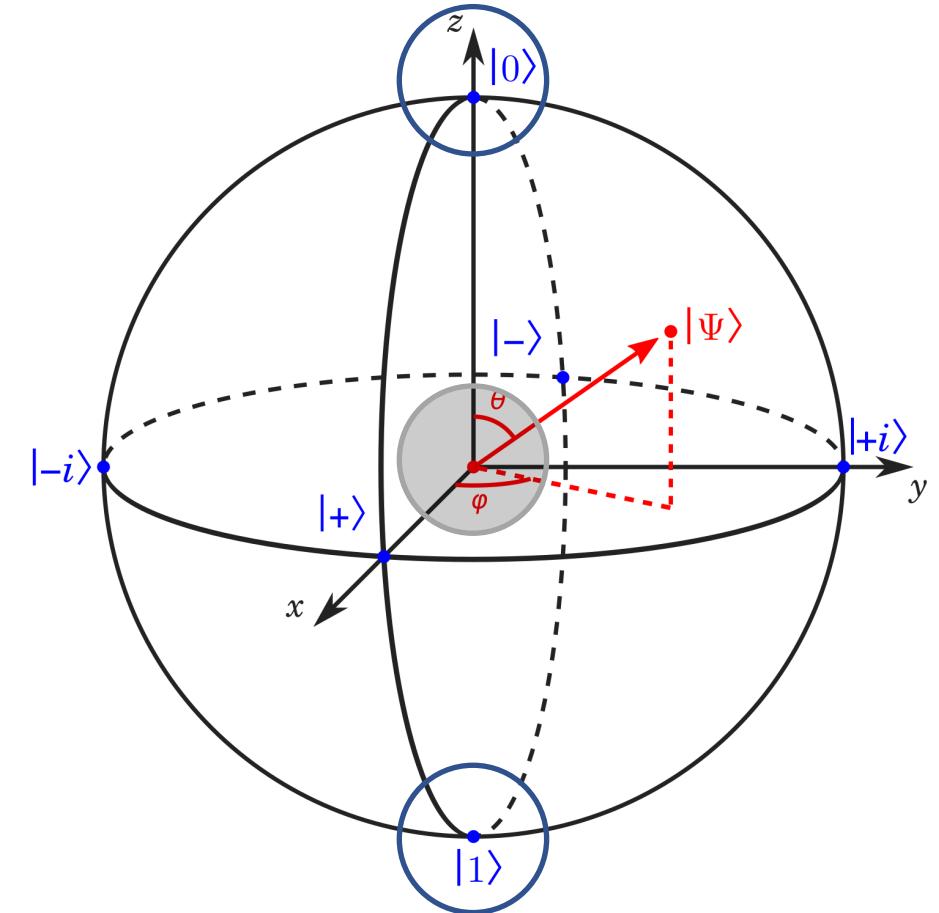
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ “phase flip”: } 180^\circ \text{ around the } z\text{-axis}$$



How to encrypt quantum states

Classical one-time pad:

To encrypt a bit b , sample random
 $r \leftarrow \{0,1\}$, and output $b \oplus r$ ($= X^r |b\rangle$)
“encrypting θ ”



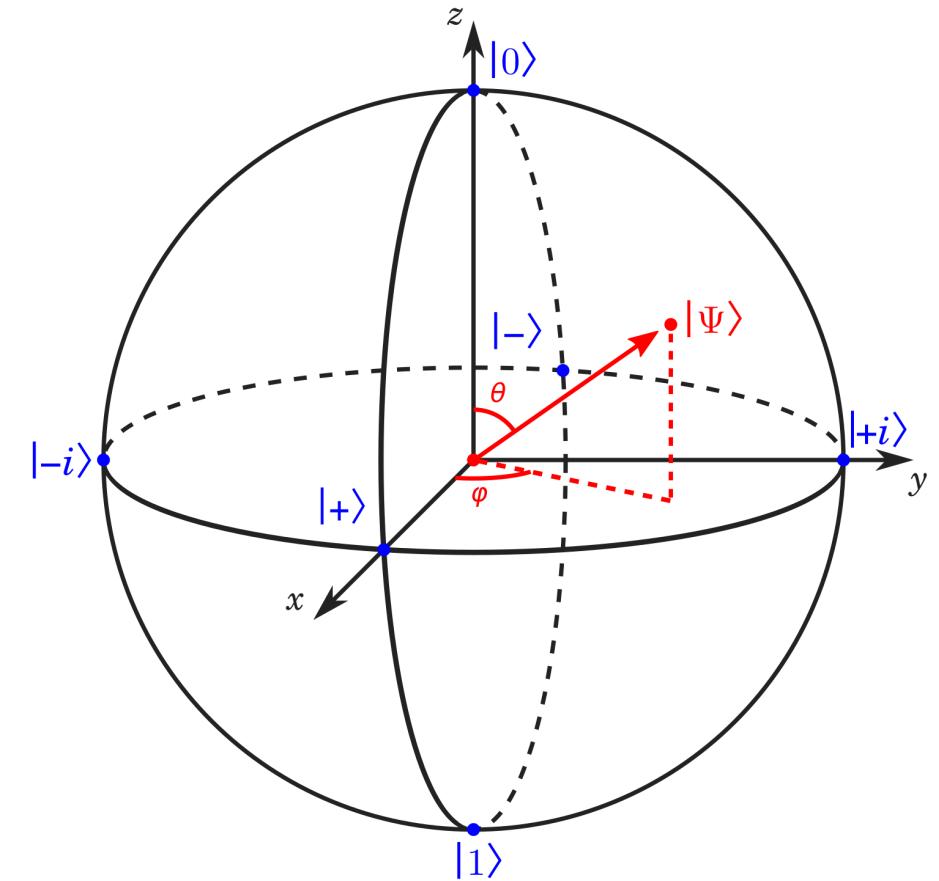
How to encrypt quantum states

Classical one-time pad:

To encrypt a bit b , sample random
 $r \leftarrow \{0,1\}$, and output $b \oplus r$ ($= X^r |b\rangle$)

Quantum one-time pad [MTdW00]:

To encrypt a state $|\psi\rangle$, sample random
 $r, s \leftarrow \{0,1\}$, and output $X^r Z^s |\psi\rangle$



How to encrypt quantum states

Classical one-time pad:

To encrypt a bit b , sample random $r \leftarrow \{0,1\}$, and output $b \oplus r$ ($= X^r |b\rangle$)

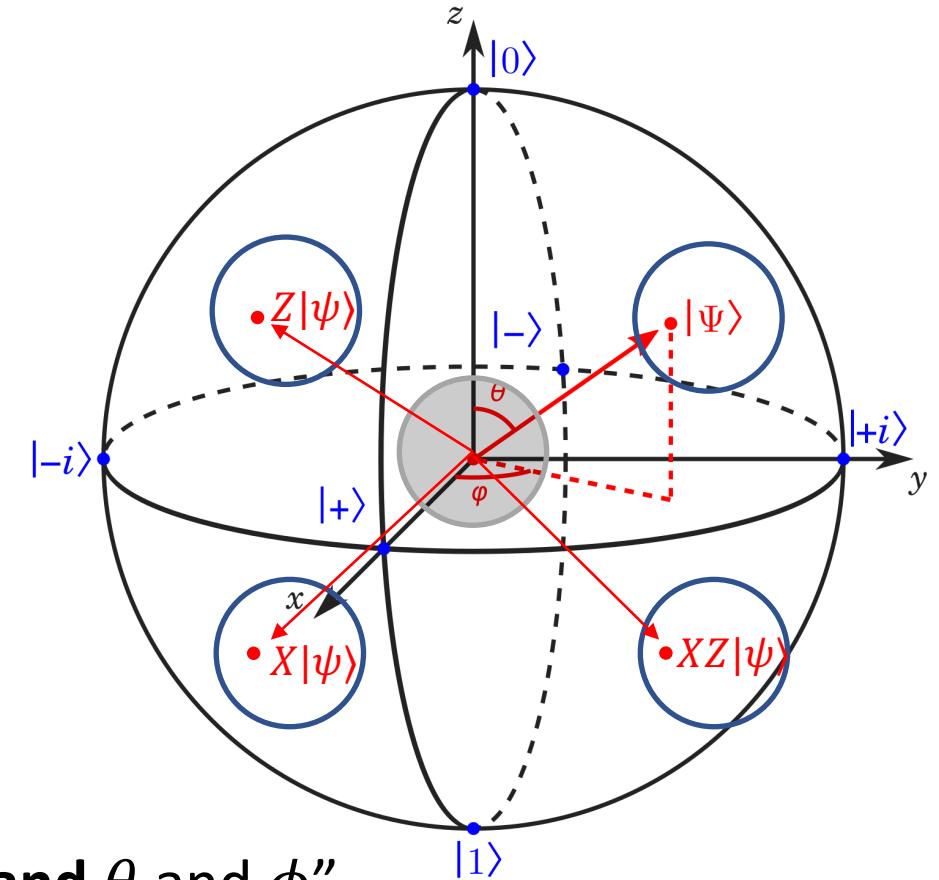
Quantum one-time pad [MTdW00]:

To encrypt a state $|\psi\rangle$, sample random $r, s \leftarrow \{0,1\}$, and output $X^r Z^s |\psi\rangle$

“encrypting **and** θ and ϕ ”

Extends to n-qubit states:

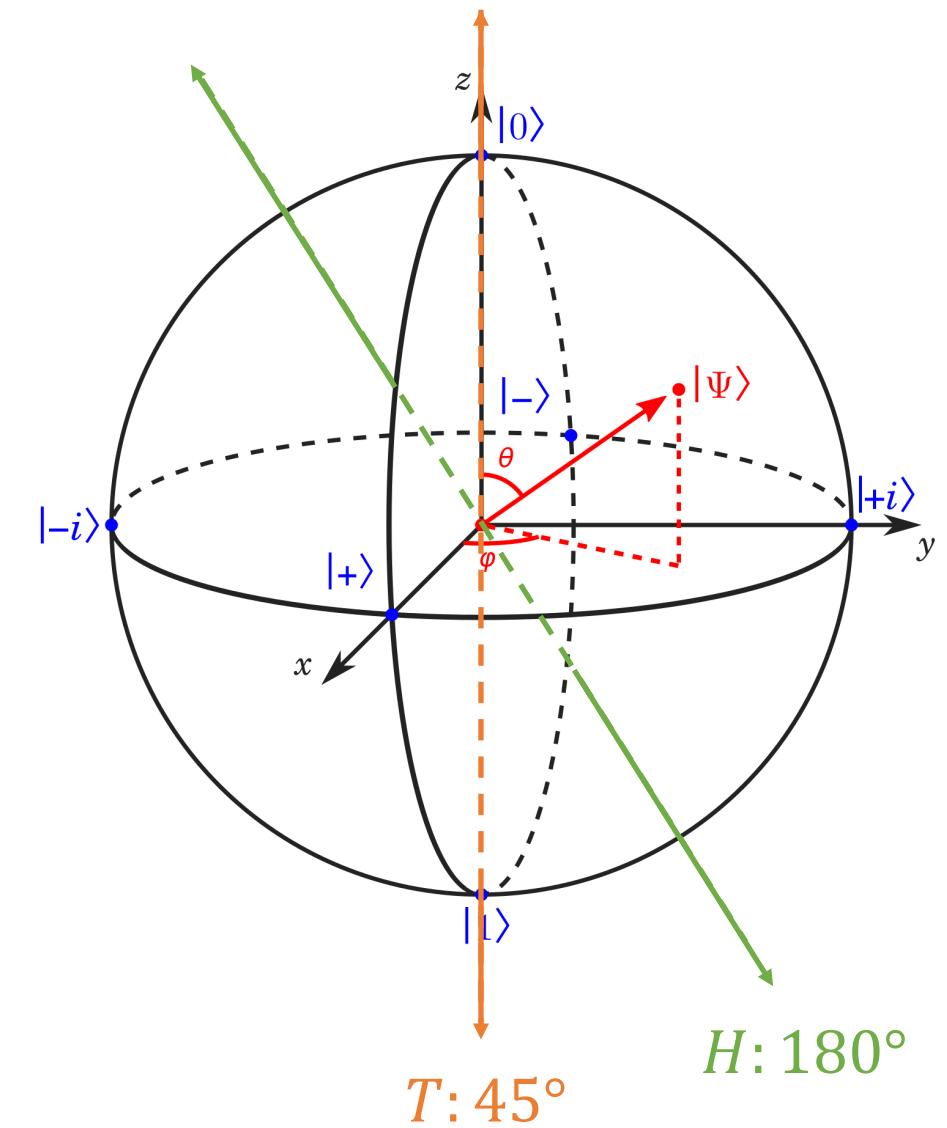
Sample $r, s \leftarrow \{0,1\}^n$, and output $X^{r_1} Z^{s_1} \otimes \dots \otimes X^{r_n} Z^{s_n} |\psi\rangle := X^r Z^s |\psi\rangle$



Universal gate set

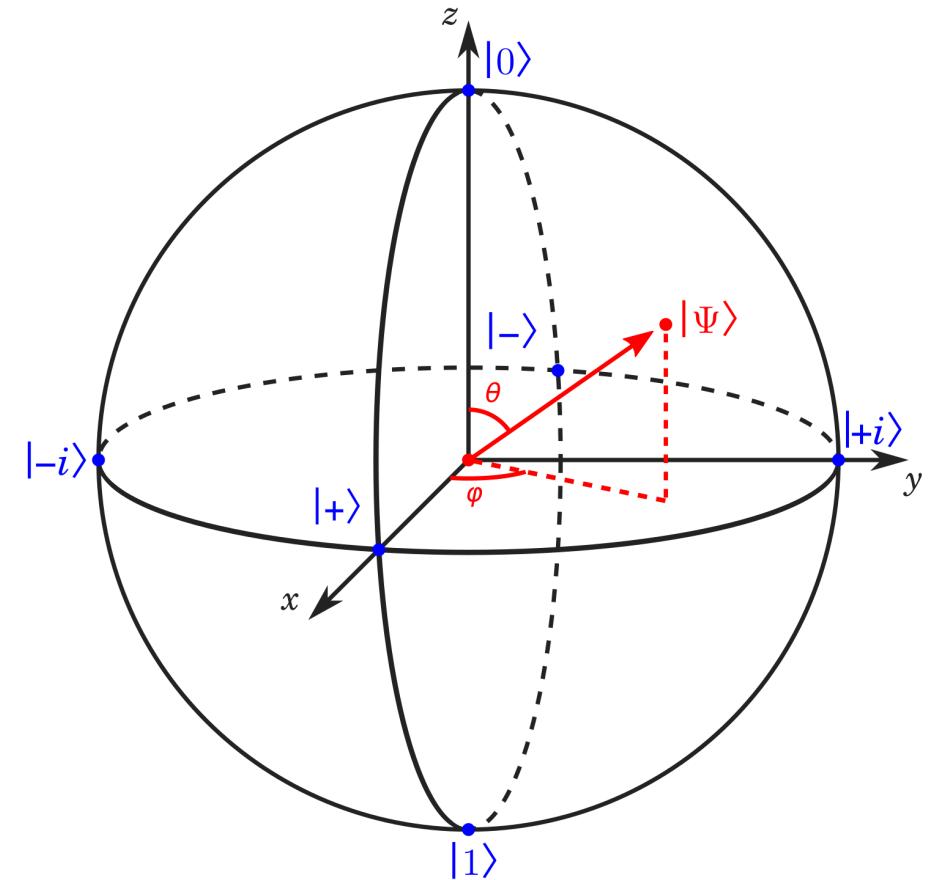
- Consider any n -qubit unitary U
- Goal: write U (approximately) as a sequence of one- and two-qubit gates, from a small finite set
- Claim #1: Any U can be written as a series of single-qubit rotations and CNOT gates, where $\text{CNOT}: |x\rangle|y\rangle \rightarrow |x\rangle|x \oplus y\rangle$
- Claim #2: Any single-qubit rotation can be written (approximately) as a series of:
 - Hadamard gate $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
 - T gate $T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$
- Claim #3 (Solovay-Kitaev): This approximation is efficient

(A good reference for all of these claims is Nielsen-Chuang)



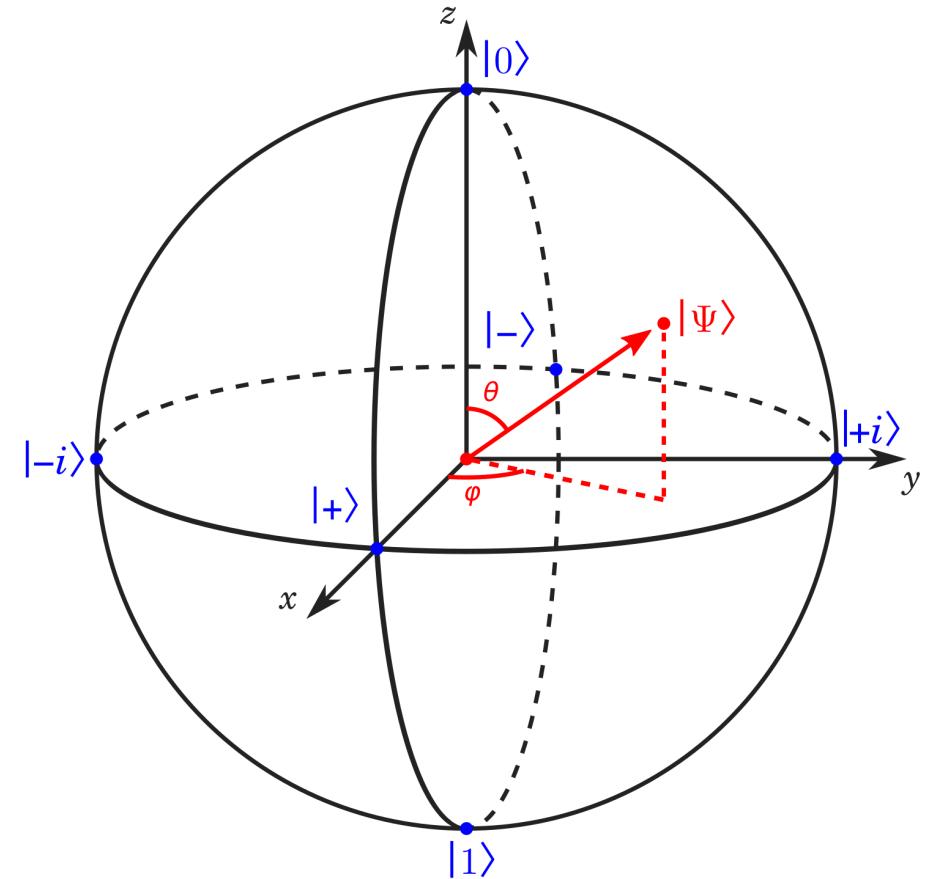
Clifford gates

- Recall: QOTP $X^r Z^s |\psi\rangle$, $r, s \in \{0,1\}^n$
- Clifford group normalizes the Pauli group
 - For any Clifford gate C , $CX^r Z^s = X^{r'} Z^{s'} C$



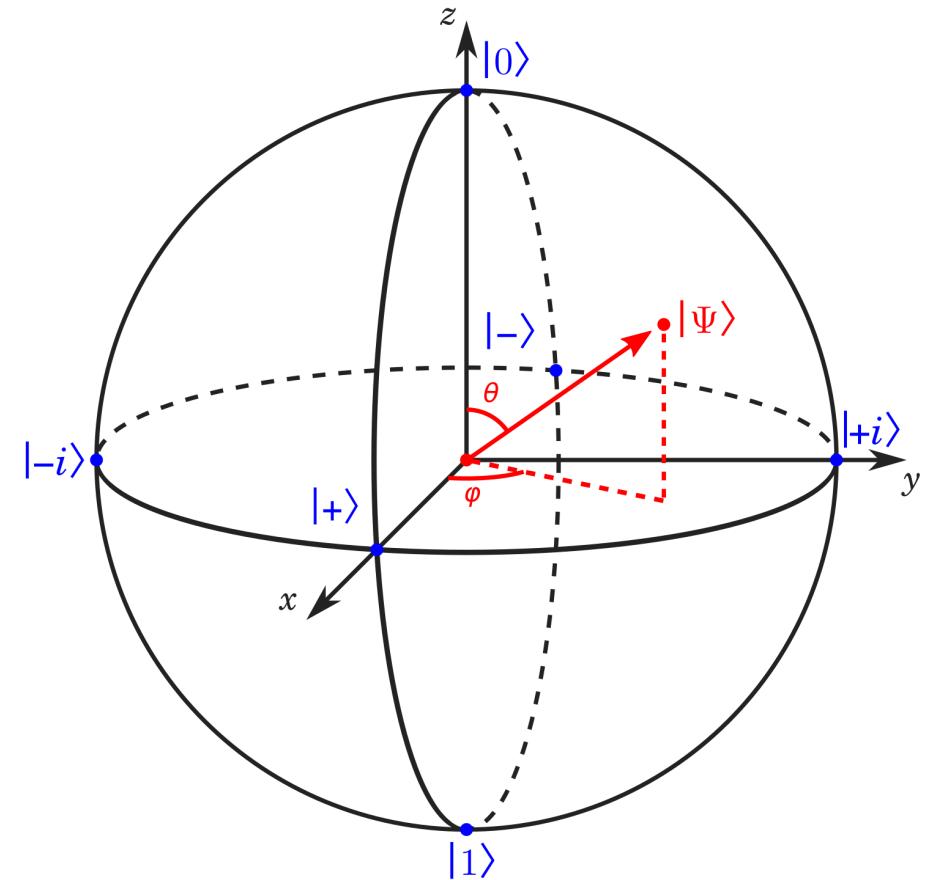
Clifford gates

- Recall: QOTP $X^r Z^s |\psi\rangle$, $r, s \in \{0,1\}^n$
- Clifford group normalizes the Pauli group
 - For any Clifford gate C , $CX^r Z^s |\psi\rangle = X^{r'} Z^{s'} C |\psi\rangle$
 - Cliffords can be applied directly to encrypted quantum states, and the QOTP key get updated
- Recall: Universal gate set CNOT, H , T
- CNOT is Clifford: $\text{CNOT}(X^{r_1} Z^{s_1} \otimes X^{r_2} Z^{s_2}) = (X^{r_1} Z^{s_1 \oplus s_2} \otimes X^{r_1 \oplus r_2} Z^{s_2}) \text{CNOT}$
- H is Clifford: $HX^r Z^s = X^s Z^r H$
- T is **not** Clifford:
$$TX = T^2 XT$$



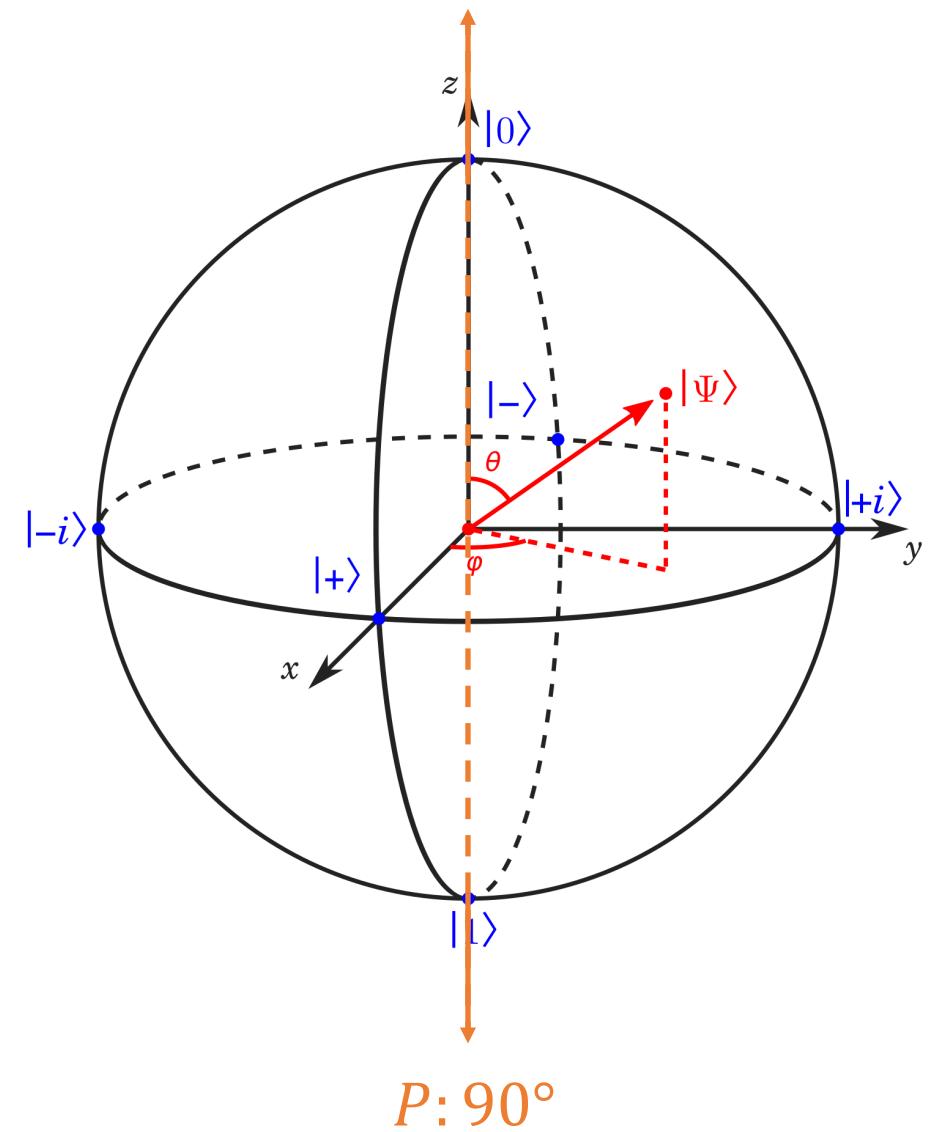
Clifford gates

- Recall: QOTP $X^r Z^s |\psi\rangle$, $r, s \in \{0,1\}^n$
- Clifford group normalizes the Pauli group
 - For any Clifford gate C , $CX^r Z^s |\psi\rangle = X^{r'} Z^{s'} C |\psi\rangle$
 - Cliffords can be applied directly to encrypted quantum states, and the QOTP key get updated
- Recall: Universal gate set CNOT, H , T
- CNOT is Clifford: $\text{CNOT}(X^{r_1} Z^{s_1} \otimes X^{r_2} Z^{s_2}) = (X^{r_1} Z^{s_1 \oplus s_2} \otimes X^{r_1 \oplus r_2} Z^{s_2}) \text{CNOT}$
- H is Clifford: $HX^r Z^s = X^s Z^r H$
- T is **not** Clifford: $TX^r Z^s = (T^2)^r X^r Z^s T$



Clifford gates

- Recall: QOTP $X^r Z^s |\psi\rangle$, $r, s \in \{0,1\}^n$
- Clifford group normalizes the Pauli group
 - For any Clifford gate C , $CX^r Z^s |\psi\rangle = X^{r'} Z^{s'} C |\psi\rangle$
 - Cliffords can be applied directly to encrypted quantum states, and the QOTP key get updated
- Recall: Universal gate set CNOT, H , T
- CNOT is Clifford: $\text{CNOT}(X^{r_1} Z^{s_1} \otimes X^{r_2} Z^{s_2}) = (X^{r_1} Z^{s_1 \oplus s_2} \otimes X^{r_1 \oplus r_2} Z^{s_2}) \text{CNOT}$
- H is Clifford: $HX^r Z^s = X^s Z^r H$
- T is **not** Clifford: $TX^r Z^s = P^r X^r Z^s T$
- P is called the “phase gate”

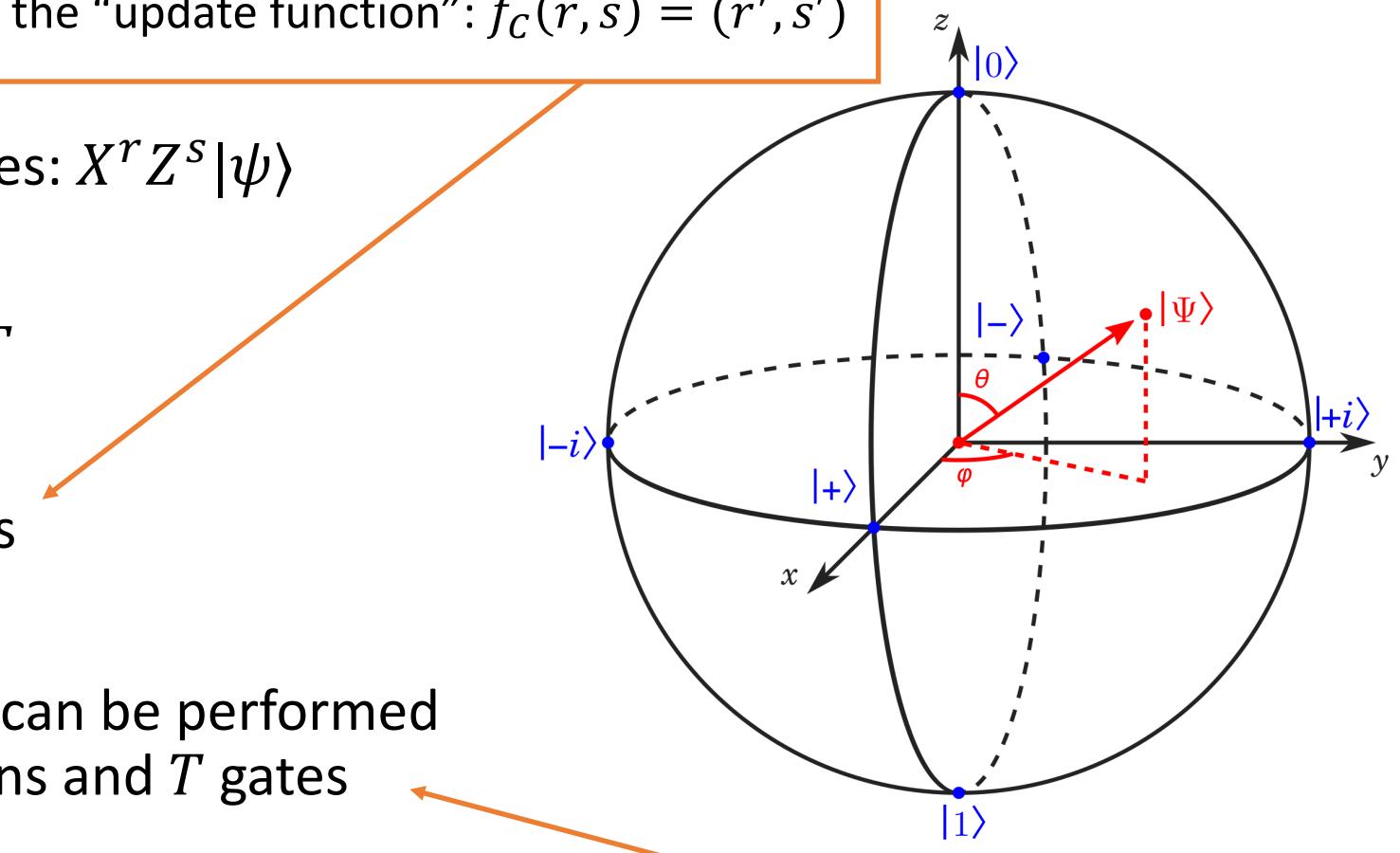


Recap

Key property: For any Clifford C and $r, s \in \{0,1\}^n$, there exists $r', s' \in \{0,1\}^n$ such that $CX^rZ^s = X^{r'}Z^{s'}C$

Define f_C to be the “update function”: $f_C(r, s) = (r', s')$

- How to encrypt quantum states: $X^rZ^s|\psi\rangle$
- Universal gate set: CNOT, H , T
- CNOT and H are Clifford gates
- Any quantum computation Q can be performed using just Clifford computations and T gates
- $TX^rZ^s = P^rX^rZ^sT$



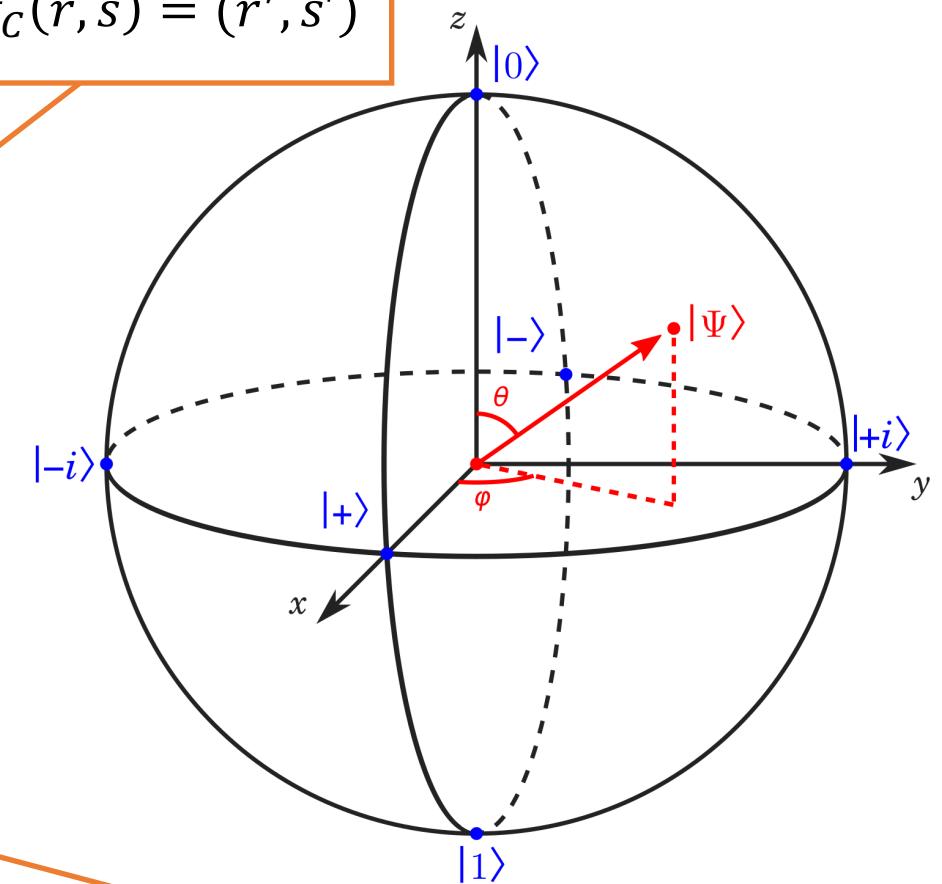
That is, $Q(x) = C_tTC_{t-1} \dots TC_2TC_1|x\rangle$

Recap

Key property: For any Clifford C and $r, s \in \{0,1\}^n$, there exists $r', s' \in \{0,1\}^n$ such that $CX^rZ^s = X^{r'}Z^{s'}C$

Define f_C to be the “update function”: $f_C(r, s) = (r', s')$

- How to encrypt quantum states: $X^rZ^s|\psi\rangle$
- Universal gate set: CNOT, H , T
- CNOT and H are Clifford gates
- Any quantum computation Q can be performed using just Clifford computations and T gates
- $T^\dagger X^rZ^s = (P^\dagger)^r X^rZ^s T^\dagger$



That is, $Q(x) = C_t T^\dagger C_{t-1} \dots T^\dagger C_2 T^\dagger C_1 |x\rangle$

Part 2: Blind Delegation from Oblivious BB84 State Preparation

Quantum server

$$Q = C_t T^\dagger C_{t-1} \dots T^\dagger C_2 T^\dagger C_1$$

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0} Z^{s_0} |x\rangle$

$$\xleftarrow{r_0 \oplus x}$$

Classical client(x)

Sample $r \leftarrow \{0,1\}^n$

Initialize $(r_0, s_0) = (r, 0^n)$

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$ Classical client(x)

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0} Z^{s_0} |x\rangle$

$\xleftarrow{r_0 \oplus x}$

Sample $r \leftarrow \{0,1\}^n$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = T^\dagger X^{r_1} Z^{s_1} C_1 |x\rangle$

Initialize $(r_0, s_0) = (r, 0^n)$

Update $(r_1, s_1) = f_{C_1}(r_0, s_0)$

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$ Classical client(x)

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0} Z^{s_0} |x\rangle$

$\xleftarrow{r_0 \oplus x}$

Sample $r \leftarrow \{0,1\}^n$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = (P^\dagger)^{r_{1,1}} X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle$

Initialize $(r_0, s_0) = (r, 0^n)$

Update $(r_1, s_1) = f_{C_1}(r_0, s_0)$

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$ Classical client(x)

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0} Z^{s_0} |x\rangle$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = (P^\dagger)^{r_{1,1}} X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle$

$|\psi'_1\rangle = X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle = P^{r_{1,1}} |\psi_1\rangle$

Oblivious phase correction

Sample $r \leftarrow \{0,1\}^n$

Initialize $(r_0, s_0) = (r, 0^n)$

Update $(r_1, s_1) = f_{C_1}(r_0, s_0)$

Compute $|\psi_2\rangle = T^\dagger C_2 |\psi'_1\rangle = (P^\dagger)^{r_{2,1}} X^{r_2} Z^{s_2} T^\dagger C_2 T^\dagger C_1 |x\rangle$

Update $(r_2, s_2) = f_{C_2}(r_1, s_1)$

$|\psi'_2\rangle = P^{r_{2,1}} |\psi_2\rangle$

Oblivious phase correction

$r_{2,1}$

Compute $|\psi_t\rangle = C_t |\psi'_{t-1}\rangle$

$= X^{r_t} Z^{s_t} C_t T^\dagger C_{t-1} \dots T^\dagger C_1 |x\rangle$

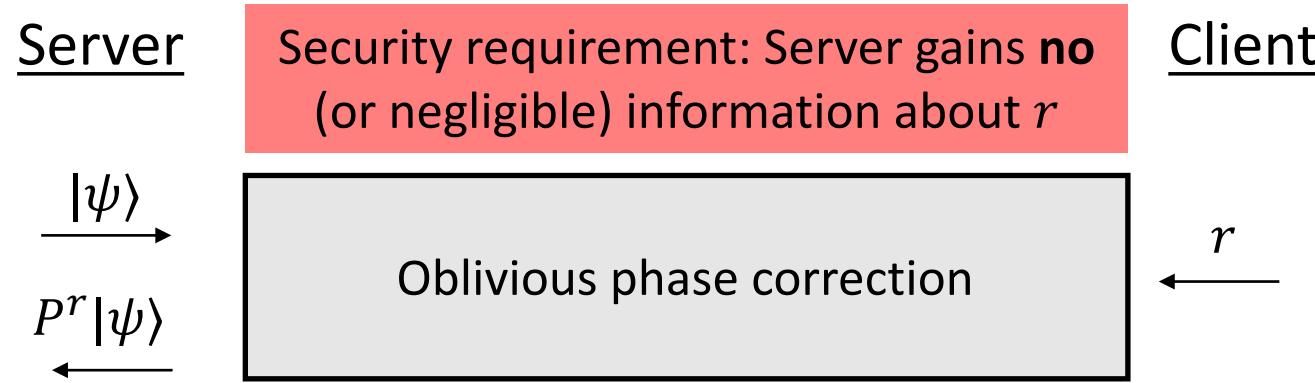
$= X^{r_t} Z^{s_t} |Q(x)\rangle = |r_t \oplus Q(x)\rangle$

$r_t \oplus Q(x)$

•
•
•

Update $(r_t, s_t) = f_{C_t}(r_{t-1}, s_{t-1})$

Recover $Q(x)$



- The previous protocol template was first developed by Childs in 2001
 - Implemented oblivious phase correction using two-way quantum communication
- This was improved by Broadbent in 2015 to one-way quantum communication
- In 2017, Mahadev introduced techniques that allow us to implement oblivious phase correction with only classical communication

Oblivious Phase via Oblivious State Preparation

Recall: $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \xrightarrow{P} |\psi\rangle = \alpha|0\rangle + i\beta|1\rangle$

“Magic state” based implementation:

1. Prepare resource state $|0\rangle + i|1\rangle$

2. Compute $\text{CNOT}|\psi\rangle(|0\rangle + i|1\rangle)$

$$= \alpha|00\rangle + i\alpha|01\rangle + \beta|11\rangle + i\beta|10\rangle$$

3. Measure 2nd qubit $\rightarrow m \in \{0,1\}$:

$$\text{If } m = 0: \alpha|0\rangle + i\beta|1\rangle$$

$$\text{If } m = 1: i\alpha|0\rangle + \beta|1\rangle$$

$$= \alpha|0\rangle - i\beta|1\rangle$$

$$= Z(\alpha|0\rangle + i\beta|1\rangle)$$

Result: $Z^m P|\psi\rangle$

Only difference

1. Prepare resource state $|0\rangle + |1\rangle$

2. Compute $\text{CNOT}|\psi\rangle(|0\rangle + |1\rangle)$

$$= \alpha|00\rangle + \alpha|01\rangle + \beta|11\rangle + \beta|10\rangle$$

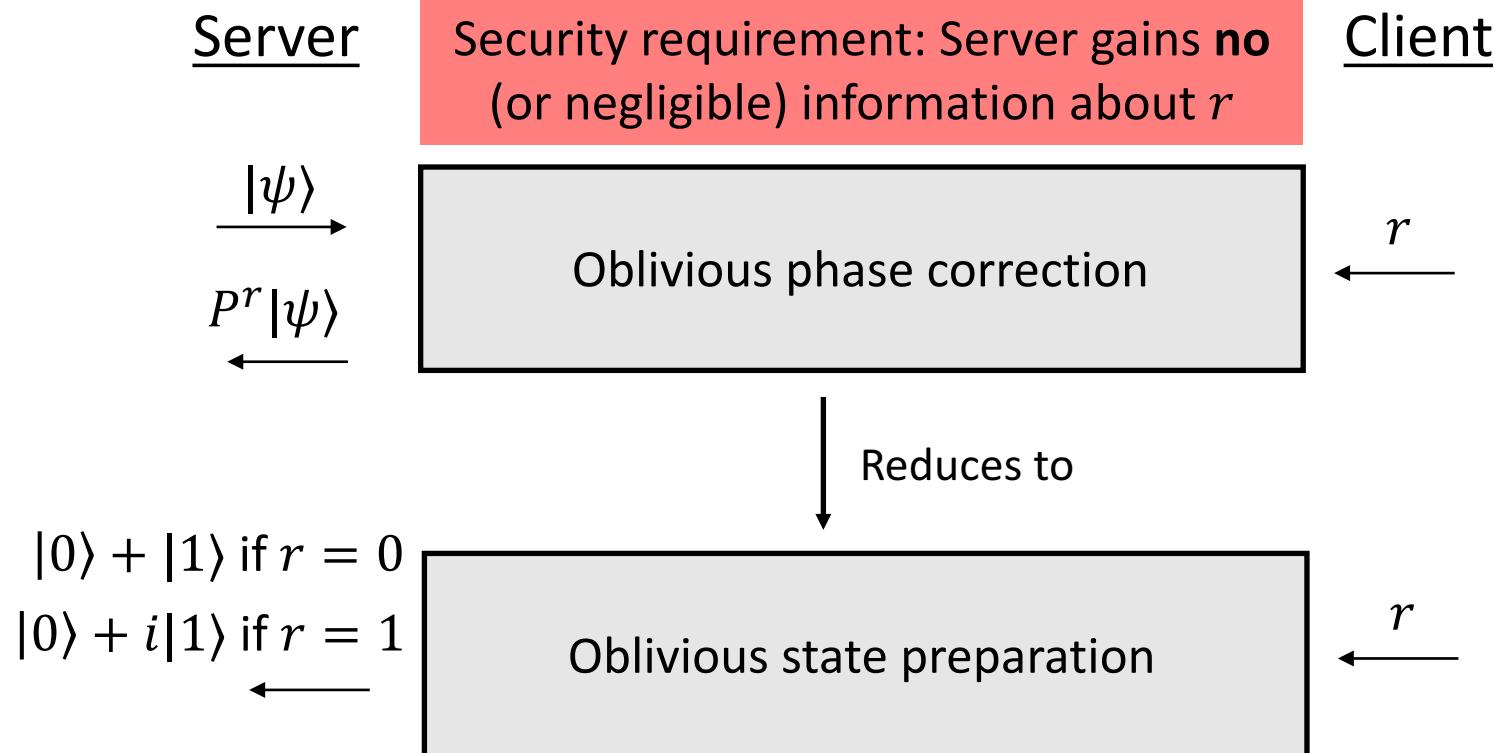
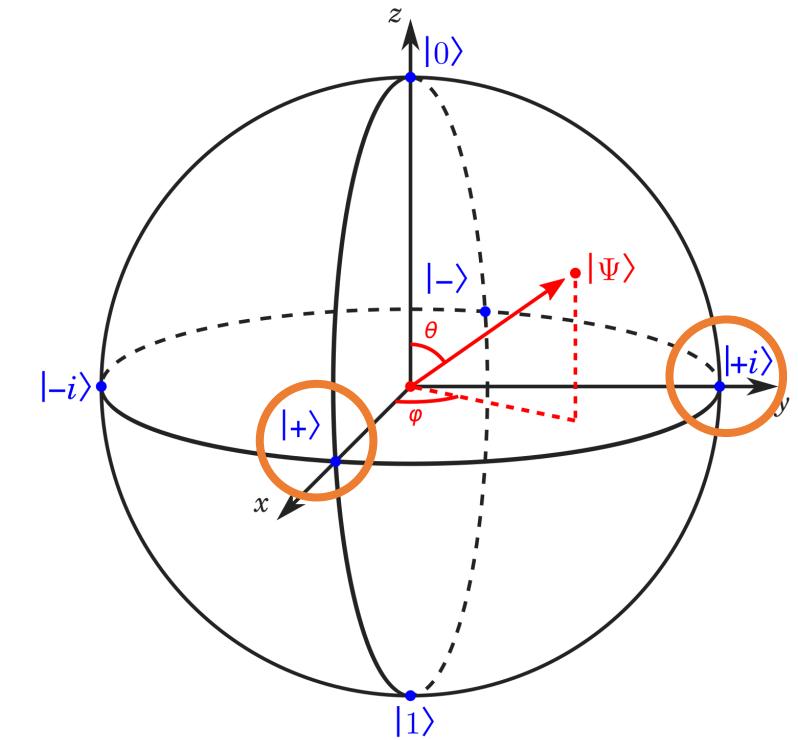
3. Measure 2nd qubit $\rightarrow m \in \{0,1\}$:

$$\text{If } m = 0: \alpha|0\rangle + \beta|1\rangle$$

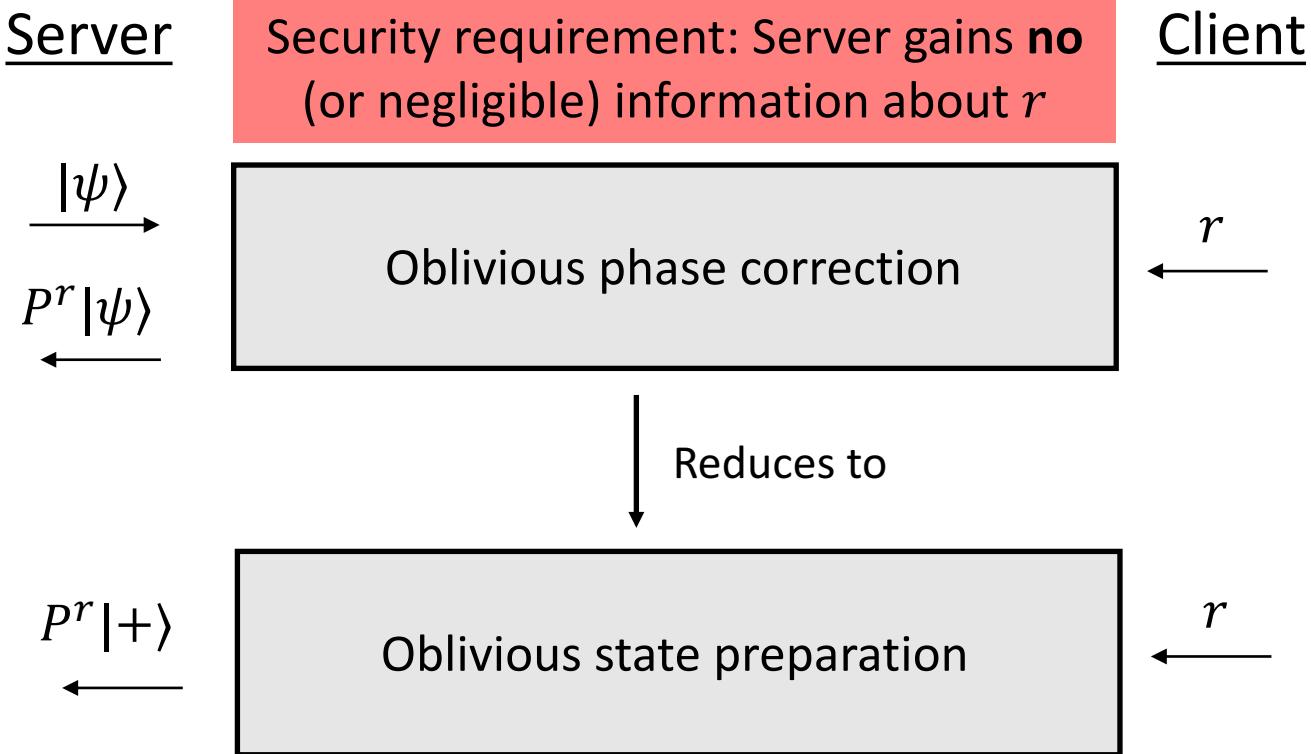
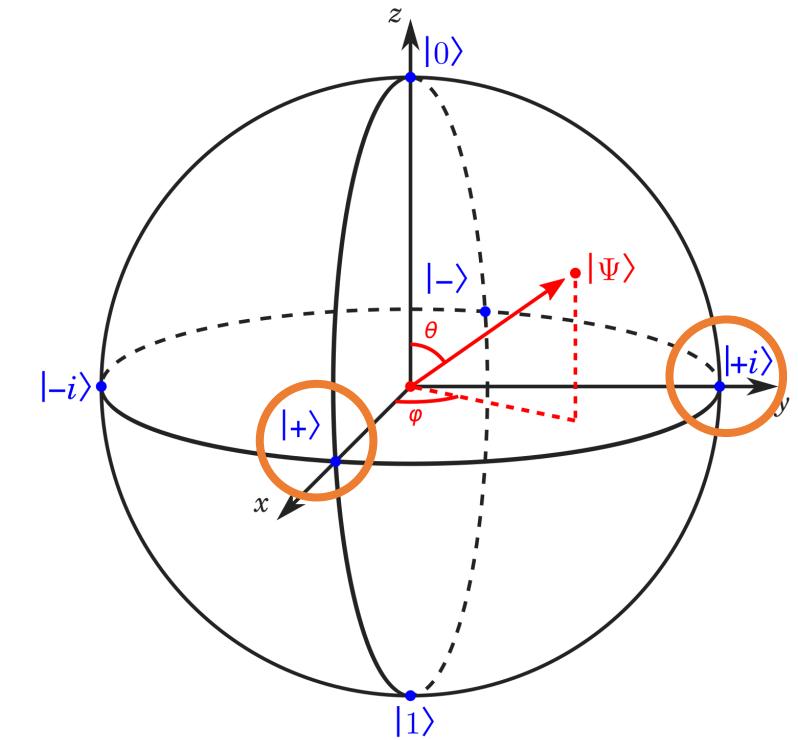
$$\text{If } m = 1: \alpha|0\rangle + \beta|1\rangle$$

Result: $|\psi\rangle$

Oblivious Phase via Oblivious State Preparation



Oblivious Phase via Oblivious State Preparation



As stated, no protocol can achieve the security requirement:

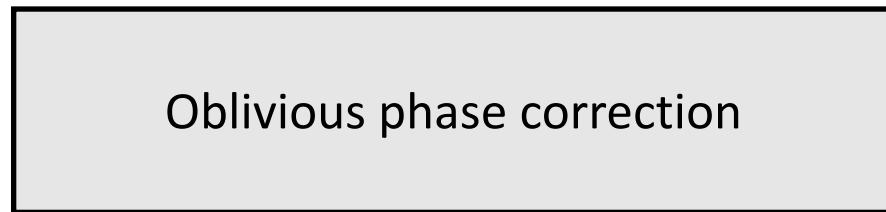
- Suppose Server measures received state in the $\{|+\rangle, |-\rangle\}$ basis
- If $r = 0$, the Server will see $|+\rangle$ with probability 1
- If $r = 1$, the Server will see $|+\rangle$ or $|-\rangle$ each with probability $\frac{1}{2}$

Oblivious Phase via Oblivious State Preparation

Server

Security requirement: Server gains **no**
(or negligible) information about r

$|\psi\rangle$
 $Z^b P^r |\psi_1\rangle$



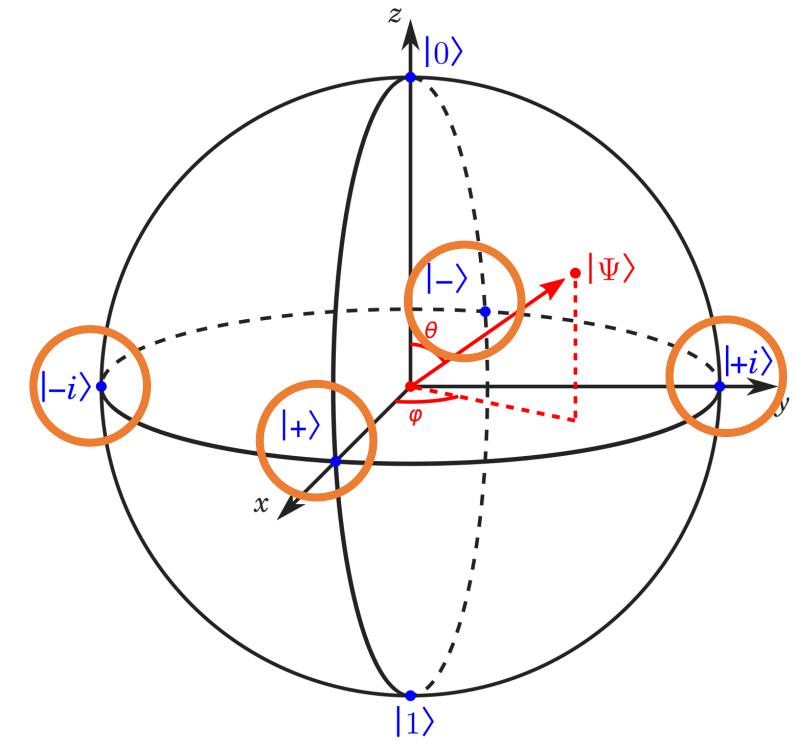
Client

r
 b

$Z^b P^r |+\rangle$

r
 b

Reduces to



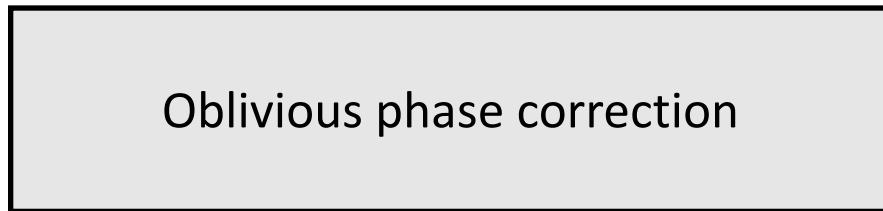
Solution: Allow for potential phase flip

Oblivious Phase via Oblivious State Preparation

Server

Security requirement: Server gains **no**
(or negligible) information about r

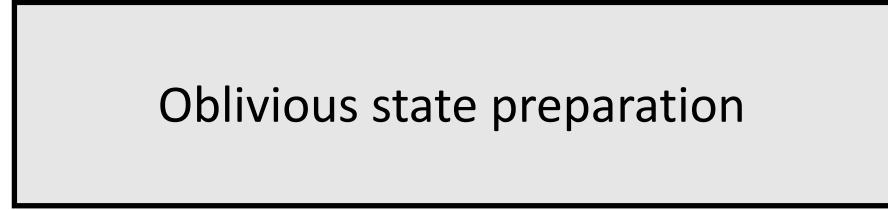
$|\psi\rangle$
 $Z^b P^r |\psi_1\rangle$



Client

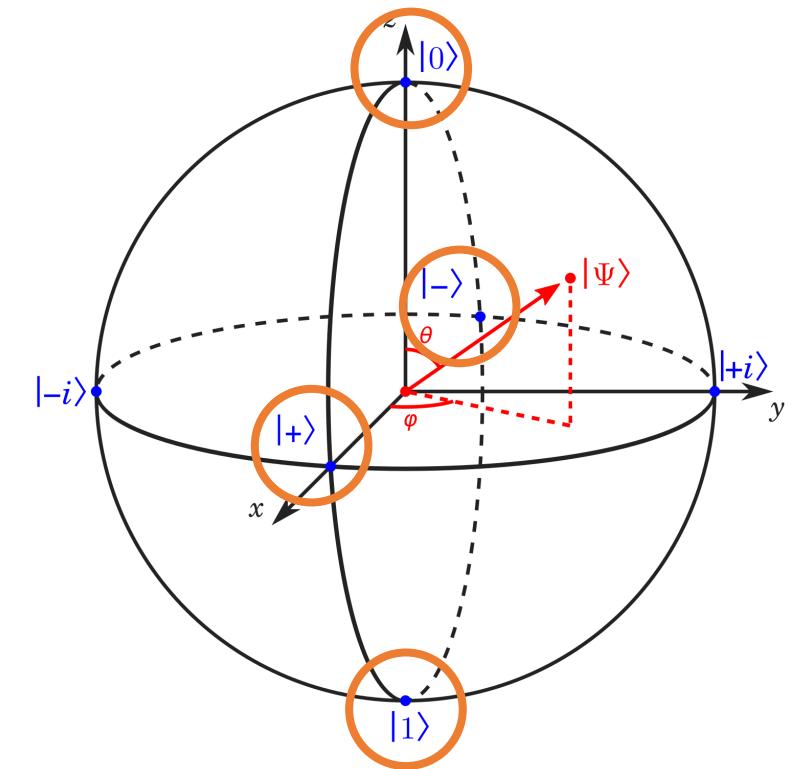
r
 b

$Z^b P^r |+\rangle$



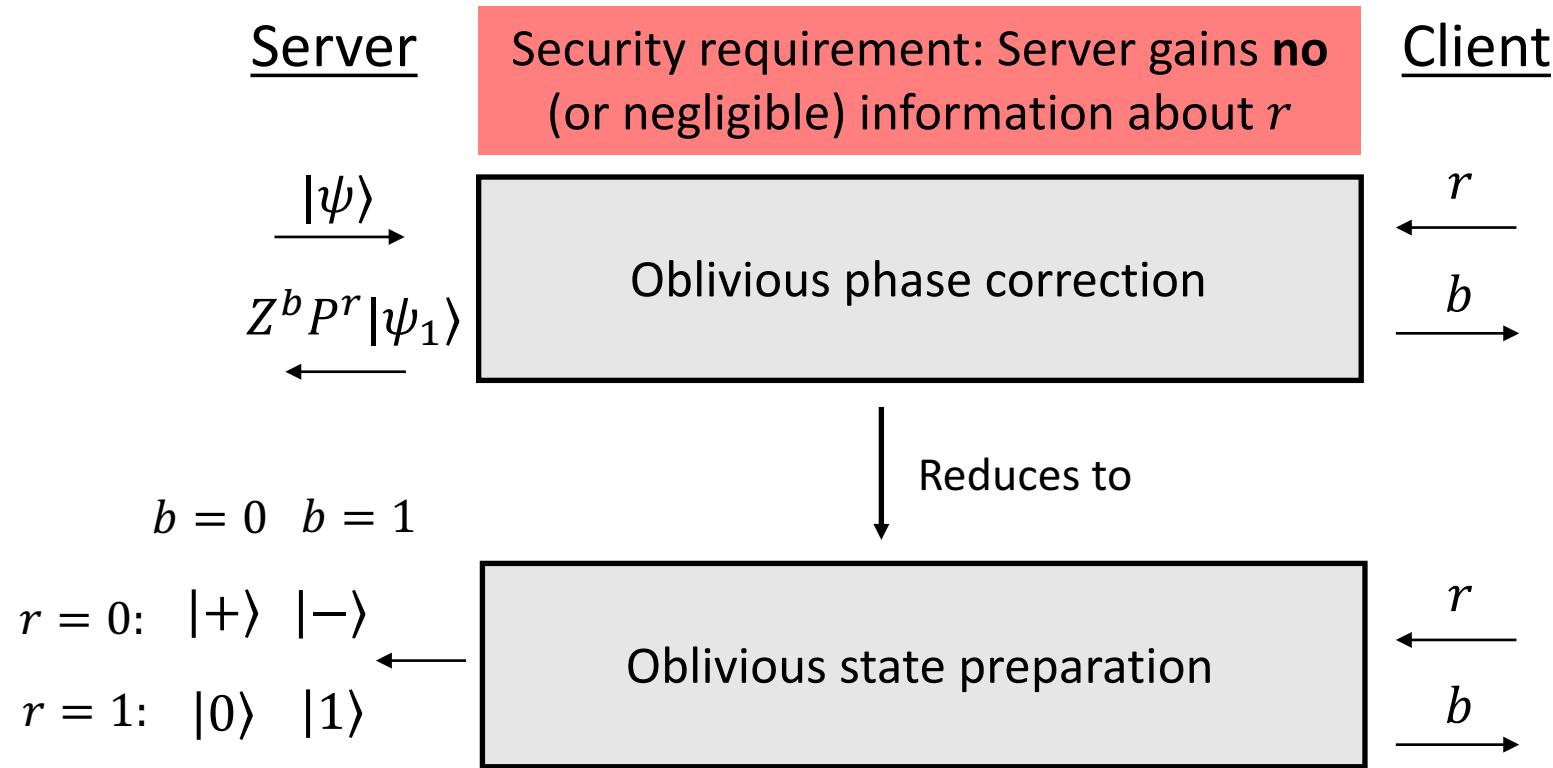
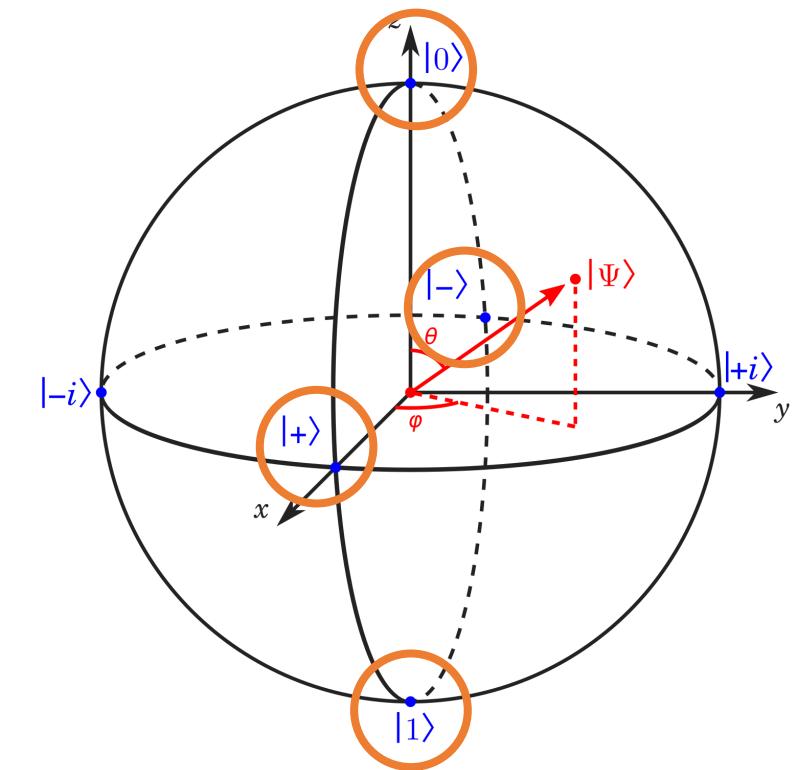
Reduces to

r
 b



Easier task: Generate BB84 states,
and then rotate

Oblivious Phase via Oblivious State Preparation



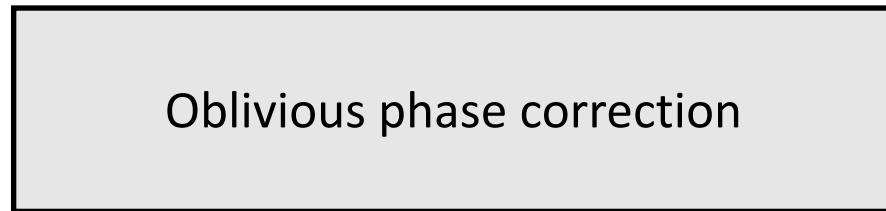
Easier task: Generate BB84 states, and then rotate

Oblivious Phase via Oblivious State Preparation

Server

Security requirement: Server gains **no**
(or negligible) information about r

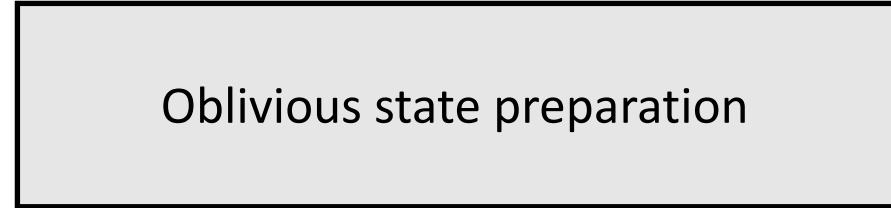
$|\psi\rangle$
 $Z^b P^r |\psi_1\rangle$



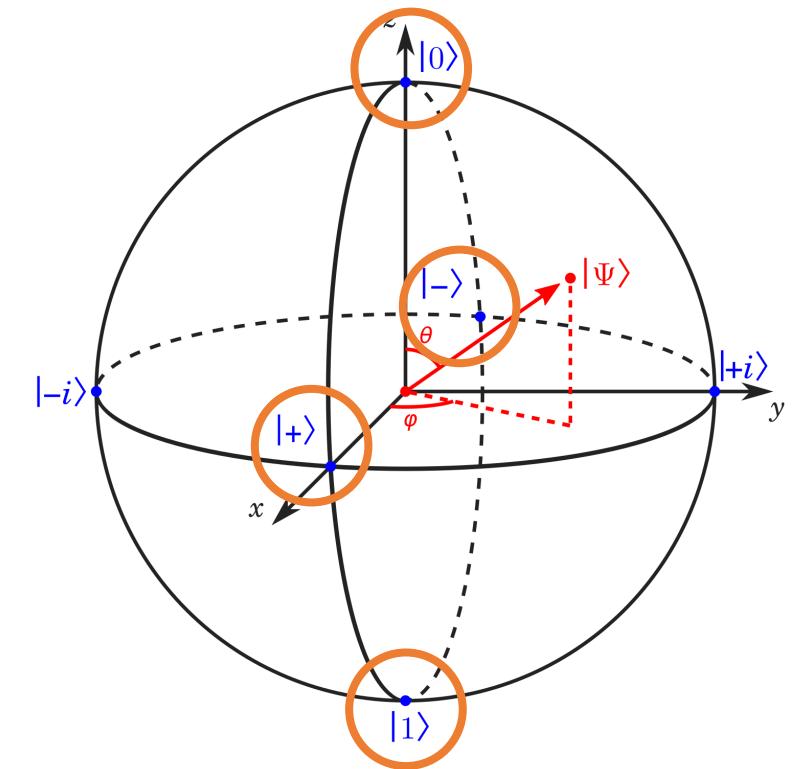
Client

r
 b

$H^{1-r} |b\rangle$

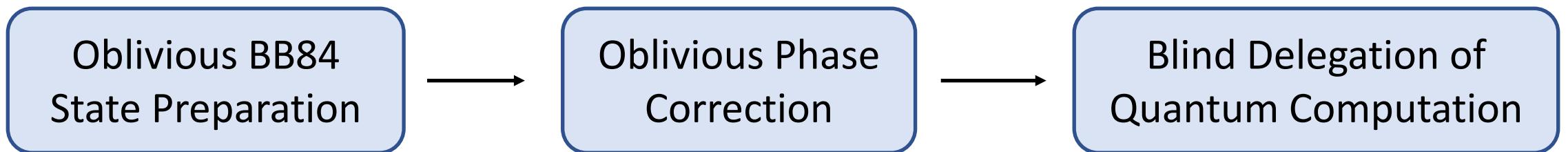


Reduces to



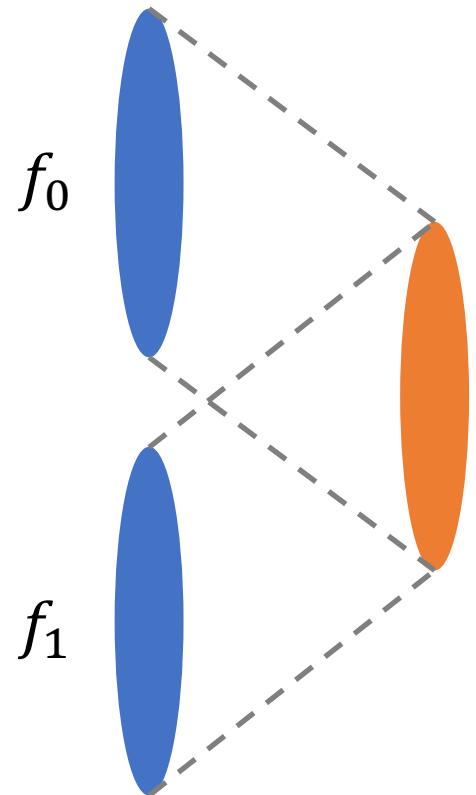
Easier task: Generate BB84 states,
and then rotate

Progress so far...



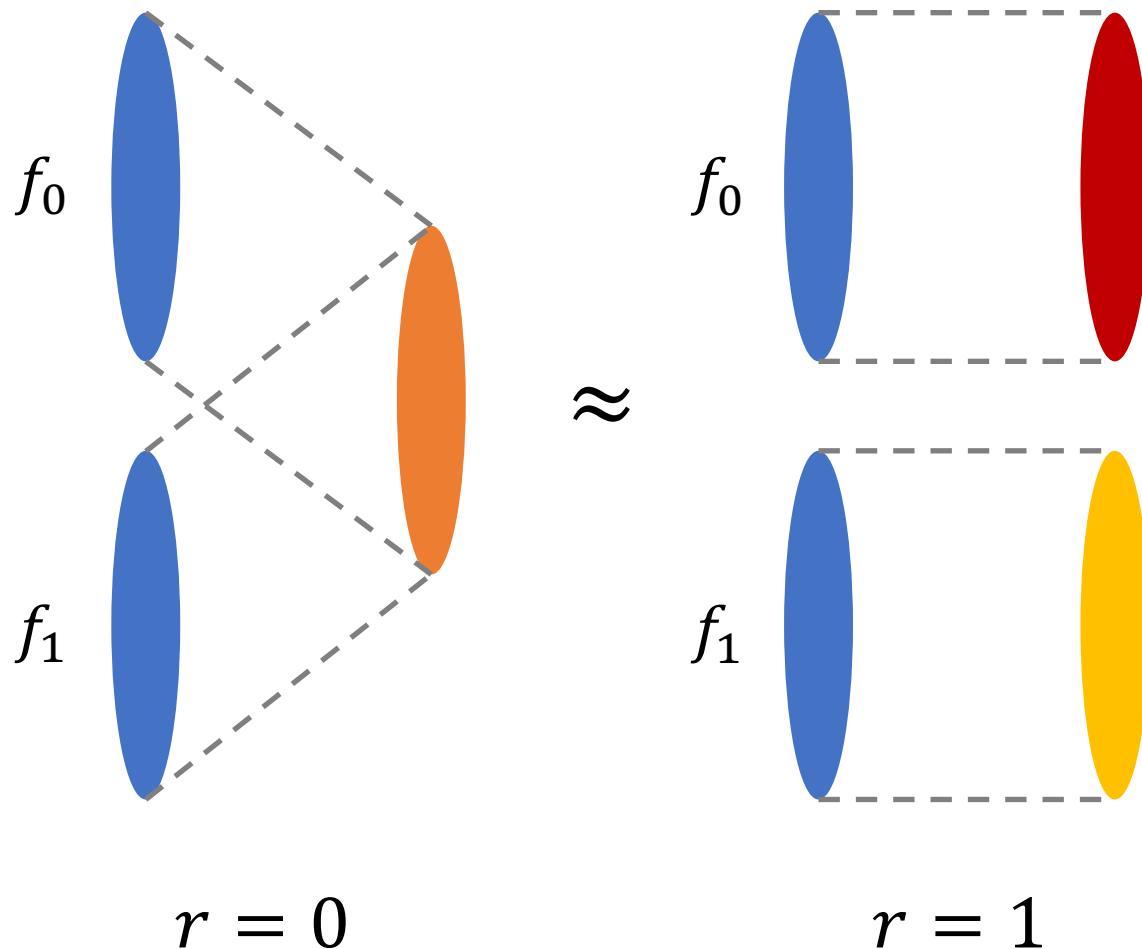
Part 3: How to Implement Oblivious BB84 State Preparation with Classical Communication

Key Tool: Trapdoor Claw-free Function (TCF)



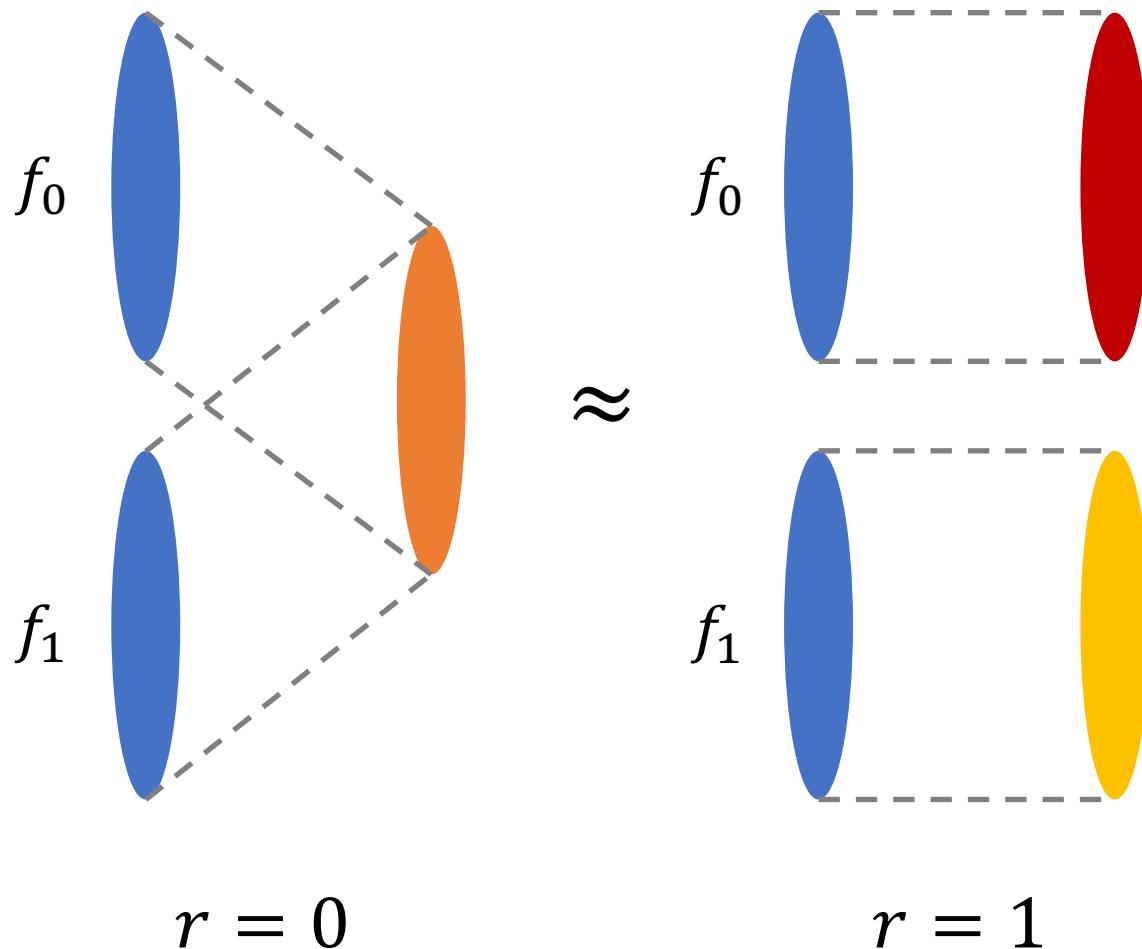
- Pair of injective functions $f_0, f_1: \mathcal{X} \rightarrow \mathcal{Y}$ such that for any $y \in \mathcal{Y}$, exists x_0, x_1 such that $f_0(x_0) = f_1(x_1) = y$
- Trapdoor: The Gen algorithm $(f_0, f_1, \text{td}) \leftarrow \text{Gen}$ outputs a trapdoor such that for any $y \in \mathcal{Y}$, $\text{Invert}(\text{td}, y) = x_0, x_1$
- Claw-free: Given f_0, f_1 , no polynomial-time adversary can find a “claw” x_0, x_1 such that $f_0(x_0) = f_1(x_1)$

Dual-Mode Trapdoor Claw-free Function (dTCF)

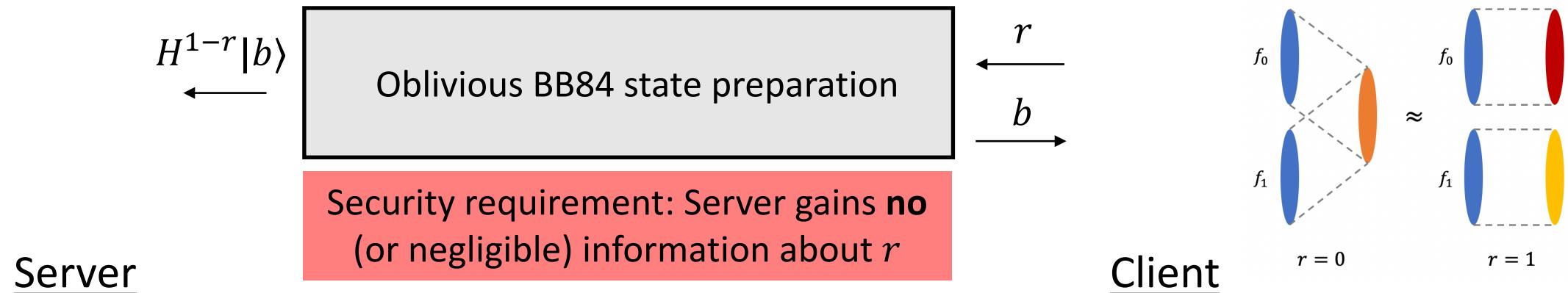


- Pair of injective functions $f_0, f_1: \mathcal{X} \rightarrow \mathcal{Y}$ such that for any $y \in \mathcal{Y}$, exists x_0, x_1 such that $f_0(x_0) = f_1(x_1) = y$
- Trapdoor: The Gen algorithm $(f_0, f_1, \text{td}) \leftarrow \text{Gen}(\text{r})$ outputs a trapdoor such that for any $y \in \mathcal{Y}$, $\text{Invert}(\text{td}, y) = x_0, x_1$
- Claw-free: Given f_0, f_1 , no polynomial-time adversary can find a “claw” x_0, x_1 such that $f_0(x_0) = f_1(x_1)$

Dual-Mode Trapdoor Claw-free Function (dTCF)



- Pair of injective functions $f_0, f_1: \mathcal{X} \rightarrow \mathcal{Y}$ such that for any $y \in \mathcal{Y}$, exists x_0, x_1 such that $f_0(x_0) = f_1(x_1) = y$
- Trapdoor: The Gen algorithm $(f_0, f_1, \text{td}) \leftarrow \text{Gen}(\textcolor{violet}{r})$ outputs a trapdoor such that for any $y \in \mathcal{Y}$, $\text{Invert}(\text{td}, y) = x_0, x_1$
- Mode indistinguishability: $(f_0, f_1, \cdot) \leftarrow \text{Gen}(0) \approx (f_0, f_1, \cdot) \leftarrow \text{Gen}(1)$



1. Prepare uniform superposition

$$\sum_{b \in \{0,1\}, x \in \mathcal{X}} |b\rangle |x\rangle$$

Sample $(f_0, f_1, \text{td}) \leftarrow \text{Gen}(r)$

2. Measure output of f_0, f_1

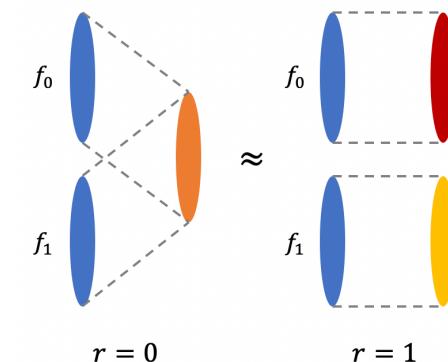
$$\sum_{b \in \{0,1\}, x \in \mathcal{X}} |b\rangle |x\rangle |f_b(x)\rangle_y$$

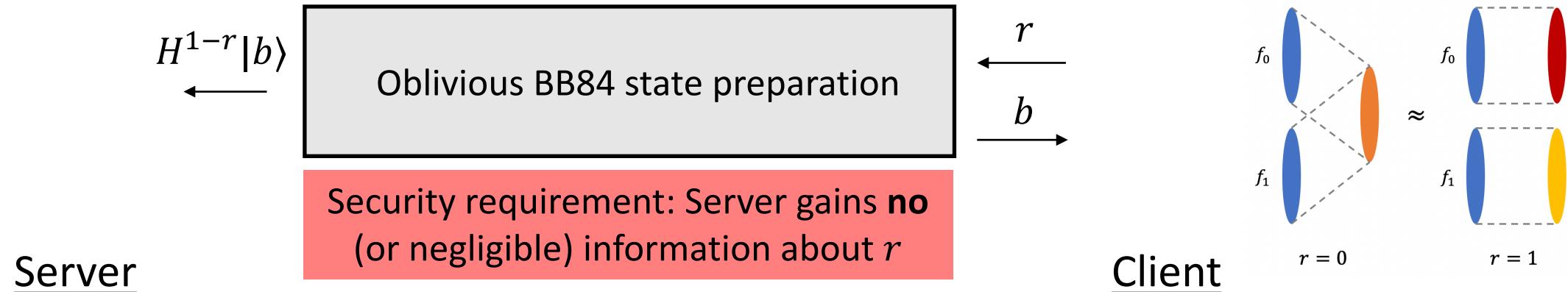
3. Measure input register in Hadamard basis

$$\underline{r = 0}$$

$$\frac{r=1}{|b\rangle|x_b\rangle}$$

| b >





1. Prepare uniform superposition

$$\sum_{b \in \{0,1\}, x \in \mathcal{X}} |b\rangle |x\rangle$$

2. Measure output of f_0, f_1

$$\sum_{b \in \{0,1\}, x \in \mathcal{X}} |b\rangle |x\rangle |f_b(x)\rangle$$

$\downarrow y$

3. Measure input register in Hadamard basis

$$\frac{r=0}{\sum_{b \in \{0,1\}} |b\rangle |x_b\rangle}$$

$\downarrow d$

$$Z^{d \cdot (x_0 \oplus x_1)} (|0\rangle + |1\rangle)$$

$$\frac{r=1}{|b\rangle |x_b\rangle}$$

$\downarrow d$

$$|b\rangle$$

What happens when we measure the input register of a “claw state” in the Hadamard basis?

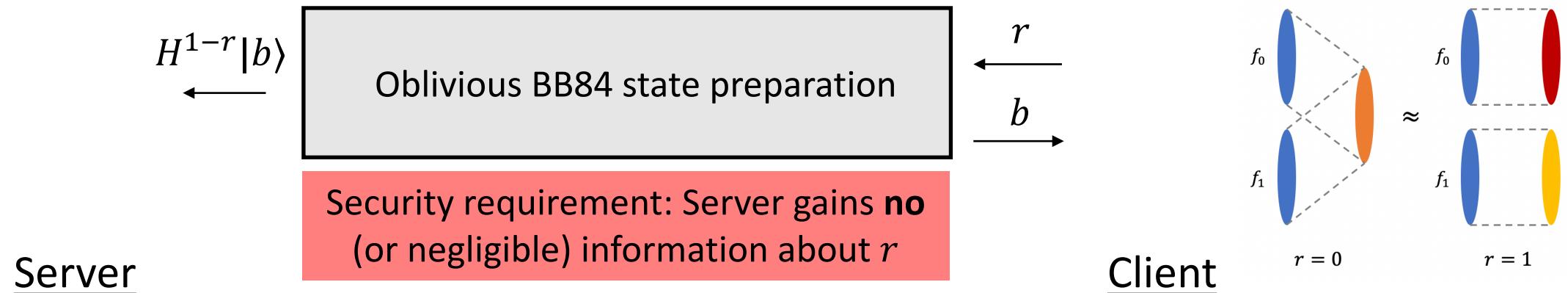
$$(I \otimes H^{\otimes \lambda})(|0\rangle |x_0\rangle + |1\rangle |x_1\rangle)$$

$$= |0\rangle \sum_{d \in \{0,1\}^\lambda} (-1)^{d \cdot x_0} |d\rangle + |1\rangle \sum_{d \in \{0,1\}^\lambda} (-1)^{d \cdot x_1} |d\rangle$$

$$= \sum_{d \in \{0,1\}^\lambda} \left((-1)^{d \cdot x_0} |0\rangle + (-1)^{d \cdot x_1} |1\rangle \right) |d\rangle$$

$\downarrow d$

$$(-1)^{d \cdot x_0} |0\rangle + (-1)^{d \cdot x_1} |1\rangle = |0\rangle + (-1)^{d \cdot (x_0 \oplus x_1)} |1\rangle$$



1. Prepare uniform superposition

$$\sum_{b \in \{0,1\}, x \in \mathcal{X}} |b\rangle|x\rangle$$

Sample $(f_0, f_1, \text{td}) \leftarrow \text{Gen}(r)$

2. Measure output of f_0, f_1

$$\sum_{b \in \{0,1\}, x \in \mathcal{X}} |b\rangle |x\rangle |f_b(x)\rangle_y$$

3. Measure input register in Hadamard basis

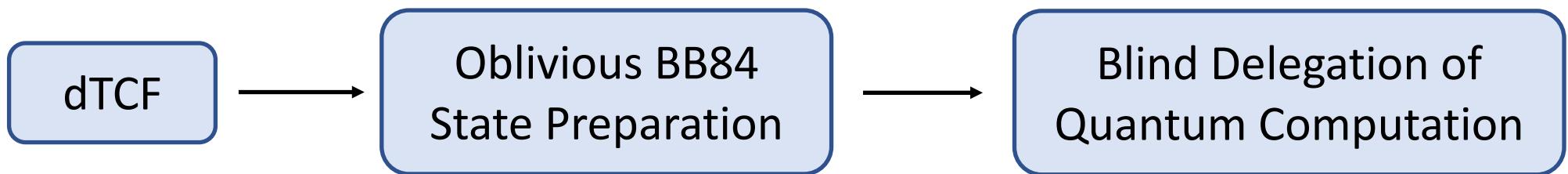
$$\begin{array}{ccc} \underline{r=0} & & \underline{r=1} \\ \sum_{b \in \{0,1\}} |b\rangle |x_b\rangle & \downarrow & |b\rangle |x_b\rangle \\ & d & \downarrow \\ & & d \end{array}$$

$$Z^{d \cdot (x_0 \oplus x_1)} (|0\rangle + |1\rangle) \quad |b\rangle$$

<u>$r = 0$</u>	<u>$r = 1$</u>
Invert(td, y) = x_0, x_1	Invert(td, y) = b, x_b
\downarrow	\downarrow

$$b = d \cdot (x_0 \oplus x_1) \quad b$$

Progress so far...



dTCF from LWE

Basic idea:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

Let $\nu = As$ for a uniformly random $s \in \mathbb{Z}_q^n$

Let

$$\begin{aligned} f_{(A,\nu),0}(x) &= Ax \\ f_{(A,\nu),1}(x) &= Ax + \nu \\ &= A(x + s) \end{aligned}$$

On domain $x \in \mathbb{Z}_q^n$, this pair of functions have the same image

dTCF from LWE

Dual-mode:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

Let $\nu = As$ for a uniformly random $s \in \mathbb{Z}_q^n$

Let $f_{(A,\nu),0}(x) = Ax$
 $f_{(A,\nu),1}(x) = Ax + \nu$

dTCF from LWE

Dual-mode:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

If $r = 0$, sample $v \in \text{span}(A)$

If $r = 1$, sample $v \notin \text{span}(A)$

Let
$$\begin{aligned} f_{(A,v),0}(x) &= Ax \\ f_{(A,v),1}(x) &= Ax + v \end{aligned}$$

dTCF from LWE

Dual-mode:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

If $r = 0$, sample $v \in \text{span}(A)$

If $r = 1$, sample $v \leftarrow \mathbb{Z}_q^m$

Let $f_{(A,v),0}(x) = Ax$ have the same image if $r = 0$
 $f_{(A,v),1}(x) = Ax + v$ have disjoint images if $r = 1$

But... given (A, v) , it is easy to
distinguish whether $r = 0$ or $r = 1$

dTCF from LWE

Adding error:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

If $r = 0$, sample $(s, \textcolor{brown}{e})$, let $v = As + \textcolor{brown}{e}$ If $r = 1$, sample $v \leftarrow \mathbb{Z}_q^m$

Let $f_{(A,v),0}(x) = Ax$
 $f_{(A,v),1}(x) = Ax + v$

$\textcolor{brown}{e} \in [-B, B]^m$, for $B \ll q$

dTCF from LWE

Adding error:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

If $r = 0$, sample (s, e) , let $v = As + e$ If $r = 1$, sample $v \leftarrow \mathbb{Z}_q^m$

Let $f_{(A,v),0}(x) = Ax$
 $f_{(A,v),1}(x) = Ax + v$

Now, the $r = 0$ and $r = 1$ cases are indistinguishable assuming LWE!

New problem: when $r = 0$, functions no longer have the same image

dTCF from LWE

Adding error:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

If $r = 0$, sample (s, e) , let $v = As + e$

If $r = 1$, sample $v \leftarrow \mathbb{Z}_q^m$

Let $f_{(A,v),0}(x) = Ax$

$f_{(A,v),1}(x) = Ax + v$

$$= A(x + s) + e$$

⋮ ⋮ ⋮

⋮ ⋮ ⋮

⋮ ⋮ ⋮

$$f_{(A,v),0}(x)$$

$$f_{(A,v),1}(x)$$

⋮ ⋮ ⋮

dTCF from LWE

Adding error:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

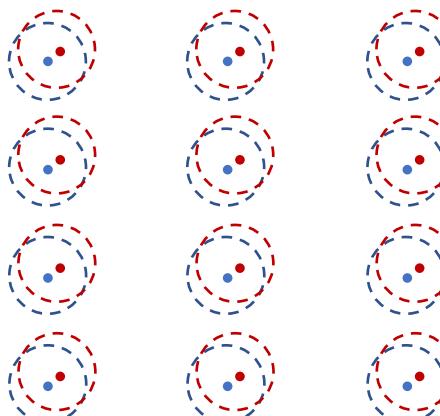
If $r = 0$, sample (s, e) , let $v = As + e$

If $r = 1$, sample $v \leftarrow \mathbb{Z}_q^m$

Let $f_{(A,v),0}(x) = Ax$

$$\begin{aligned} f_{(A,v),1}(x) &= Ax + v \\ &= A(x + s) + e \end{aligned}$$

Solution:



$$\begin{aligned} &f_{(A,v),0}(x) \\ &f_{(A,v),1}(x) \end{aligned}$$

dTCF from LWE

Adding error:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

If $r = 0$, sample (s, e) , let $v = As + e$

If $r = 1$, sample $v \leftarrow \mathbb{Z}_q^m$

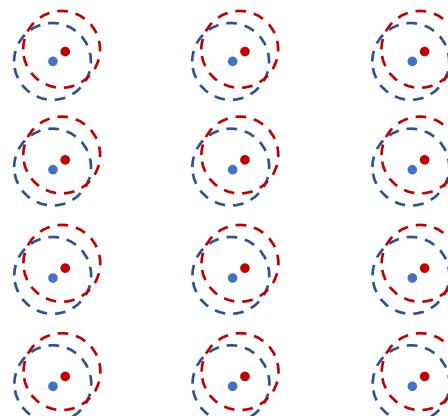
Let $f_{(A,v),0}(x) = Ax + e'$

$f_{(A,v),1}(x) = Ax + v + e'$

where $|e| \ll |e'| \ll q$

“noisy TCF”

Solution:



$f_{(A,v),0}(x)$
 $f_{(A,v),1}(x)$

dTCF from LWE

Adding a trapdoor:

Let q be a large modulus, $m > n$, and $A \in \mathbb{Z}_q^{m \times n}$ be a uniformly random matrix

If $r = 0$, sample (s, e) , let $v = As + e$ If $r = 1$, sample $v \leftarrow \mathbb{Z}_q^m$

Let
$$\begin{aligned} f_{(A,v),0}(x) &= Ax + e' \\ f_{(A,v),1}(x) &= Ax + v + e' \end{aligned}$$

dTCF from LWE

Adding a trapdoor:

Sample $(A, T) \leftarrow \text{TrapGen}$: $A \in \mathbb{Z}_q^{m \times n}$, $TA = 0 \pmod{q}$, $T \in [-B, B]^{m \times m}$ is full rank

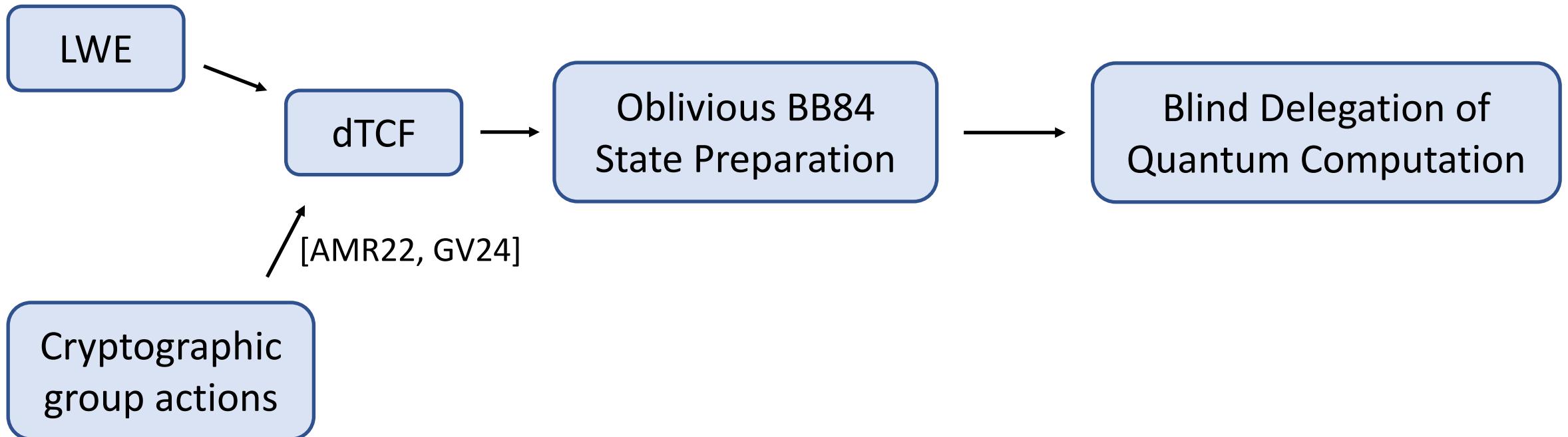
Over the reals

If $r = 0$, sample (s, e) , let $v = As + e$ If $r = 1$, sample $v \leftarrow \mathbb{Z}_q^m$

Let $f_{(A,v),0}(x) = Ax + e'$ Let $\text{td} = T$
 $f_{(A,v),1}(x) = Ax + v + e'$

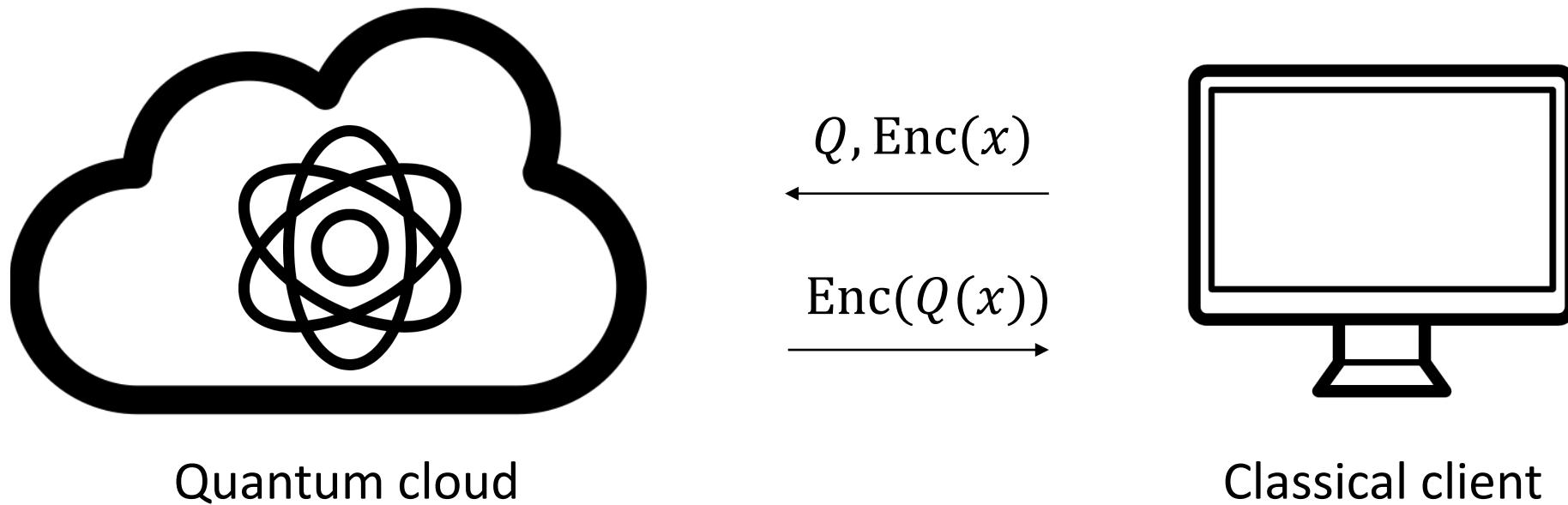
Invert(td, $Ax + e'$): Compute $T(Ax + e') \pmod{q} = Te'$, and solve for e'

Progress so far...



Quantum Fully-Homomorphic Encryption (QFHE)

- Minimally-interactive version of blind delegation



- Observation [Mah17]: exists a classical FHE scheme such that $\text{Enc}(r)$ is a dTCF with mode r

Dual-Regev Encryption

- KeyGen runs TrapGen to obtain $\text{pk} = A, \text{sk} = T$
- $\text{Enc}(r \in \{0,1\}) \rightarrow As + e + r \cdot u$, where $u \notin \text{span}(A)$ is a public vector
- This scheme can be extended to FHE (dual-GSW)
- Letting $v = \text{Enc}(r)$, we have that (A, v) defines a dTCF with mode r

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$ Classical client(x)

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0}Z^{s_0}|x\rangle$ $\xleftarrow{r_0 \oplus x}$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = (P^\dagger)^{r_{1,1}} X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle$

$|\psi_1\rangle$
 $|\psi'_1\rangle = Z^{b_1} P^{r_{1,1}} |\psi_1\rangle$

Oblivious phase correction

Compute $|\psi_2\rangle = T^\dagger C_2 |\psi'_1\rangle = (P^\dagger)^{r_{2,1}} X^{r_2} Z^{s_2} T^\dagger C_2 T^\dagger C_1 |x\rangle$

$|\psi_2\rangle$
 $|\psi'_2\rangle = Z^{b_2} P^{r_{2,1}} |\psi_2\rangle$

Oblivious phase correction

Compute $|\psi_t\rangle = X^{r_t} Z^{s_t} C_t T^\dagger C_{t-1} \dots T^\dagger C_1 |x\rangle$
 $= X^{r_t} Z^{s_t} |Q(x)\rangle = |r_t \oplus Q(x)\rangle$ $\xrightarrow{r_t \oplus Q(x)}$

Sample $r \leftarrow \{0,1\}^n$

Initialize $(r_0, s_0) = (r, 0^n)$

Update $\xrightarrow{(r_1, s_1)}$

dTCF($r_{1,1}$)

$(y_1, d_1) \xrightarrow{\text{td}} b_1$

Update $\xrightarrow{(r_2, s_2)}$

(r_2, s_2)

dTCF($r_{2,1}$)

$(y_2, d_2) \xrightarrow{\text{td}} b_2$

Update $\xrightarrow{(r_t, s_t)}$

(r_t, s_t)

Recover $Q(x)$

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$ Classical client (x)

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0}Z^{s_0}|x\rangle$ $\xleftarrow{r_0 \oplus x}$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = (P^\dagger)^{r_{1,1}} X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle$

$|\psi_1\rangle$
 $|\psi'_1\rangle = Z^{b_1} P^{r_{1,1}} |\psi_1\rangle$

Compute $|\psi_2\rangle = T^\dagger C_2 |\psi'_1\rangle = (P^\dagger)^{r_{2,1}} X^{r_2} Z^{s_2} T^\dagger C_2 T^\dagger C_1 |x\rangle$

$|\psi_2\rangle$
 $|\psi'_2\rangle = Z^{b_2} P^{r_{2,1}} |\psi_2\rangle$

Compute $|\psi_t\rangle = X^{r_t} Z^{s_t} C_t T^\dagger C_{t-1} \dots T^\dagger C_1 |x\rangle$
 $= X^{r_t} Z^{s_t} |Q(x)\rangle = |r_t \oplus Q(x)\rangle$ $\xrightarrow{r_t \oplus Q(x)}$

Sample $r \leftarrow \{0,1\}^n$

Initialize $(r_0, s_0) = (r, 0^n)$

Update $\xrightarrow{(r_1, s_1)}$

$\text{Enc}(r_{1,1})$

$(y_1, d_1) \xrightarrow{\text{td}} b_1$

Update $\xrightarrow{(r_2, s_2)}$

(r_2, s_2)

$\text{Enc}(r_{2,1})$

$(y_2, d_2) \xrightarrow{\text{td}} b_2$

Update $\xrightarrow{(r_t, s_t)}$

(r_t, s_t)

Recover $Q(x)$

Dual-Regev encryption

Oblivious phase correction

⋮

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$ Classical client (x)

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0}Z^{s_0}|x\rangle$ $\xleftarrow{r_0 \oplus x}$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = (P^\dagger)^{r_{1,1}} X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle$

$|\psi_1\rangle$
 $|\psi'_1\rangle = Z^{b_1} P^{r_{1,1}} |\psi_1\rangle$

Compute $|\psi_2\rangle = T^\dagger C_2 |\psi'_1\rangle = (P^\dagger)^{r_{2,1}} X^{r_2} Z^{s_2} T^\dagger C_2 T^\dagger C_1 |x\rangle$

$|\psi_2\rangle$
 $|\psi'_2\rangle = Z^{b_2} P^{r_{2,1}} |\psi_2\rangle$

Compute $|\psi_t\rangle = X^{r_t} Z^{s_t} C_t T^\dagger C_{t-1} \dots T^\dagger C_1 |x\rangle$
 $= X^{r_t} Z^{s_t} |Q(x)\rangle = |r_t \oplus Q(x)\rangle$ $\xrightarrow{r_t \oplus Q(x)}$

Sample $r \leftarrow \{0,1\}^n$

Initialize $\text{Enc}(r_0, s_0) = \text{Enc}(r, 0^n)$

$\text{Enc}(r_1, s_1)$
 $\text{Enc}(r_2, s_2)$
 $\text{Enc}(r_{t-1}, s_{t-1})$
 \vdots
 $\text{Enc}(r_t, s_t)$

Dual-Regev encryption

Oblivious phase correction

\vdots

$\text{Enc}(r_{1,1})$

$(y_1, d_1) \xrightarrow{\text{td}} b_1$

$\text{Enc}(r_{2,1})$

$(y_2, d_2) \xrightarrow{\text{td}} b_2$

Decrypt r_t and recover $Q(x)$

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$ Classical client (x)

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0}Z^{s_0}|x\rangle$ $\xleftarrow{r_0 \oplus x}$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = (P^\dagger)^{r_{1,1}} X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle$

$|\psi_1\rangle$
 $|\psi'_1\rangle = Z^{b_1} P^{r_{1,1}} |\psi_1\rangle$

Compute $|\psi_2\rangle = T^\dagger C_2 |\psi'_1\rangle = (P^\dagger)^{r_{2,1}} X^{r_2} Z^{s_2} T^\dagger C_2 T^\dagger C_1 |x\rangle$

$|\psi_2\rangle$
 $|\psi'_2\rangle = Z^{b_2} P^{r_{2,1}} |\psi_2\rangle$

Compute $|\psi_t\rangle = X^{r_t} Z^{s_t} C_t T^\dagger C_{t-1} \dots T^\dagger C_1 |x\rangle$
 $= X^{r_t} Z^{s_t} |Q(x)\rangle = |r_t \oplus Q(x)\rangle$ $\xrightarrow{r_t \oplus Q(x)}$

Sample $r \leftarrow \{0,1\}^n$

Initialize $\text{Enc}(r_0, s_0) = \text{Enc}(r, 0^n)$

$\text{Enc}(r_1, s_1)$
 $\text{Enc}(r_2, s_2)$
 \vdots
 $\text{Enc}(r_t, s_t)$

Dual-Regev encryption

Oblivious phase correction

\vdots

Decrypt r_t and recover $Q(x)$

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$ Classical client (x)

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0} Z^{s_0} |x\rangle$ $r_0 \oplus x, \text{Enc}(r_0), \text{Enc}(\text{td})$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = (P^\dagger)^{r_{1,1}} X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle$

$|\psi_1\rangle$
 $|\psi'_1\rangle = Z^{b_1} P^{r_{1,1}} |\psi_1\rangle$

Compute $|\psi_2\rangle = T^\dagger C_2 |\psi'_1\rangle = (P^\dagger)^{r_{2,1}} X^{r_2} Z^{s_2} T^\dagger C_2 T^\dagger C_1 |x\rangle$

$|\psi_2\rangle$
 $|\psi'_2\rangle = Z^{b_2} P^{r_{2,1}} |\psi_2\rangle$

Compute $|\psi_t\rangle = X^{r_t} Z^{s_t} C_t T^\dagger C_{t-1} \dots T^\dagger C_1 |x\rangle$
 $= X^{r_t} Z^{s_t} |Q(x)\rangle = |r_t \oplus Q(x)\rangle$ $r_t \oplus Q(x), \text{Enc}(r_t)$

Sample $r \leftarrow \{0,1\}^n$

Initialize $\text{Enc}(r_0, s_0) = \text{Enc}(r, 0^n)$

$\text{Enc}(r_1, s_1)$

$\text{Enc}(r_{1,1})$
 $(y_1, d_1) \xrightarrow{\text{Enc}(\text{td})} \text{Enc}(b_1)$

$\text{Enc}(r_2, s_2)$

$\text{Enc}(r_{2,1})$
 $(y_2, d_2) \xrightarrow{\text{Enc}(\text{td})} \text{Enc}(b_2)$

Decrypt r_t and recover $Q(x)$

Dual-Regev encryption

Oblivious phase correction

⋮

Oblivious phase correction

Quantum server $Q = (C_t)(T^\dagger C_{t-1}) \dots (T^\dagger C_2)(T^\dagger C_1)$

Classical client (x)

Sample $r \leftarrow \{0,1\}^n$

Initialize $\text{Enc}(r_0, s_0) = \text{Enc}(r, 0^n)$

Initialize $|\psi_0\rangle = |r_0 \oplus x\rangle = X^{r_0} Z^{s_0} |x\rangle$

QFHE ciphertext

$r_0 \oplus x, \text{Enc}(r_0), \text{Enc}(\text{td})$

Compute $|\psi_1\rangle = T^\dagger C_1 |\psi_0\rangle = (P^\dagger)^{r_{1,1}} X^{r_1} Z^{s_1} T^\dagger C_1 |x\rangle$

$\text{Enc}(r_1, s_1)$

$|\psi_1\rangle$

$|\psi'_1\rangle = Z^{b_1} P^{r_{1,1}} |\psi_1\rangle$

Oblivious phase correction

$\text{Enc}(r_{1,1})$

$(y_1, d_1) \xrightarrow{\text{Enc}(\text{td})} \text{Enc}(b_1)$

$\text{Enc}(r_2, s_2)$

Compute $|\psi_2\rangle = T^\dagger C_2 |\psi'_1\rangle = (P^\dagger)^{r_{2,1}} X^{r_2} Z^{s_2} T^\dagger C_2 T^\dagger C_1 |x\rangle$

$|\psi_2\rangle$

$|\psi'_2\rangle = Z^{b_2} P^{r_{2,1}} |\psi_2\rangle$

Oblivious phase correction

$\text{Enc}(r_{2,1})$

$(y_2, d_2) \xrightarrow{\text{Enc}(\text{td})} \text{Enc}(b_2)$

Compute $|\psi_t\rangle = X^{r_t} Z^{s_t} C_t T^\dagger C_{t-1} \dots T^\dagger C_1 |x\rangle$
 $= X^{r_t} Z^{s_t} |Q(x)\rangle = |r_t \oplus Q(x)\rangle$

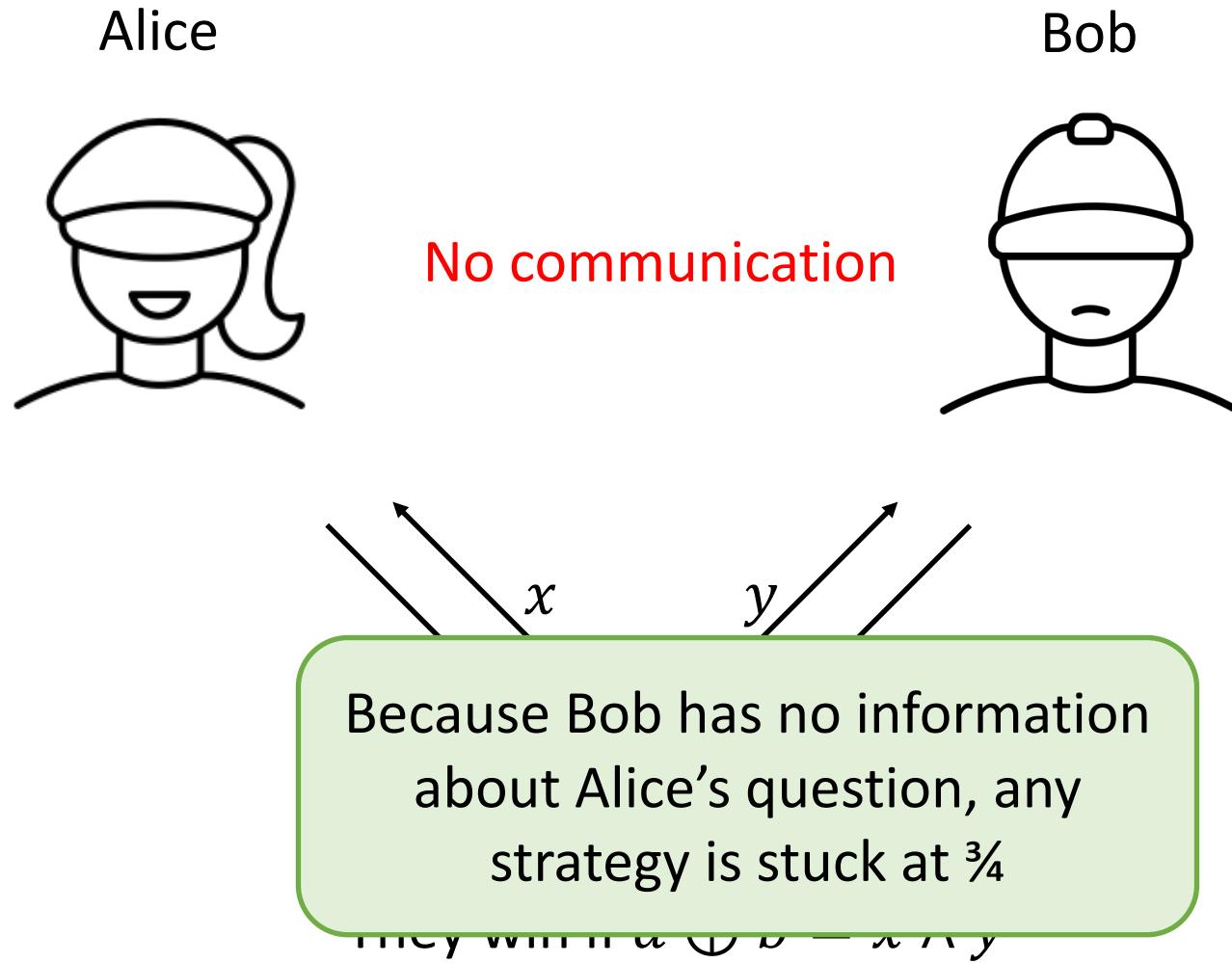
Evaluated ciphertext

$r_t \oplus Q(x), \text{Enc}(r_t)$

Decrypt r_t and recover $Q(x)$

Part 4: Proofs of Quantumness and Verifiable Delegation

CHSH (Clauser, Horne, Shimony, Holt) Game

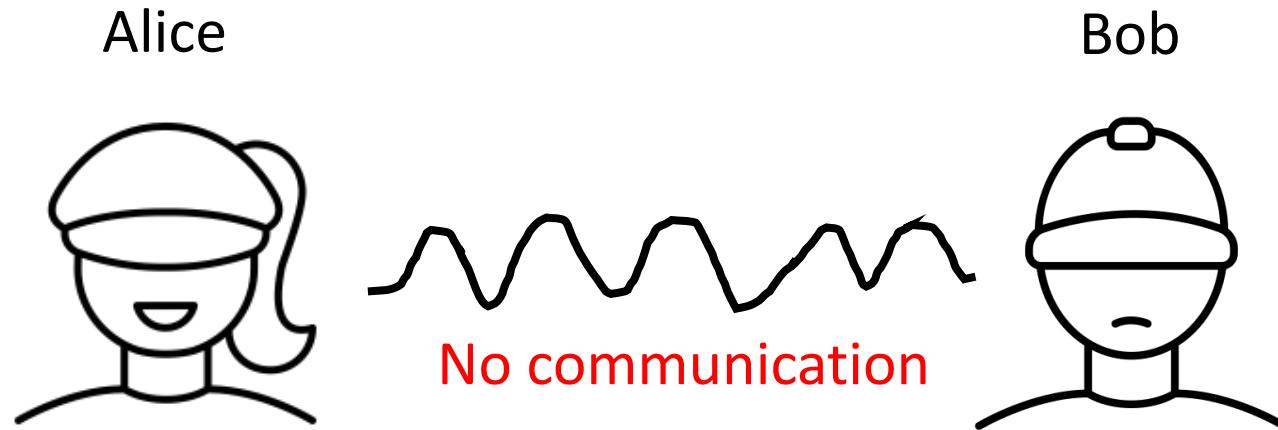


- One strategy: always set $a = b = 0$
- Wins with probability $\frac{3}{4}$
- Is this optimal?
- Yes: “Classical value” of CHSH is $\omega_{\text{CHSH}} = \frac{3}{4}$

Fix any deterministic Alice strategy $f_A(x)$

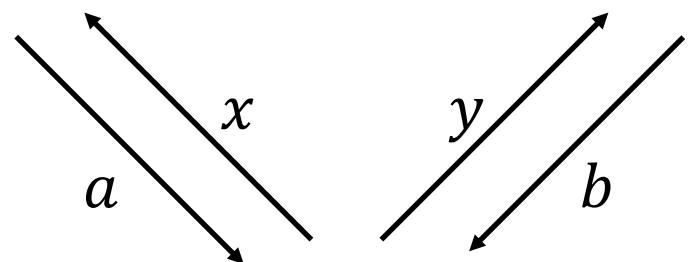
Winning condition	Case 1: $f_A(0) = f_A(1)$	Case 2: $f_A(0) \neq f_A(1)$
$f_B(0) = f_A(x)$	1	$\frac{1}{2}$
$f_B(1) = x \oplus f_A(x)$	$\frac{1}{2}$	1
Win probability:	$\frac{3}{4}$	$\frac{3}{4}$

CHSH with quantum entangled strategies



Can they do better than $\frac{3}{4}$?

What is the “quantum value”
 ω_{CHSH}^* of CHSH?



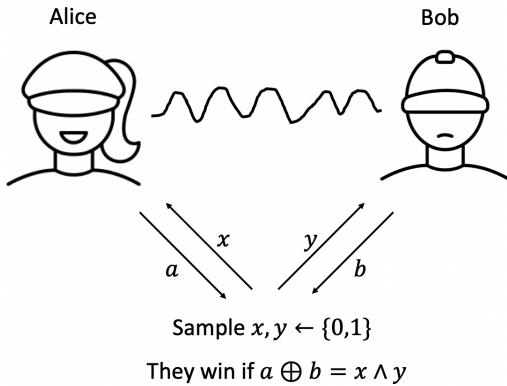
Sample $x, y \leftarrow \{0,1\}$

They win if $a \oplus b = x \wedge y$

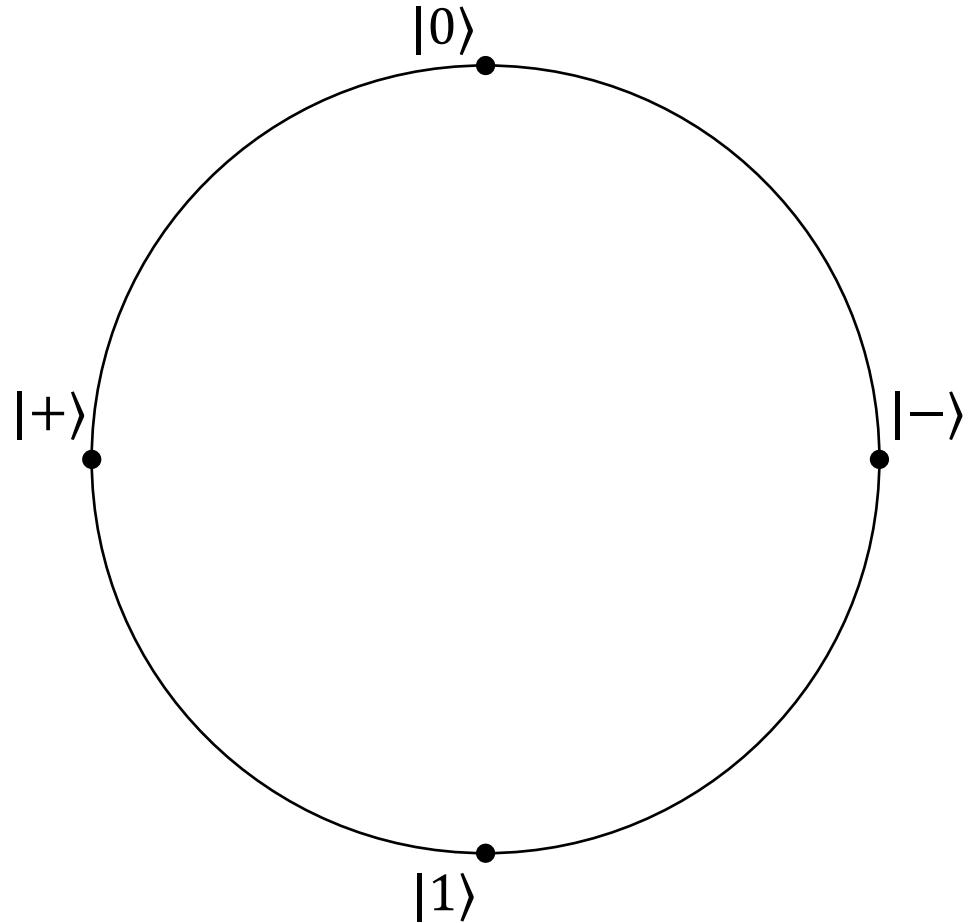
CHSH with quantum entangled strategies

Start with an EPR pair:

$$|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B = |+\rangle_A|+\rangle_B + |-\rangle_A|-\rangle_B$$



Bob's view:

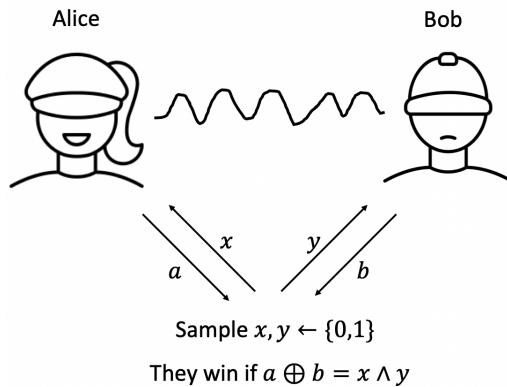


Alice: if $x = 0$, measure in the Hadamard basis (X)
if $x = 1$, measure in the standard basis (Z)
let a be the bit measured

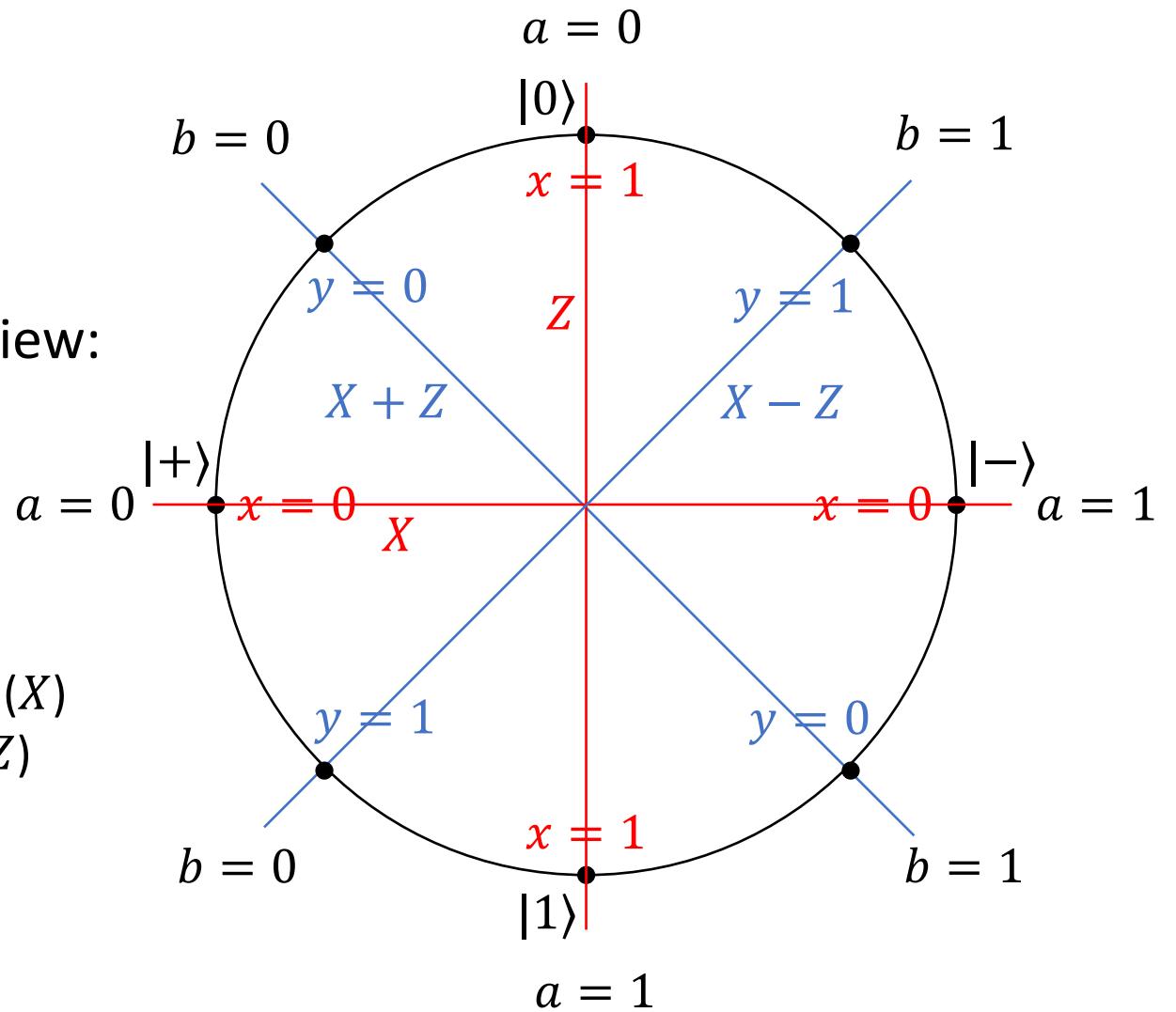
CHSH with quantum entangled strategies

Start with an EPR pair:

$$|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B = |+\rangle_A|+\rangle_B + |-\rangle_A|-\rangle_B$$



Bob's view:



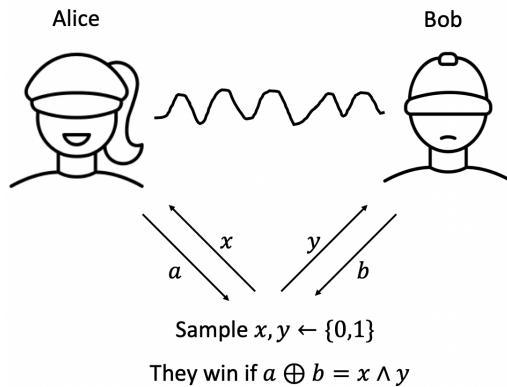
Alice: if $x = 0$, measure in the Hadamard basis (X)
if $x = 1$, measure in the standard basis (Z)
let a be the bit measured

Bob: if $y = 0$, measure in the $X + Z$ basis
if $y = 1$, measure in the $X - Z$ basis
let b be the bit measured

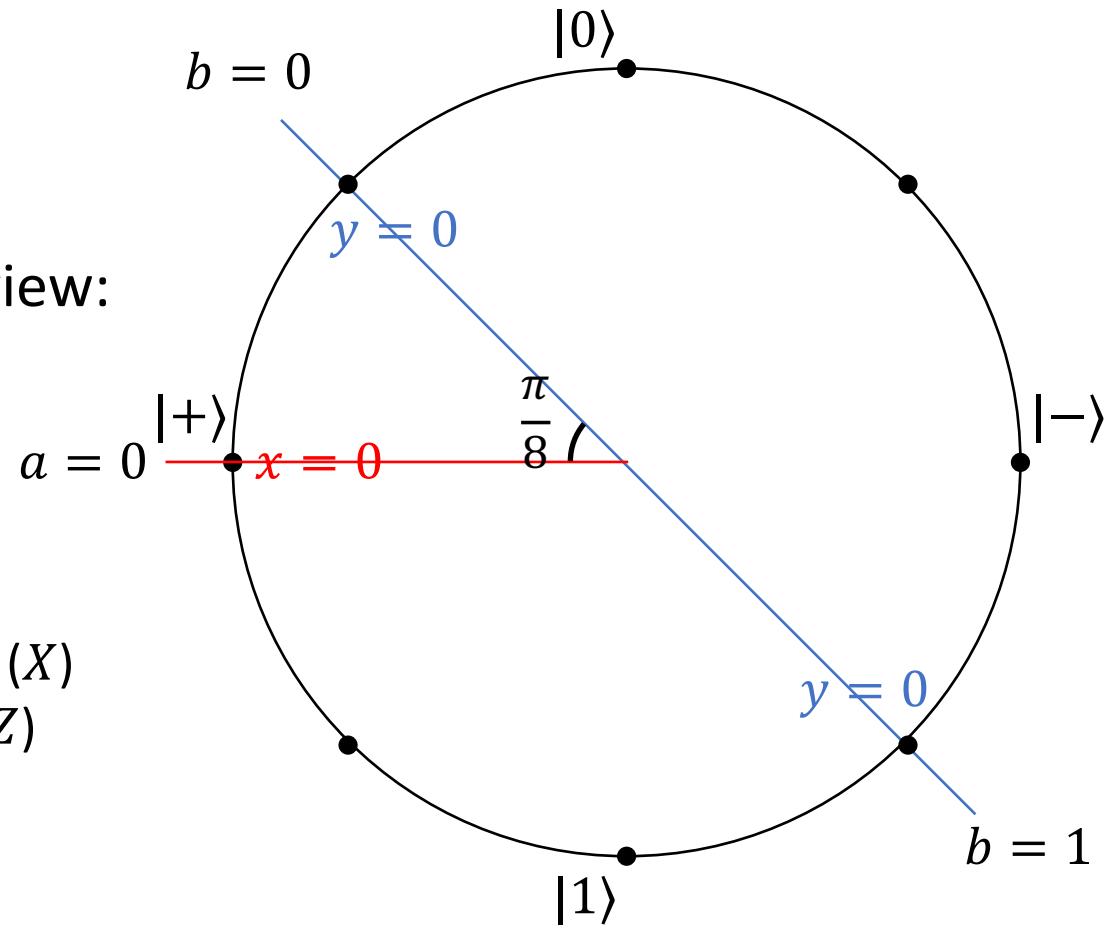
CHSH with quantum entangled strategies

Start with an EPR pair:

$$|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B = |+\rangle_A|+\rangle_B + |-\rangle_A|-\rangle_B$$



Bob's view:



Alice: if $x = 0$, measure in the Hadamard basis (X)
if $x = 1$, measure in the standard basis (Z)
let a be the bit measured

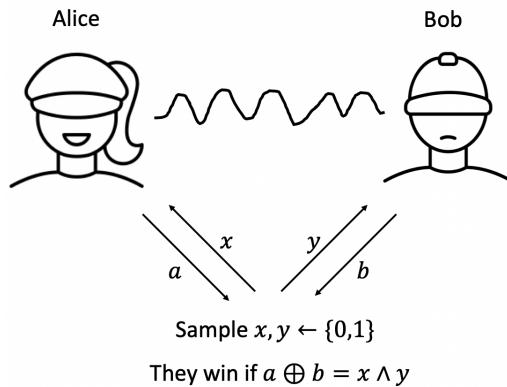
Bob: if $y = 0$, measure in the $X + Z$ basis
if $y = 1$, measure in the $X - Z$ basis
let b be the bit measured

Example: $x = 0, a = 0, y = 0 \rightarrow$ win when $b = 0 \rightarrow \Pr \cos^2(\frac{\pi}{8}) \approx 0.85$

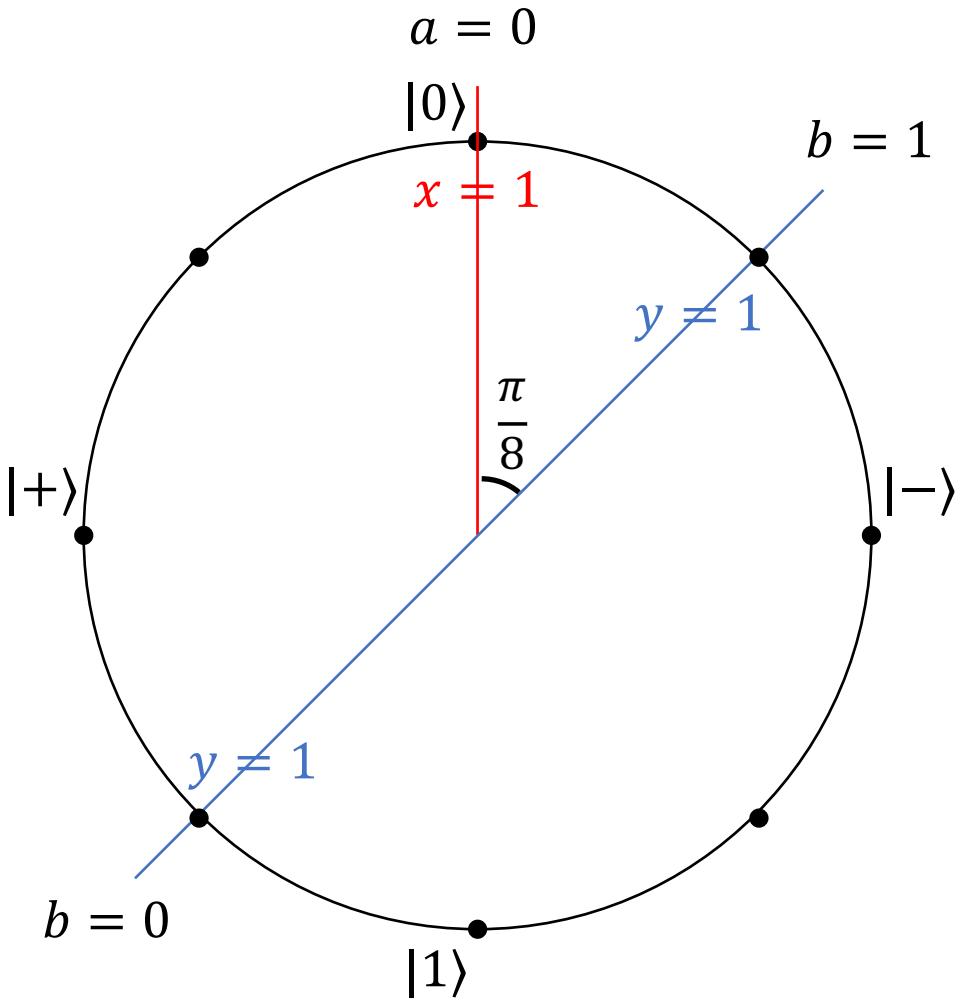
CHSH with quantum entangled strategies

Start with an EPR pair:

$$|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B = |+\rangle_A|+\rangle_B + |-\rangle_A|-\rangle_B$$



Bob's view:



Alice: if $x = 0$, measure in the Hadamard basis (X)
if $x = 1$, measure in the standard basis (Z)
let a be the bit measured

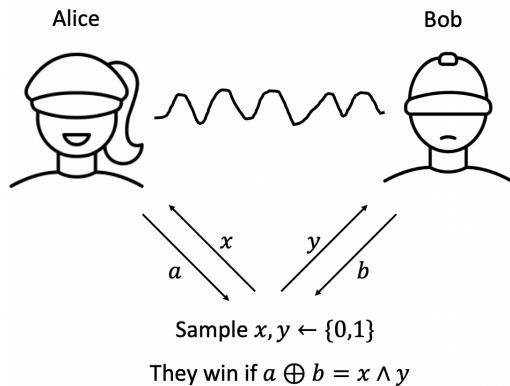
Bob: if $y = 0$, measure in the $X + Z$ basis
if $y = 1$, measure in the $X - Z$ basis
let b be the bit measured

Example: $x = 1, a = 0, y = 1 \rightarrow$ win when $b = 1 \rightarrow \Pr \cos^2(\frac{\pi}{8}) \approx 0.85$

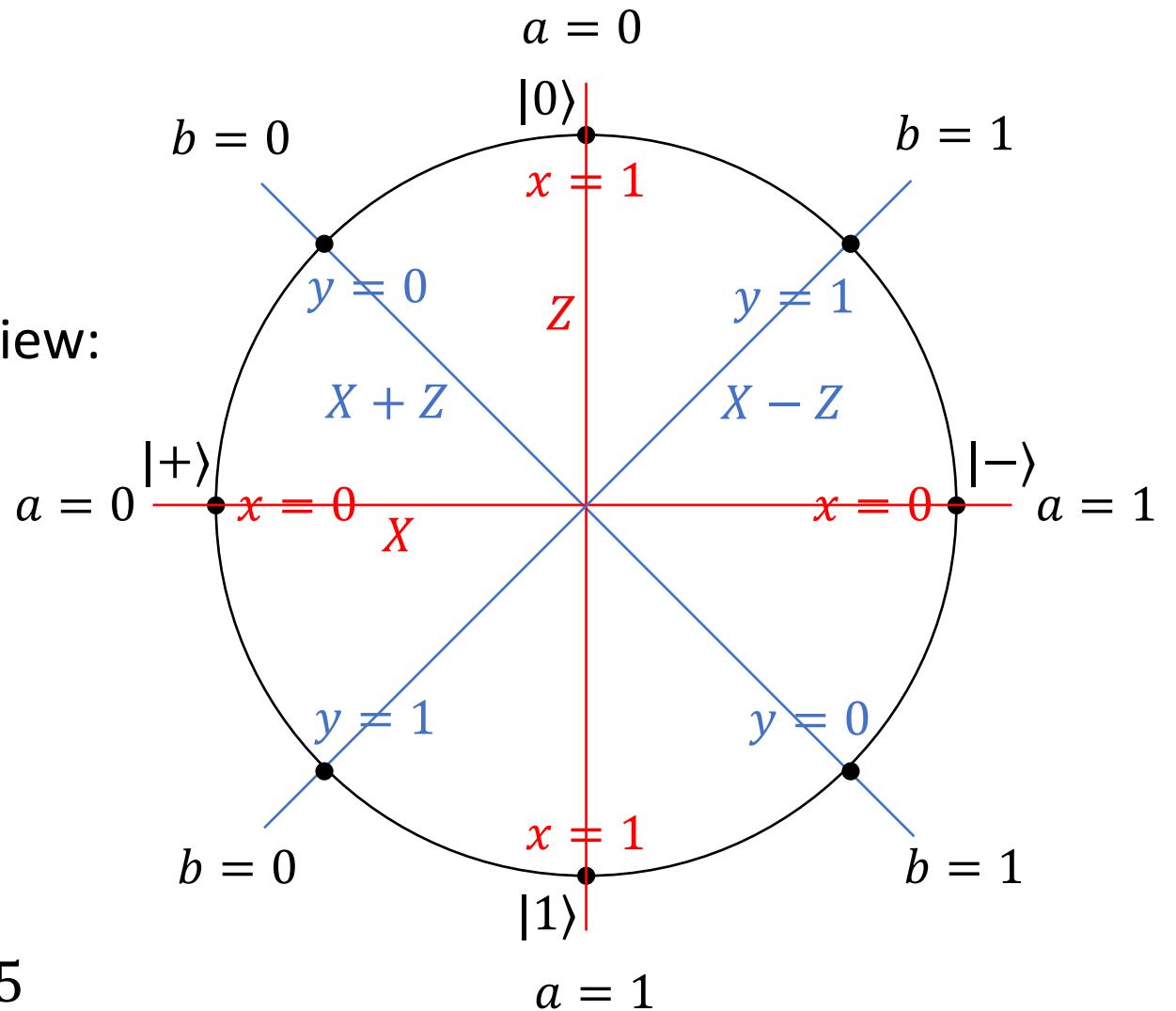
CHSH with quantum entangled strategies

Start with an EPR pair:

$$|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B = |+\rangle_A|+\rangle_B + |-\rangle_A|-\rangle_B$$



Bob's view:



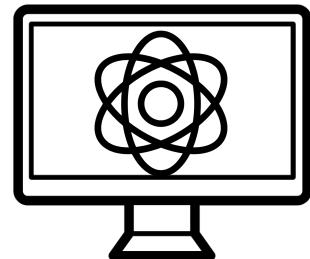
In any case, they win with probability
 $\approx 0.85 > \omega_{\text{CHSH}}$!

Tsirelson [80]: $\omega_{\text{CHSH}}^* = \cos^2\left(\frac{\pi}{8}\right) \approx 0.85$

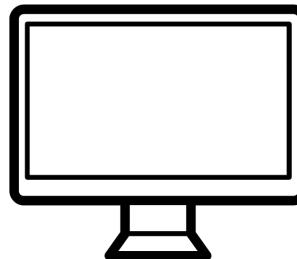
From CHSH to proofs of quantumness

- CHSH can be considered a “proof of quantumness” under the assumption that there are two non-communicating provers
- But what about the single prover setting?

Quantum prover



Classical verifier



- Shor’s algorithm?

accept / reject

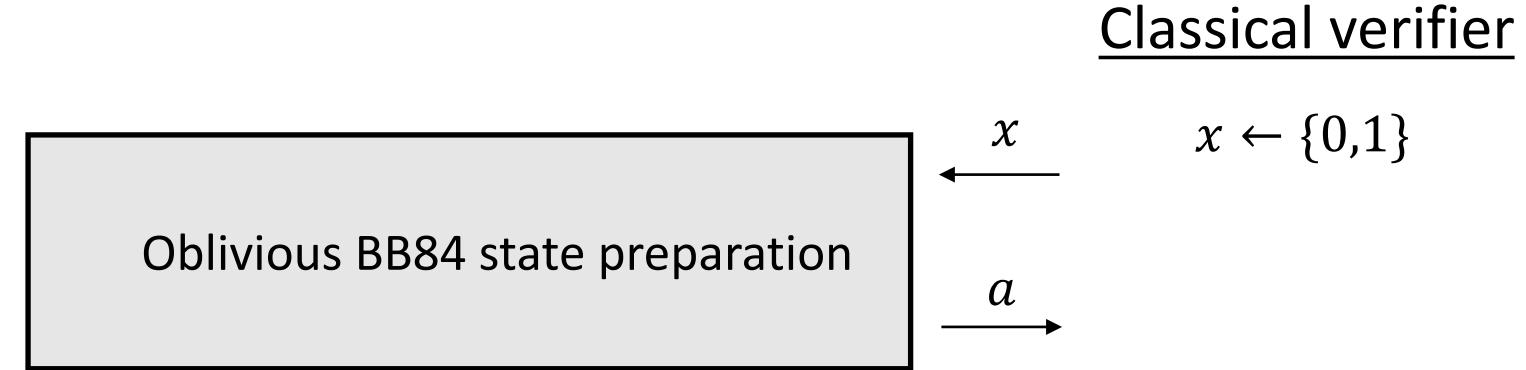
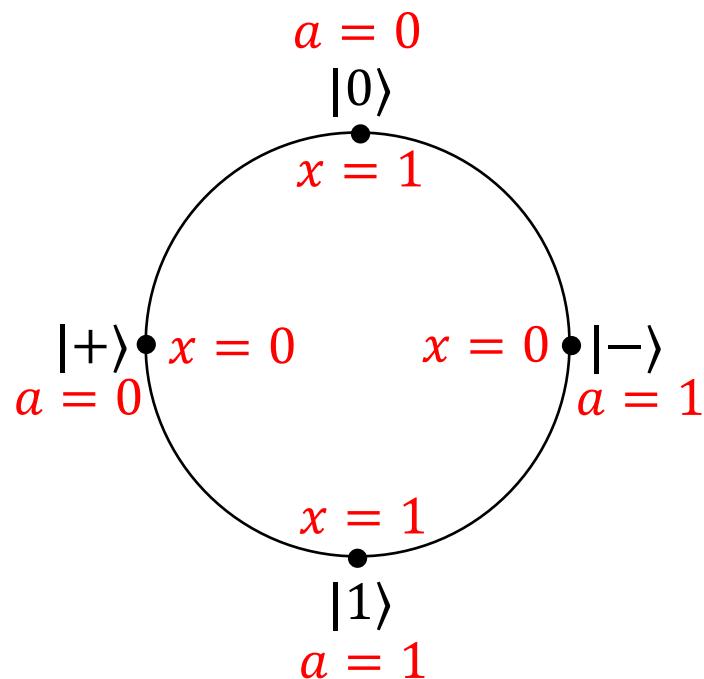
Completeness: There is a polynomial-time quantum prover that causes the verifier to accept with probability $\nu + \epsilon$

Soundness: No polynomial-time classical prover can cause the verifier to accept with probability greater than ν

From CHSH to proofs of quantumness

Quantum prover

$a = 0 \quad a = 1$
 $x = 0: \quad |+\rangle \quad |-\rangle$
 $x = 1: \quad |0\rangle \quad |1\rangle$



From CHSH to proofs of quantumness

Quantum prover

$$a = 0 \quad a = 1$$

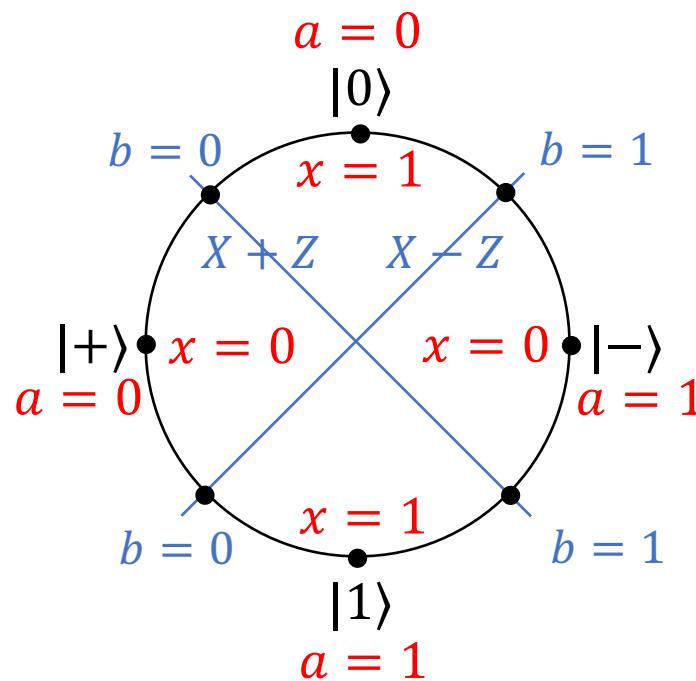
$$x = 0: \quad |+\rangle \quad |-\rangle$$

$$x = 1: \quad |0\rangle \quad |1\rangle$$

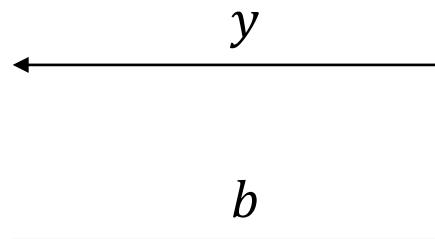
Classical verifier

$$x \leftarrow \{0,1\}$$

$$a$$



If $y = 0$, measure $X + Z$
If $y = 1$, measure $X - Z$



$$y \leftarrow \{0,1\}$$

$$b$$

Accept if $a \oplus b = x \wedge y$

From CHSH to proofs of quantumness

Quantum prover

$$a = 0 \quad a = 1$$

$$x = 0: \quad |+\rangle \quad |-\rangle$$

$$x = 1: \quad |0\rangle \quad |1\rangle$$

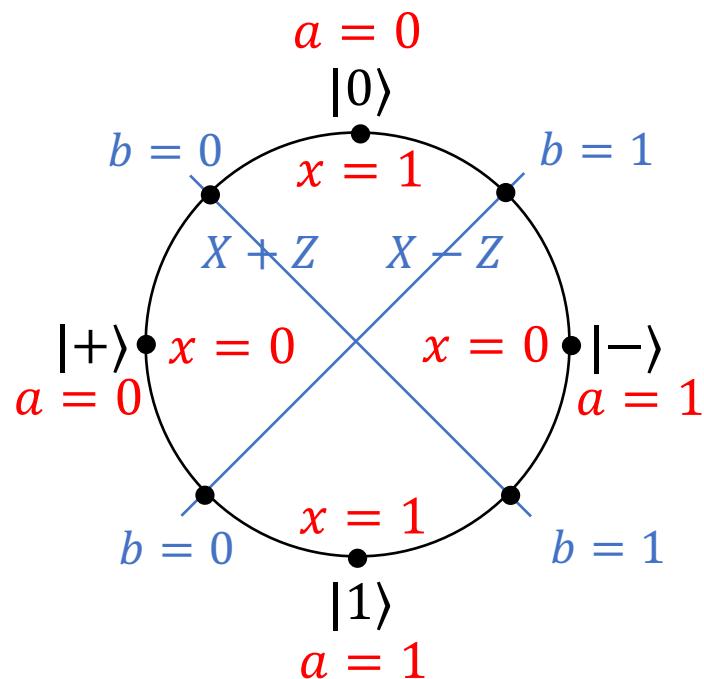
Oblivious BB84 state preparation

Classical verifier

$$x \leftarrow \{0,1\}$$

x

a



Completeness ≈ 0.85

Follows from correctness of oblivious BB84 state preparation and the quantum CHSH strategy analysis

If $y = 0$, measure $X + Z$
If $y = 1$, measure $X - Z$

b

Accept if $a \oplus b = x \wedge y$

From CHSH to proofs of quantumness

Classical prover

$$a = 0 \quad a = 1$$

$$x = 0: \quad |+\rangle \quad |-\rangle$$

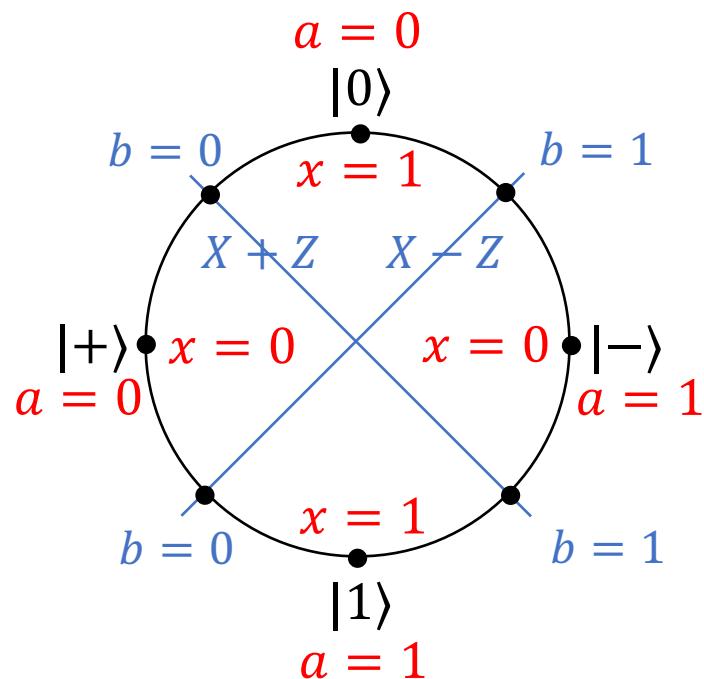
$$x = 1: \quad |0\rangle \quad |1\rangle$$

Oblivious BB84 state preparation

Classical verifier

$$x \leftarrow \{0,1\}$$

$$a$$



If $y = 0$, measure $X + Z$
If $y = 1$, measure $X - Z$

Completeness ≈ 0.85

Soundness ≈ 0.75

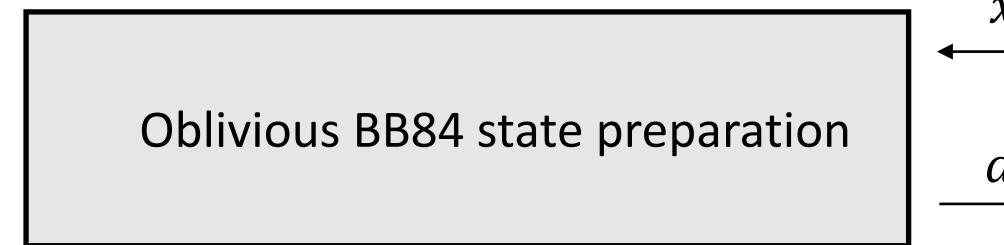
Follows from correctness of oblivious BB84 state preparation and the quantum CHSH strategy analysis

Follows from security of oblivious BB84 state preparation (prover can't guess x) and classical CHSH strategy analysis

From CHSH to proofs of quantumness

Quantum prover

$$\begin{array}{ll} a = 0 & a = 1 \\ x = 0: & |+\rangle \quad |-\rangle \\ x = 1: & |0\rangle \quad |1\rangle \end{array}$$



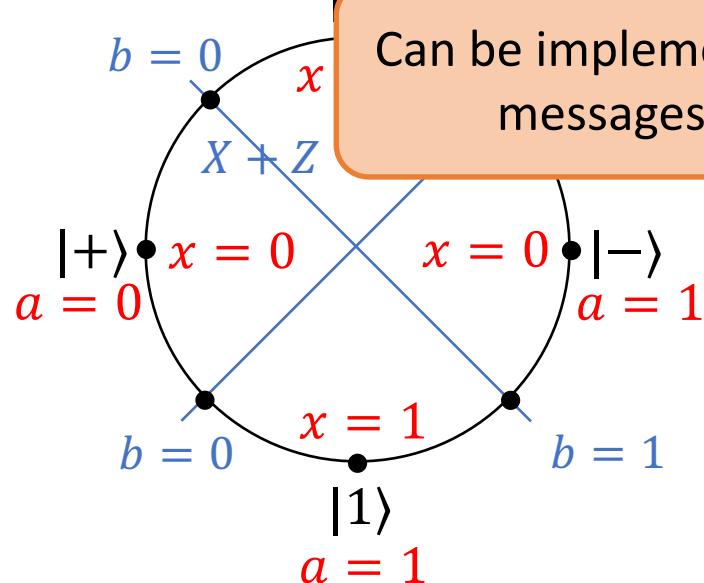
Classical verifier

$$x \leftarrow \{0,1\}$$

$$a = 0$$

$$|0\rangle$$

Can be implemented in two classical messages using any dTCF



If $y = 0$, measure $X + Z$
 If $y = 1$, measure $X - Z$

Completeness ≈ 0.85

Soundness ≈ 0.75

$$y \leftarrow \{0,1\}$$

$$y$$

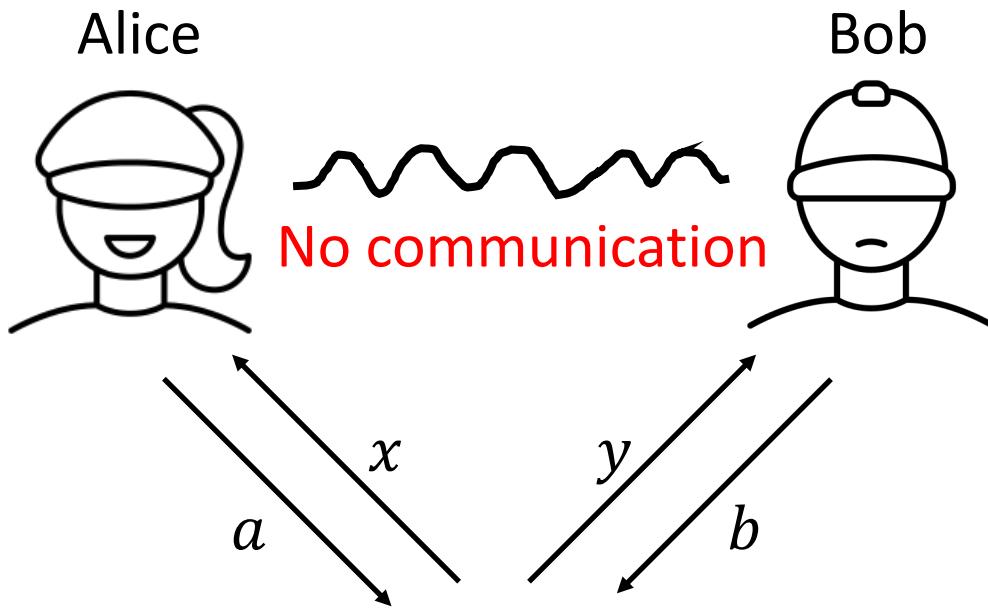
$$b$$

Accept if $a \oplus b = x \wedge y$

Generalization: The KLVY Compiler

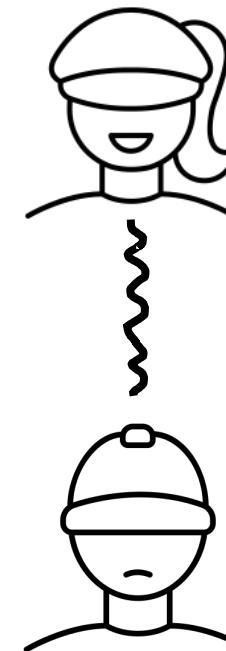
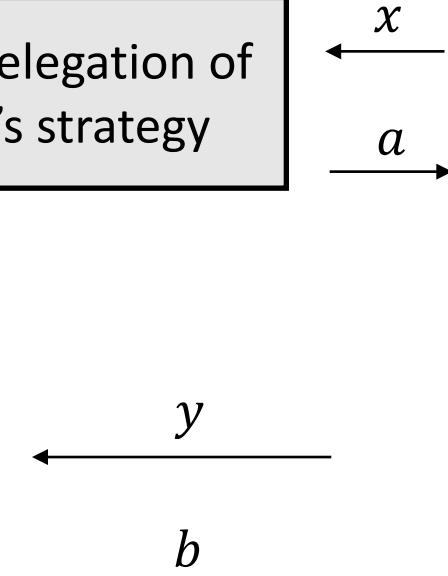
Non-local game $G = (D, V)$

Alice



Win if $V(x, y, a, b) = 1$

Quantum prover



Classical verifier

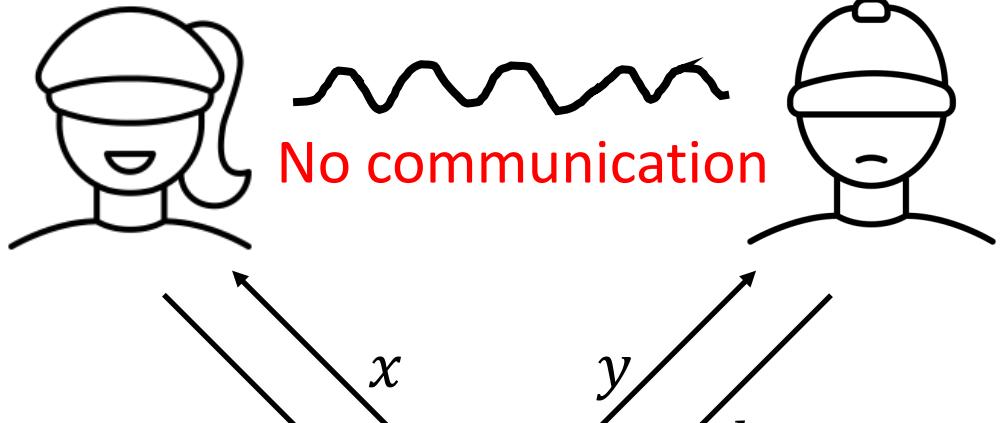
Sample $x, y \leftarrow D$

Accept if $V(x, y, a, b) = 1$

Generalization: The KLVY Compiler

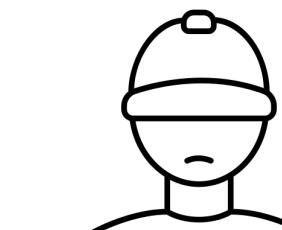
Non-local game $G = (D, V)$

Alice



Quantum prover

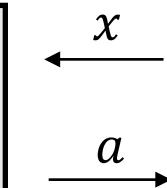
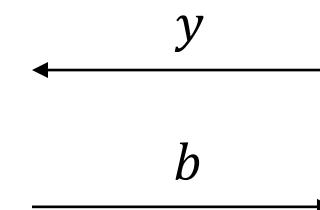
Doesn't know y



Doesn't know x

Classical verifier

Sample $x, y \leftarrow D$

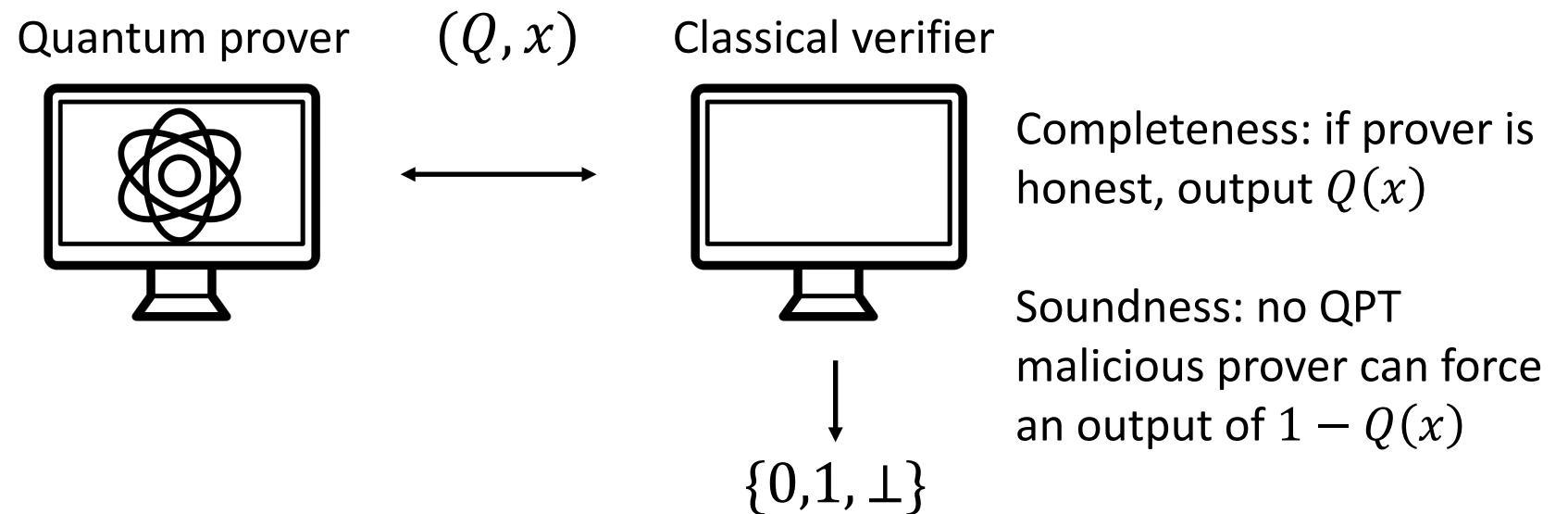


Accept if $V(x, y, a, b) = 1$

*[KLVY22] considered only two-message protocols (QFHE)

Verifiable Delegation

- We already had (very simple) proofs of quantumness using the CHSH game, so what was the point of this generalization?
- One reason: can we go beyond proofs of quantumness to classical verification of quantum computation?



Verifiable Delegation

- [RUV13], ..., [Gri17], ...: Given any BQP computation $Q(x)$, there exists a non-local game G and $\epsilon = 1/\text{poly}$ such that:
 - If $Q(x) = 0$, then $\omega_G^* \geq v + \epsilon$
 - If $Q(x) = 1$, then $\omega_G^* \leq v$
- For proofs of quantumness, we only needed the fact that KLVY preserves the classical value ω_G of the game, since we only care about soundness against classical provers
- For verifiable delegation, we need soundness against quantum provers, and thus have to think about whether the KLVY compiler preserves the *quantum* value ω_G^*

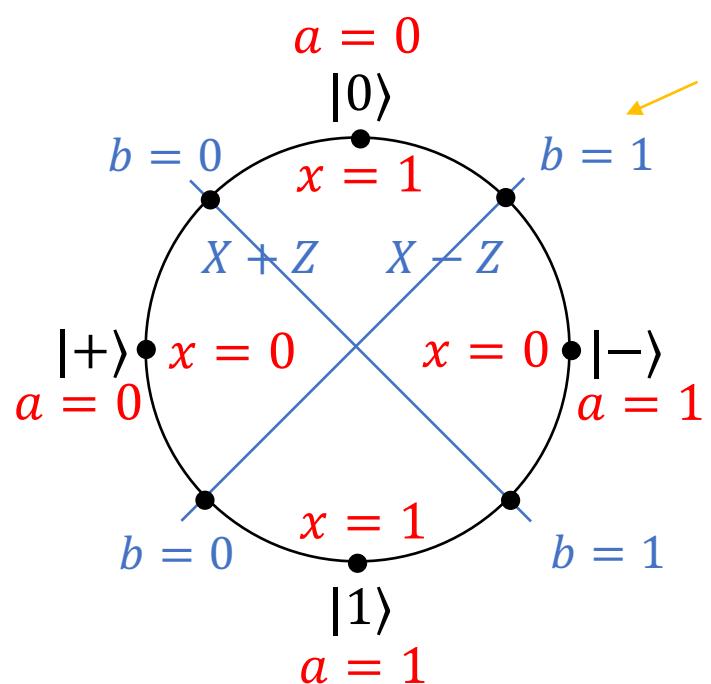
Back to the compiled CHSH game

Quantum prover

$$\begin{array}{ll} a = 0 & a = 1 \\ x = 0: & |+\rangle \quad |-\rangle \\ x = 1: & |0\rangle \quad |1\rangle \end{array}$$

Classical verifier

$$x \leftarrow \{0,1\}$$



“Rigidity”: In order to achieve 0.85, the prover’s measurements must be at a maximum angle

Verifier can test that the prover is applying (rotated) standard and Hadamard basis measurements

If $y = 0$, measure $X + Z$
If $y = 1$, measure $X - Z$

Can a malicious quantum prover do any better than 0.85?

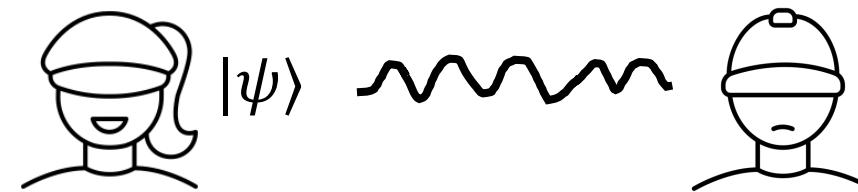
Accept if $a \oplus b = x \wedge y$

[BGKPV23, NZ23]: No!

Verifiable delegation

How do the [RUV13],[Gri17] non-local games work?

- Ingredient #1: Circuit-to-Hamiltonian
 - $Q, x \rightarrow H_{Q,x} = \sum_i H_i$, where each H_i contains only X or Z terms
 - If $Q(x) = 0$, $\exists |\psi\rangle$ s.t. $\langle \psi | H_{Q,x} | \psi \rangle \geq v + \epsilon$
 - If $Q(x) = 1$, $\forall |\psi\rangle$, $\langle \psi | H_{Q,x} | \psi \rangle \leq v$
- Ingredient #2: Quantum teleportation



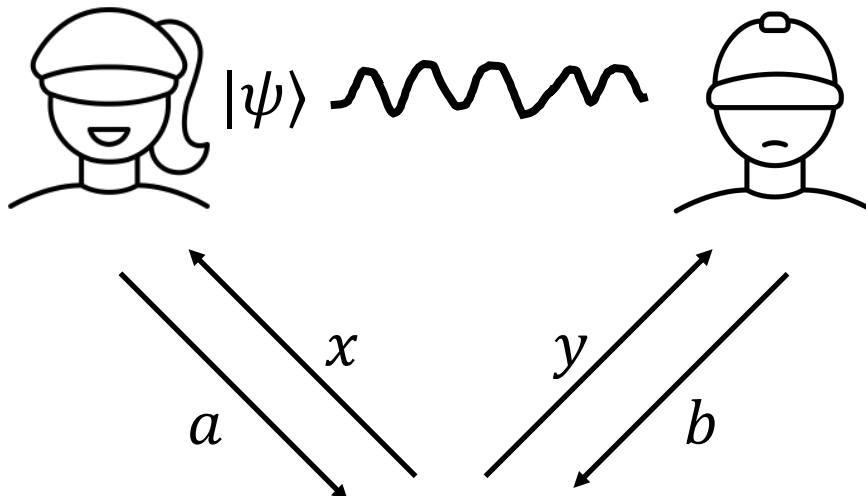
Verifiable delegation

How do the [RUV13],[Gri17] non-local games work?

- Ingredient #1: Circuit-to-Hamiltonian
 - $Q, x \rightarrow H_{Q,x} = \sum_i H_i$, where each H_i contains only X or Z terms
 - If $Q(x) = 0$, $\exists |\psi\rangle$ s.t. $\langle \psi | H_{Q,x} | \psi \rangle \geq v + \epsilon$
 - If $Q(x) = 1$, $\forall |\psi\rangle$, $\langle \psi | H_{Q,x} | \psi \rangle \leq v$
- Ingredient #2: Quantum teleportation
- Ingredient #3: Rigidity

Verifiable delegation: Highly simplified

Non-local game for Q, x



Either standard or Hadamard basis measurements

Sample $g \leftarrow \{\text{Hamiltonian, CHSH}\}$

If $g = \text{Ham}$: $x = \text{Tel}$, $a = (r, s)$, $y = H_i$, $b = \langle \psi | X^r Z^s H_i Z^s X^r | \psi \rangle$
accept if average of measurement results $\geq v + \epsilon$

If $g = \text{CHSH}$: play many copies of CHSH game
accept if average win probability ≈ 0.85

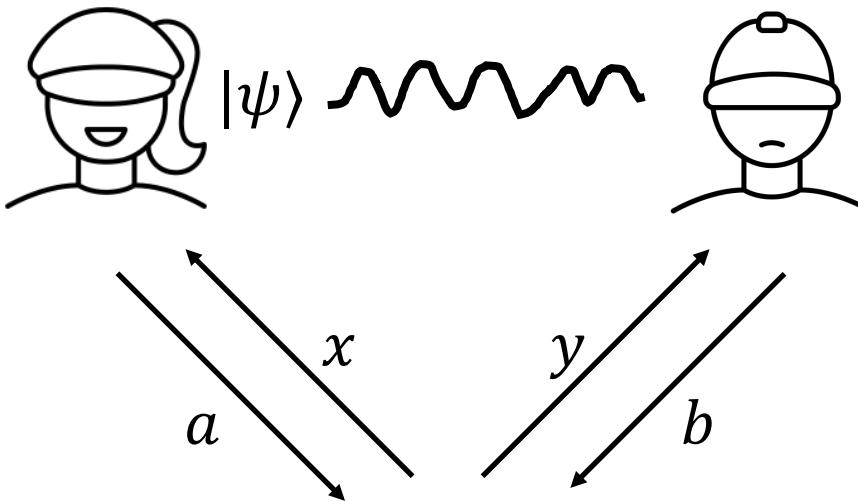
Ensures that Bob is honestly performing the standard and Hadamard basis measurements

Can only win if $|\psi\rangle$ is a valid witness that $Q(x) = 0$

*[NZ23] considered only two-message protocols (QFHE)

Verifiable delegation: Highly simplified

Non-local game for Q, x



Sample $g \leftarrow \{\text{Hamiltonian, CHSH}\}$

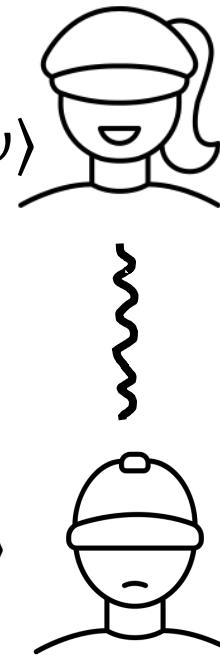
If $g = \text{Ham}$: $x = \text{Tel}$, $a = (r, s)$, $y = H_i$, $b = \langle \psi | X^r Z^s H_i Z^s X^r | \psi \rangle$
accept if average of measurement results $\geq v + \epsilon$

If $g = \text{CHSH}$: play many copies of CHSH game
accept if average win probability ≈ 0.85

Can only win if $|\psi\rangle$ is a valid witness that $Q(x) = 0$

Quantum prover

[NZ23]



Key: Doesn't know which game is being played

Q, x

Sample $g \leftarrow \{\text{Ham, CHSH}\}$

g, \dots

a

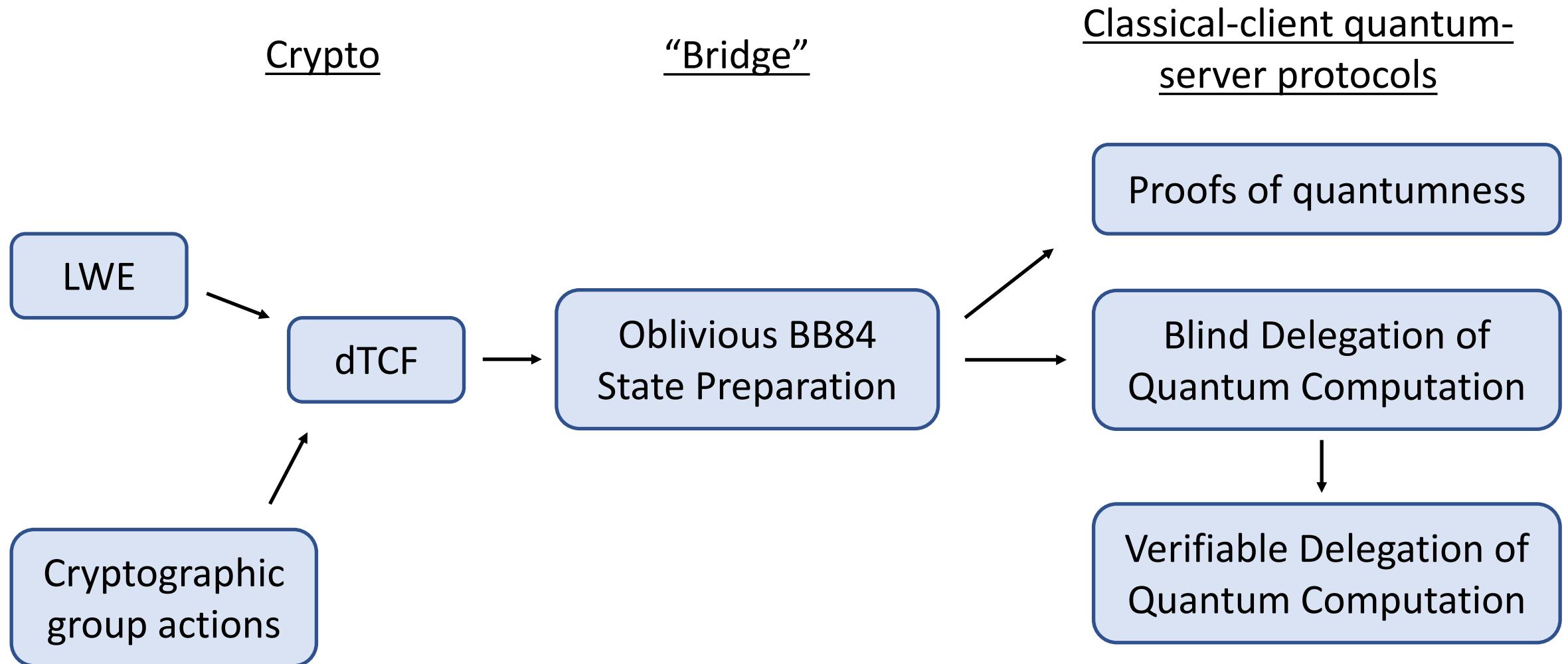
y

b

Will only accept if $Q(x) = 0$

Classical verifier

Recap



Key References

- Blind quantum computation with a weak quantum client
 - Andrew Childs. *Secure Assisted Quantum Computation*. 2001. <https://arxiv.org/abs/quant-ph/0111046>
 - Anne Broadbent. *Delegating Private Quantum Computations*. 2015. <https://arxiv.org/abs/1506.01328>
- Introducing trapdoor claw-free functions
 - Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, Thomas Vidick. *A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device*. 2018. <https://arxiv.org/abs/1804.00640>
 - Urmila Mahadev. *Classical Homomorphic Encryption for Quantum Circuits*. 2017. <https://arxiv.org/abs/1708.02130>
 - Urmila Mahadev. *Classical Verification of Quantum Computations*. 2018. <https://arxiv.org/abs/1804.01082>
 - Alexandru Cojocaru, Léo Colisson, Elham Kashefi, Petros Wallden. *QFactory: Classically-Instructed Remote Secret Qubits Preparation*. 2019. <https://arxiv.org/pdf/1904.06303>
- The non-local game approach
 - Gregory Kahanamoku-Meyer, Soonwon Choi, Umesh Vazirani, Norman Yao. *Classically-Verifiable Quantum Advantage from a Computational Bell Test*. 2021. <https://arxiv.org/abs/2104.00687>
 - Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, Lisa Yang. *Quantum Advantage from Any Non-Local Game*. 2022. <https://arxiv.org/abs/2203.15877>
 - Zvika Brakerski, Alexandru Georghiou, Gregory Kahanamoku-Meyer, Eitan Porat, Thomas Vidick. *Simple Tests of Quantumness also Certify Qubits*. 2023. <https://arxiv.org/abs/2303.01293>
 - Anand Natarajan, Tina Zhang. *Bounding the quantum value of compiled nonlocal games: from CHSH to BQP verification*. 2023. <https://arxiv.org/abs/2303.01545>