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Hello quantum world! Google
publishes landmark quantum How can we verify
supremacy claim these claims?

The company says that its quantum computer is the first to perform a calculation that
would be practically impossible for a classical machine.

LY TR WS peuE IBM and Google disagree on quantum

uantumness” to . .
atal . computing achievement
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Suppose we have managed to achieve “guantum advantage”
Another issue: Building quantum computers is extremely costly

In the near-term, quantum computing technology will be highly concentrated
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Delegation of Quantum Computation

Quantum-program

Quantum cloud Classical client

Desirable security properties:
| Blindness: the cloud learns nothing about the client’s input x
* Verifiability: the client can be sure that the output y is computed correctly



The Plan

* Part 1: Quantum background
* Part 2: Blind delegation from oblivious state preparation
* Part 3: Oblivious state preparation from post-quantum crypto

* Part 4: Proofs of quantumness and verifiable delegation



Part 1: Quantum Background

» How to encrypt quantum states
» Quantum universal gate set



The Bloch Sphere

Single-qubit state:

W) = ap|0) + aq|1) (a0, a1 € C lagl? + |y |? = 1)

= 1,e'%0|0) + rye'®1|1), ¢y, P, € [0,27) 1

= eid)o (rol()) -+ rlei((pl_(pO)ll))




The Bloch Sphere

Single-qubit state:

W) = ap|0) + aq|1) (a0, a1 € C lagl? + |y |? = 1)
= 19e'?0]0) + r1e'?1]1), ¢, ¢, € [0,27)
= 1,]|0) + r,e*?|1), ¢ € [0,2m)

= cos(0/2)|0) + sin(8/2)e'?|1), 6 € [0, 7]




The Bloch Sphere

Single-qubit state:

W) = apl0) + a1]1) (@0, a1 € Claol® + sl =1) |9y — ;1)

= 1,e'%0|0) + rye'®1|1), ¢y, P, € [0,27) \r_i> a

=1,|0) + r,e'?|1), ¢ €[0,27) 0)

= cos(0/2)|0) + sin(8/2)e'?|1), 6 € [0, 7]

|1)

Convention: drop normalization factors
when clear from context



The Bloch Sphere

* Any single-qubit state can be represented as a
point on the unit sphere

* Any single-qubit unitary can be represented as
a rotation of the unit sphere

 Pauli rotations:

X = (O é) “bit flip”: 180° around the x-axis

— (1 _01) “phase flip”: 180° around the z-axis



How to encrypt quantum states

Classical one-time pad:

To encrypt a bit b, sample random
r < {0,1},andoutputb & r (= X"|b))

“encrypting 8"




How to encrypt quantum states

Classical one-time pad:

To encrypt a bit b, sample random
r < {0,1},andoutputb & r (= X"|b))

Quantum one-time pad [MTdWO0O]:

To encrypt a state |[Y), sample random
r,s < {0,1}, and output X" Z>|y)




How to encrypt quantum states

Classical one-time pad:

To encrypt a bit b, sample random
r < {0,1},andoutputb & r (= X"|b))

Quantum one-time pad [MTdWO0O]:

To encrypt a state |[Y), sample random
r,s < {0,1}, and output X" Z>|y)

“encrypting and 6 and ¢”
Extends to n-qubit states:

Sample r,s « {0,1}", and output X"1Z51 @ --- Q X" Z5n|yp) :== X" Z5| )



Universal gate set

Consider any n-qubit unitary U

Goal: write U (approximately) as a sequence of one- and two-
gubit gates, from a small finite set

Claim #1: Any U can be written as a series of single-qubit
rotations and CNOT gates, where CNOT: |x)|y) — |x)|x @D y)

Claim #2: Any single-qubit rotation can be written
(approximately) as a series of:

 Hadamard gate

* T gate

Claim #3 (Solovay-Kitaev): This approximation is efficient

(A good reference for all of these claims is Nielsen-Chuang)



Clifford gates

* Recall: QOTP X" Z°|y), r, s, € {0,1}"

 Clifford group normalizes the Pauli group
* For any Clifford gate C, CX"Z° = X"'Z%'C




Clifford gates

* Recall: QOTP X" Z°|y), r, s, € {0,1}"
 Clifford group normalizes the Pauli group
* For any Clifford gate C, CX"Z°|Y) = XTIZS,CWJ)

 Cliffords can be applied directly to encrypted
guantum states, and the QOTP key get updated

Recall: Universal gate set CNOT, H, T

CNOT is Clifford: CNOT(X™Z51 Q X"27Z52)
— (XT'1251@52 ® Xrl@TZZSZ)CNOT

H is Clifford: HX"Z5 = X5Z"H
* T is not Clifford:

TX = T?XT




Clifford gates

* Recall: QOTP X" Z°|y), r, s, € {0,1}"
 Clifford group normalizes the Pauli group
* For any Clifford gate C, CX"Z°|Y) = XTIZS,CWJ)

 Cliffords can be applied directly to encrypted
guantum states, and the QOTP key get updated

Recall: Universal gate set CNOT, H, T

CNOT is Clifford: CNOT(X™Z51 Q X"27Z52)
— (XT'1251@52 ® Xrl@TZZSZ)CNOT

H is Clifford: HX"ZS = XSZ"H
 TisnotClifford: TX"ZS = (T?)"X"Z5T




Clifford gates

* Recall: QOTP X" Z°|y), r, s, € {0,1}"
Clifford group normalizes the Pauli group
* For any Clifford gate C, CX"Z°|Y) = XTIZS,CWJ)

 Cliffords can be applied directly to encrypted
guantum states, and the QOTP key get updated

Recall: Universal gate set CNOT, H, T

CNOT is Clifford: CNOT(X™Z51 Q X"27Z52)
— (XT'1251@52 ® Xrl@TZZSZ)CNOT

H is Clifford: HX"Z° = X°Z"H
T is not Clifford: TX"Z° = P"X"Z°T
P is called the “phase gate”




Key property: For any Clifford C and r, s € {0,1}", there

Recap

exists ', s’ € {0,1}"* suchthat CX"Z° = X"'Z5'C

Define f, to be the “update function”: f-(r,s) = (r',s") | :

How to encrypt qua

Universal gate set: CNOT, H, T

CNOT and H are Clifford gates

Any quantum computation Q can be performed
using just Clifford computations and T gates

TX"Z> =P"X"Z°T

ntum states: X" Z°|y)

That iS, Q(x) — CtTCt—l TCZTC1|x>



Key property: For any Clifford C and r, s € {0,1}", there

Recap

exists ', s’ € {0,1}"* suchthat CX"Z° = X"'Z5'C

Define f, to be the “update function”: f-(r,s) = (r',s") | :

How to encrypt quantum states: X" Z°|y)

Universal gate set: CNOT, H, T

CNOT and H are Clifford gates

Any quantum computation Q can be performed
using just Clifford computations and T gates

Ttx7zs = (Pt) x7zsTt

Thatis, Q(x) = C,TTC;_ ... TTC,TTCy|x)



Part 2: Blind Delegation from
Oblivious BB84 State Preparation



Quantum server Q=CT'Ciq.. TTC,TTC, Classical client(x)
Sample r « {0,1}"

Initialize (1, Sg) = (r,0™)

Initialize |Pg) = |1y D x) = |x) o D x




Quantum server Q = (C)(TTC,_y) ... (TTC,)(TTC,) Classical client(x)

Sample r « {0,1}"

Initialize (1, Sg) = (r,0™)

Initialize |Pg) = |1y D x) = |x) o D x

Compute [1p1) = TTCy[1ho) =TT C1]x) Update (71, s1) = f¢, (To, So)




Quantum server Q = (C)(TTC,_y) ... (TTC,)(TTC,) Classical client(x)

Sample r « {0,1}"

Initialize [Yo) = |1y B x) = | ) To O x Initialize (ry,s9) = (r,0™)
Compute [1p1) = TTC;1ho) = (P12 TTCyx) Update (71, 1) = f¢, (To, So)
Y1)
— .. : 1,1
Oblivious phase correction —
TTCy|x) = P™1]ay)




Quantum server Q = (C)(TTC,_y) ... (TTC,)(TTC,) Classical client(x)

Initialize |1po) = |ro @ x) = 1) o D x
Compute [p;) = TTCy o) = (PT)™ TTCy|x)
|¥1)
) + . Oblivious phase correction
1) = TTCi|x) = P [yhy)
Compute [yh,) = TTC, 1) = (PT)"2 TTC,TTC|x)
|¥2)

[Y3) = PT21[1h,)

Oblivious phase correction

Compute [Yp¢) = Celpe_q)
= C,TTC_ ... TTCy|x)
= Q(x)) = |r: © Q(x))

e @ Q(x)

v

Sample r « {0,1}"

Initialize (1, Sg) = (r,0™)

Update (7'1; Sl) = fCl (rOr SO)

11

«—

Update (13, 52) = fc, (11, 51)

21

«—

Update (1, s¢) = f¢,(Tt-1, S¢e—1)
Recover Q(x)



Server  Security requirement: Server gainsno  Client
(or negligible) information about r

Oblivious phase correction —

* The previous protocol template was first developed by Childs in 2001

» Implemented oblivious phase correction using two-way quantum
communication

* This was improved by Broadbent in 2015 to one-way quantum communication

* In 2017, Mahadev introduced techniques that allow us to implement oblivious
phase correction with only classical communication



Oblivious Phase via Oblivious State Preparation

P
Recall: ) = «|0) + 1) .
“Magic state” based implementation:

1. Prepare resource staté |0) + i|1)

2. Compute CNOT|y)(]0) + i|1))
= @|00) + ix|01) + B|11) + iB|10)

3. Measure 2" qubit - m € {0,1}:

Ifm = 0:a|0)+if|1) Ifm=1:ia|0)+ B|1)

= al0) —iB|1)
= Z(al0) +iB[1))

Result: Z™MP|yY)

) = a|0) + iB[1)

1. Prepare resource staté |0) + |1)

2. Compute CNOT|y)(]0) + |1))
= «|00) + «|01) + B|11) + B|10)

3. Measure 2" qubit » m € {0,1}:

If m = 0: «|0) + £|1) Ifm = 1: «|0) + £|1)

Result: [y)



Oblivious Phase via Oblivious State Preparation

Server  Security requirement: Server gainsno  Client
(or negligible) information about r

1Y) .
. Oblivious phase correction —
P™|)
Reduces to
|0) + |1)ifr =0
AN e r
0) +i|1)ifr =1 Oblivious state preparation —

|1)



Oblivious Phase via Oblivious State Preparation

Server  Security requirement: Server gainsno  Client
(or negligible) information about r

1Y) i
. Oblivious phase correction —
P"|Y)
Reduces to
r r
Pﬂ Oblivious state preparation —

As stated, no protocol can achieve the security requirement:

* Suppose Server measures received state in the {|+), |—)} basis
* Ifr =0, the Server will see |+) with probability 1

* |Ifr =1, the Server will see |+) or |—) each with probability %



Oblivious Phase via Oblivious State Preparation

Server  Security requirement: Server gainsno  Client
(or negligible) information about r

|Y) r
Oblivious phase correction
ZbPTipy) P b,
Reduces to
ZPPT |+ -
[+ Oblivious state preparation .

Solution: Allow for potential phase flip

|1)



Oblivious Phase via Oblivious State Preparation

Server  Security requirement: Server gainsno  Client
(or negligible) information about r

|Y) r
Oblivious phase correction
ZbPTipy) P b,
Reduces to
Zbpr S
[+ Oblivious state preparation .

Easier task: Generate BB84 states,
and then rotate



Oblivious Phase via Oblivious State Preparation

Server  Security requirement: Server gainsno  Client
(or negligible) information about r

|Y) _
Oblivious phase correction
ZbPTipy) P b,
Reduces to
b=0 b=1
r=0: |+) [-) o
D Oblivious state preparation
r=1 10) |1) b

Easier task: Generate BB84 states,
and then rotate



Oblivious Phase via Oblivious State Preparation

Server  Security requirement: Server gainsno  Client
(or negligible) information about r

|Y) _
Oblivious phase correction
ZbPTipy) P b,
Reduces to
H'"|b) y | —
— Oblivious state preparation .

Easier task: Generate BB84 states,
and then rotate



Progress so far...

Oblivious BB84 Oblivious Phase Blind Delegation of
State Preparation Correction Quantum Computation




Part 3: How to Implement Oblivious
BB84 State Preparation with
Classical Communication



Key Tool: Trapdoor Claw-free Function (TCF)

* Pair of injective functions fy, f1: X = UY
such that for any y € Y, exists x, x4
such that f(xo) = f1(x1) =y

fo hRN
Il * Trapdoor: The Gen algorithm
:<: (fo, f1, td) < Gen outputs a trapdoor
DY such that foranyy € U,
RN Invert(td, y) = Xp, X1
f1 el

‘ * Claw-free: Given f, f1, no polynomial-
7’ . .
4 time adversary can find a “claw” xg, x4

such that f,(xo) = f1(x1)

7/



Dual-Mode Trapdoor Claw-free Function (dTCF)

* Pair of injective functions f,, f1: X = U
such that for any y € Y, exists x, x4

£, ~. such that fy(xg) = fi(x1) =y

el  Trapdoor: The Gen algorithm
<’ ~ (fo, f1, td) < Gen(7) outputs a trapdoor
"""" such that forany y € U,
Invert(td, y) = x, x1
i 7 /i * Claw-free: Given f, f1, no polynomial-
e time adversary can find a “claw” x, x4

------ such that f,(xo) = f1(x1)



Dual-Mode Trapdoor Claw-free Function (dTCF)

* Pair of injective functions f,, f1: X = U
such that for any y € Y, exists x, x4
such that fo(xo) = f1(x1) =y

* Trapdoor: The Gen algorithm

~ (fo, f1, td) < Gen(7) outputs a trapdoor
"""" such that forany y € U,

Invert(td, y) = x, x1

fi // fi

< * Mode indistinguishability:

ol (fo, f1,1) < Gen(0) = (fo, f1,) < Gen(1)



_ r . =
H~"|b) o . < fo o
— Oblivious BB84 state preparation

______
. . . fl //// fl
Security requirement: Server gains no

(or negligible) information aboutr | .. . ..o  ..1

Server Client r 0 i

1. Prepare uniform superposition

Sample (fq, f1,td) « Gen(r
Zbe{0,1},xex|b)|x) ple (fo, f1, td) (1)

2. Measure output of fy, f1 ) for f1
Zbe{o,l},xex|b)|x)|fb gx))
y
3. Measure input register in Hadamard basis
r=20 r=1
Zbe{0,1}|b>|xb> |b>|x+b>
| d

|b)



_ r .
H1 "|b) o . - fo fo
«-— Oblivious BB84 state preparation b 2 ¥
Y
. ] . f1 L’ fl
Security requirement: Server gains no . ______
or negligible) information about r i - .
(or negligible) Client : :

Server

1. Prepare uniform superposition
What happens when we measure the input register of

Zbe{o,l},xexlb>|x> a “claw state” in the Hadamard basis?
2. Measure output of fy, f1
Ypeqoyrex! DI f () (1@ HZ)(10Mx0) + [11x1))
e v
y =10) ) DRI+ Y (—DEld)
3. Measure input register in Hadamard basis def0,1}A def0,1}A
r=20 r=1
— = (~1)%%0[0) + (~1)**1]1)) |d)
2befo,1}10xp) b} xp) de{zo:l}a( ) v
v v ' l d
| d | d
(=1)%4%|0) + (—1)4*2[1) = |0) + (=1)% C0®x)|1)

74 @®x)(|0) + [1))  |b)



_ a E T
H? "|b) o . - f f
- Oblivious BB84 state preparation b 2 ¥
/\\\\\\ e A
. . . fl ////’ fl
Security requirement: Server gains no . ¥ |
(or negligible) information about r 0 .

Server

1. Prepare uniform superposition

Zbe{o,l},xexleX)

2. Measure output of fy, f1 ) for f1
Zbe{o,l},xex|b>|x)|fb Ex))
y
3. Measure input register in Hadamard basis
r=20 r=1
Zbe{o,1}|b>|3§b> |b)|3ib> y,d R
| d | d
Z%*xo®x)(|0) + 1)) | |b) — output ———

Client

Sample (fy, f1,td) <« Gen(r)

r=20 r=1

Invert(td, y) = xo,x; Invert(td,y) = b, x;,

l l

b:d(eraxl) b




Progress so far...

[ J4TCF ] Oblivious BB84 Blind Delegation of
State Preparation Quantum Computation




dTCF from LWE

Basic idea:

Let g be a large modulus, m > n,and A € Z’C}”X” be a uniformly random matrix

Let v = As for a uniformly random s € Zg

Let f(A,v),O(x) = Ax On domain x € Zg, this pair of

fram1(x) = Ax + v functions have the same image
= A(x +5)



dTCF from LWE

Dual-mode:

Let g be a large modulus, m > n,and A € Z’C}”X” be a uniformly random matrix

Let v = As for a uniformly random s € Zg

fapm,o(x) = Ax
frami1(x) =Ax +v

Let



dTCF from LWE

Dual-mode:
Let g be a large modulus, m > n,and A € Z’C}”X” be a uniformly random matrix
If r = 0, sample v € span(4) If r = 1, sample v € span(4)

fapm,o(x) = Ax
frami1(x) =Ax +v

Let



dTCF from LWE

Dual-mode:

Let g be a large modulus, m > n,and A € Z’C}”X” be a uniformly random matrix

If r = 0, sample v € span(4) If r =1, sample v « Zg'
frav),o(x) = Ax have the same image ifr = 0
Let o
f(A,v),1(x) = Ax +v have disjoint images if r = 1

But... given (4, v), itis easy to
distinguish whetherr = 0orr =1



dTCF from LWE

Adding error:

Let g be a large modulus, m > n,and A € Z’C}”X” be a uniformly random matrix

Ifr =0, sample (s,¢), letv = As + If r =1, sample v « Zg'

fapm,o(x) = Ax
frami1(x) =Ax +v

Let



dTCF from LWE

Adding error:

Let g be a large modulus, m > n,and A € Z’C}”X” be a uniformly random matrix

Ifr =0, sample (s,e),letv =A4s + e If r =1, sample v « Zg'

f(A'”)'O(x) = Ax Now, ther = 0 and r = 1 cases are
f(A,v),1(x) =Ax +v indistinguishable assuming LWE!

Let

New problem: when r = 0, functions no longer have the same image



dTCF from LWE

Adding error:

Let g be a large modulus, m > n,and A € Z’C}”X" be a uniformly random matrix

Ifr =0, sample (s,e),letv =A4s + e If r =1, sample v « Zg'

fapm,o(x) = Ax

frami1(x) =Ax +v
=A(x+s)+e - - o f (4,v),0 (x)

f (Av),1 (x)

Let



dTCF from LWE

Adding error:

Let g be a large modulus, m > n,and A € Z’C}”X" be a uniformly random matrix

Ifr =0, sample (s,e),letv =A4s + e If r =1, sample v « Zg'

J‘ (A’v),O (x) x -~ -~ -~
Let 4# \\\I 4# \\\I 4# \\\I
I e® ), I %, I %,

‘N 4 4 R 4

N~ N~

faan1(x) =Ax +v ; ;
=A(x+s)+e : { : fav),0(x)

N~
~ - ~ -
PN -~ PN
EREC NN EREC NN EREC NN
4 .\| 4 .\| 4 .\| x
I e® I e® Y I e® A[? 1
LJRN y L3RN 7 LR 4 ) )
N~ N~ N~
~ - ~ - ~ -
L]
Solution: R £ £
~ ~ ~
. p \\l i \ i \\l
I e I [ ] I o
\ \ \
Ve / e e )



dTCF from LWE

Adding error:

Let g be a large modulus, m > n,and A € Z’C}”X" be a uniformly random matrix

Ifr =0, sample (s,e),letv =A4s + e If r =1, sample v « Zg'

famo(x) = Ax + ¢’

L e t ' 4\*’:—.\\\ |\II ‘4\/»’:—:\\ |\I| '4\,,'—.-—:\\ |\I|
f (A,U),l(x) =Ax + v+ 6, \;:::'/: ‘~‘:~—:—/\’ ‘o:::_,:
Sy Aoy o X
where |e| < |e']| K g k N fam,0(x)

NS NS
PN - PN
0N AN 0N
\ \ \
1 1 1
Iy ¢® 1 Iy o® 1 Iy o® 1 A x
\\. )I \\. )I \\. / ,v ’1
NS NS NS
L]
[] PN PN PN
Solution: AN N N
o . ” 4 A 4 A 4 A
I e I o I o
I \ e / \ o ’ \ e 7
SR\ J \IRN Y \IRN Y
A \\——/ A \\——/ A \\——/

A



dTCF from LWE

Adding a trapdoor:
Let g be a large modulus, m > n,and A € Z’C}”X” be a uniformly random matrix
Ifr =0, sample (s,e),letv =A4s + e If r =1, sample v « Zg'

famo(x) = Ax + ¢’
flami1(x) =Ax+v +e'

Let



dTCF from LWE

Adding a trapdoor: Over thAe reals

[ |
Sample (4,T) < TrapGen: A € Zg""",TA = 0mod q, T € [-B, B]™ ™ is full rank

Ifr =0, sample (s,e),letv =A4s + e If r =1, sample v « Zg'

famo(x) = Ax + ¢’
flami1(x) =Ax+v +e'

Let let td=T

Invert(td, Ax + e'): Compute T(Ax + e’) mod g = Te’, and solve for e’



Progress so far...

e )

State Preparation Quantum Computation

[dTCF ]_»{ Oblivious BB84 ] [ Blind Delegation of ]

/[AM R22, GV24]

Cryptographic
group actions




Quantum Fully-Homomorphic Encryption (QFHE)

* Minimally-interactive version of blind delegation

Quantum cloud Classical client

* Observation [Mah17]: exists a classical FHE scheme such that Enc(7) is a
dTCF with mode r



Dual-Regev Encryption

* KeyGen runs TrapGen to obtain pk = A,sk =T

Enc(r € {0,1}) » As + e + r - u, where u € span(4) is a public vector

This scheme can be extended to FHE (dual-GSW)

Letting v = Enc(r), we have that (4, v) defines a dTCF with mode r



Quantum server Q = (C)(TTC,_y) ... (TTC,)(TTC,) Classical client(x)

0 D x

Initialize |y) = |1y D x) = X0 Z%|x) <
Compute [p;) = TTCy o) = (PT) 11X Z1TTC, |x)

1P2) :
, | Oblivious phase correction
W3) = ZP2PT21[1),) :
( L
( L
 J L

Compute |y, = X"t Z5¢C,TTC,_1 ... TTCy|x)
= X"tZ5|Q(x)) = |y D Q(x)) r: @ Q(x)

v

Sample r « {0,1}"

Initialize (ry,s9) = (r,0™)

Up% (71,51)
dTCF(ry 1)
td
i, d1) — by
— Update

N
dTCF(r) —

Recover Q(x)



Quantum server Q = (C)(TTC,_y) ... (TTC,)(TTC,) Classical client(x)
Sample r « {0,1}"

N S
Initialize o) = |ro D x) = XT0Z%0|x) o0 Dx Initialize (ro, So) _(\r’OA )
Compute |1p;) = TTC; o) = (PT)11X"1Z51TTC, |x) Update (1 s1)

R /

I |
/ l Oblivious phase correction ' td
Y1) = Zb1p7”1,1|l/)1> l £ L (y1,d1) — by
— ___ ! — Update

| Dual-Regev encryption | )
Compute [) = THC,|4) = (PHYsa~=2-+1 CoT ey (2052

1Y¥2) : :
, | Oblivious phase correction '
[5) = ZP2PTe i) 2 dy) s b,
— o2 — Update
° Y \ L v
L
: : :
Compute |y, = X"t Z5¢C,TTC,_1 ... TTCy|x) (7%, S¢)

= X" Z5|Q(x)) = |rp D Q(x)) 1 D Q) Recover Q(x)

v



Quantum server Q = (C)(TTC,_y) ... (TTC,)(TTC,) Classical client(x)

0 D x

Initialize |y) = |1y D x) = X0 Z%|x) <
Compute [p;) = TTCy o) = (PT) 11X Z1TTC, |x)

L

—

' |

I |

- . |

!y = Zbipriafy,) Oblivious phase correction :
|

«—

| Dual-Regev encryption |
Compute [1,) = TTC, Y1) = (PN &&=z ¢ i X)

1Y¥2) : :

I Oblivious phase correction !

i) = Z0PTea[s) i :
o o
o o
o [ )

Compute |y, = X"t Z5¢C,TTC,_1 ... TTCy|x)
= X" Z5%|Q(x)) = |r D Q(x)) e ® Qo)

Sample r « {0,1}"

Initialize = Enc(r,0™)

td
i, d1) — by

S

Decrypt 1 and recover Q(x)



Quantum server Q = (C)(TTC,_y) ... (TTC,)(TTC,) Classical client(x)

Initialize |g) = |1y D x) = X"0Z%0|x) Lo D x
Compute |p1) = TTC |Yo) = (PH11X™1Z251TTC, |x)
L :
!y = Zb1Pr1,1|¢1> : Oblivious phase correction :
— ! g

| Dual-Regev encryption |
Compute [1,) = TTC, Y1) = (PN &&=z ¢ i X)

1Y¥2) : :
, | Oblivious phase correction '
W3) = ZP2P"21|3h,) : :
( L
( L
 J L

Compute |y, = X"t Z5¢C,TTC,_1 ... TTCy|x)
= X" Z5%|Q(x)) = |r D Q(x)) e ® Qo)

Sample r « {0,1}"

Initialize = Enc(r,0™)

(ylr dl)

—_

Decrypt 1 and recover Q(x)



Quantum server Q = (C)(TTC,_y) ... (TTC,)(TTC,) Classical client(x)

Initialize |y) = |1y D x) = X0 Z%|x) o DX, <

Compute 1) = TTC o) = (PT) 11X Z1TTCy |x)

by

_

|
|

lp1) = Zb1pTafy,) : Oblivious phase correction
|

«—

Compute [,) = TTC, 1) = (PTY =2z C 1T %)

| Dual-Regev encryption |

1P2) :
, | Oblivious phase correction
W3) = ZP2PT21[1),) :
( L
( L
 J L

Compute |y, = X"t Z5¢C,TTC,_1 ... TTCy|x)
= X"t Z5|0(x)) = |, ® Q(x)) Te D QX),

v

Sample r « {0,1}"

Initialize Enc(ry, sg) = Enc(r, 0™)

(ylr dl)

—_

Decrypt 1 and recover Q(x)



Quantum server Q = (C)(TTCi_;) ... (TTCHH(TTCy)
QFHE ciphertext

Initialize |y) = |1y B x) = X0 Z50|x) o DX, @nc(ro), ]?nc(t_d)

Compute |[Y,) = TTC{|[Yo) = (P X1 Z51TTC, |x)

Enc(ry, S1)
B b
!y = Zblprl,i@ i Oblivious phase correction i (yl—’dE)ErL(Ed)EnC(bl)
Compute |1,) = TTC,|y1) = (PT) 21 X2Z252TTC, TTC,|x) \ En;;(TZrSZ)
B S  Enc(rza) -
Ly = ZbZPri'1|_l/J2> i Oblivious phase correction i (yz_,dg)ErL(‘Ed)Enc(bz)
) ° \ N !

() ] ¢
Evaluated ciphertext
Compute |,) = X"t Z5¢C,TTC,_ ...TTCy|x) - /
1 D Q(x),Enc(r,)
>

= X"tZ5|Q(x)) = |y D Q(x))




Part 4: Proofs of Quantumness and
Verifiable Delegation



CHSH (Clauser, Horne, Shimony, Holt) Game

Alice

A

N\«

Because Bob has no information
about Alice’s question, any

strategy is stuck at %

lll\.—y VVIIIIIWWU_J\II\.)’

No communication \ ,
c oy
/—v\

One strategy: alwaysseta =b =0

Wins with probability %

Is this optimal?

. * 3
Yes: “Classical value” of CHSH is wcpysy = "

Fix any deterministic Alice strategy f,(x)

Case 1: Case 2:
Winning condition f,(0) =f,(1) f,(0) #f, (1)
fe(0) = fa(x) 1 72
fe(1) =x D fa(x) 72 1

Win probability: % Y4




CHSH with guantum entangled strategies

Alice Bob
m Can they do better than %?
o f\/\—/\/v\ — What is the “quantum value”
A No communication wepysy of CHSH?
X Y
a b

Sample x,y « {0,1}

P

Theywinifa@ b=xAy



CHSH with guantum entangled strategies

Start with an EPR pair: 10)
100410} + [1)4l1)g = [H)al+)s + [—)al )5

J\/\f\/\f\/@\ Bob’s view:
N A +

Sample x,y « {0,1}
Theywinifa@ b=xAy

Alice: if x = 0, measure in the Hadamard basis (X)
if x = 1, measure in the standard basis (Z)
let a be the bit measured

1)



CHSH with guantum entangled strategies

Start with an EPR pair:
[0)410)p + [1)4l1)5 = [+)al+)p + [)al )5

Alice Bob

g

Sample x,y « {0,1}

Bob’s view:

Theywinifa@ b=xAy

Alice: if x = 0, measure in the Hadamard basis (X)
if x = 1, measure in the standard basis (Z)
let a be the bit measured

Bob: if y = 0, measure in the X + Z basis
if y = 1, measure in the X — Z basis
let b be the bit measured

a=20
0
b=0 19 b=1
x =1
y=<O0 5 1
X+ 7Z X —7
|+>x=0 x=0|_>
X
y =1 y<0
b=0 *1l bh=1
11)
a=1



CHSH with guantum entangled strategies

Start with an EPR pair: 10)
100410} + [1)4l1)g = [H)al+)s + [—)al )5

Alice Bob

J\/\/\/\f\/@\ Bob’s view:
N A .-

Sample x,y « {0,1}

Theywinifa@ b=xAy

Alice: if x = 0, measure in the Hadamard basis (X)
if x = 1, measure in the standard basis (Z)
let a be the bit measured

Bob: if y = 0, measure in the X + Z basis 11)
if y = 1, measure in the X — Z basis -
let b be the bit measured Example:x = 0,a =0,y =0 — winwhenb =0 — Pr COSZ(E) ~ 0.85



CHSH with guantum entangled strategies

Start with an EPR pair: |0)

[0)410)p + [1)4l1)5 = [+)al+)p + [)al )5

Alice Bob

J\/\/\/\f\/@\ Bob’s view:
N A »

Sample x,y « {0,1}

Theywinifa@ b=xAy

Alice: if x = 0, measure in the Hadamard basis (X)
if x = 1, measure in the standard basis (Z)
let a be the bit measured

Bob: if y = 0, measure in the X + Z basis 11)
if y = 1, measure in the X — Z basis _
let b be the bit measured Example:x =1,a =0,y =1 - winwhenb =1 —Pr COSZ(E) ~ 0.85



CHSH with guantum entangled strategies

Start with an EPR pair:

[0)410)p + [1)4l1)5 = [+)al+)p + [)al )5

G-

N A

Sample x,y « {0,1}
Theywinifa@ b=xAy

In any case, they win with probability
~ (0.85 > wCHSH!

Tsirelson [80]: wepysy = cos” (8

Bob’s view:

a=20
10)

x 1

A y=1

) ~ 0.85

1)



From CHSH to proofs of guantumness

CHSH can be considered a “proof of quantumness” under the assumption that there
are two non-communicating provers

But what about the single prover setting?

Quantum prover Classical verifier | Completeness: There is a polynomial-

time quantum prover that causes the
verifier to accept with probability v + €

Soundness: No polynomial-time
l classical prover can cause the verifier to
Shor’s algorithm? accept /reject | accept with probability greater than v



From CHSH to proofs of guantumness

Quantum prover Classical verifier
a=0a=1 X x < {0,1}

x=0: |+) |-) - Oblivious BB84 state preparation q

x=1 [0) |1) 2.

a=20
10)
|+) =)
a=20 a=1

1)



From CHSH to proofs of guantumness

Quantum prover Classical verifier
a=0a=1 X x < {0,1}
x=0: |+) |-) - Oblivious BB84 state preparation q
x=1 [0) |1) 2.
a=20
y y < {0,1}

If y =0, measure X + Z
If y =1, measure X — Z b

Acceptifa@ b =xAy




From CHSH to proofs of guantumness

Quantum prover Classical verifier
a=0a=1 X x < {0,1}
x=0: [+) =) , Oblivious BB84 state preparation 4
x=1: 0) |1) .
a=20
10) Follows from correctness of oblivious

BB84 state preparation and the
— guantum CHSH strategy analysis
If y =0, measure X + Z
If y =1, measure X — Z b

v

Completeness =~ 0.85
Acceptifa@ b =xAy




From CHSH to proofs of guantumness

prover Classical verifier
a=0a=1 X x < {0,1}
x=0: [+) =) , Oblivious BB84 state preparation 4
x=1: 0) |1) e
a=20
10) Follows from correctness of oblivious

BB84 state preparation and the

— guantum CHSH strategy analysis
If y =0, measure X + Z
If y =1, measure X — Z

Follows from security of oblivious BB84
Completeness =~ 0.85 state preparation (prover can’t guess x)
and classical CHSH strategy analysis
Soundness = 0.75




[KCVY21]

[AMMW?22]

From CHSH to proofs of guantumness [ABCC24]
Quantum prover Classical verifier

a=0a=1 X x < {0,1}
x=0: [+) [=) - Oblivious BB84 state preparation 4
x=1: 10) [1) —

a=0
|~
b=0 Can be implemented in two classical
messages using any dTCF y y < {0,1}

A

If y =0, measure X + Z
If y =1, measure X — Z b

Completeness =~ 0.85

Soundness = 0.75

v

Acceptifa@ b =xAy



Generalization: The KLVY Compiler

Non-local game G = (D, V)
Bob

Samplex,y «< D
Winif V(x,y,a,b) =1

Quantum prover Classical verifier

Samplex,y «< D

X
ez Blind delegation of |
U Alice’s strate
~ gy a
y
b

Acceptif V(x,y,a,b) =1



Generalization: The KLVY Compiler

Non-local game G = (D, V) Quantum prover Classical verifier
Samplex,y «< D
Bob Doesn’t know vy P Y
X
AVAVAVAVAS Blind delegation of | ~——
No communication Alice’s strategy a

N\ v

y

[KLVY22] showed: <
A QPT quantum prover can implement
any QPT two-prover strategy for G g

* Any PPT classical prover can win with Doesn’t know x Acceptif V(x,y,a,b) =1
probability at most = wg¢




Verifiable Delegation

* We already had (very simple) proofs of quantumness using the CHSH game, so
what was the point of this generalization?

* One reason: can we go beyond proofs of qguantumness to classical verification of
quantum computation?

Quantum prover  (Q,Xx)  Classical verifier

Completeness: if prover is
honest, output Q (x)

Soundness: no QPT
malicious prover can force
l an output of 1 — Q(x)
(0,1, L}



Verifiable Delegation

* [RUV13], ..., [Gril7], ...: Given any BQP computation Q(x), there exists a non-local
game (G and € = 1/poly such that:
* IfQ(x) =0,thenw; > v +e¢€
c IfQ(x) =1,thenw; < v

* For proofs of quantumness, we only needed the fact that KLVY preserves the
classical value w of the game, since we only care about soundness against
classical provers

* For verifiable delegation, we need soundness against quantum provers, and thus
have to think about whether the KLVY compiler preserves the quantum value w¢;



Back to the compiled CHSH game

Quantum prover Classical verifier
a=0a=1 X x < {0,1}
x=0: [+) |-) ' Oblivious BB84 state preparation .
x=1: 0) |1) s
a=20 “Rigidity”: In order to achieve Verifier can test that the prover is
10) 0.85, the prover’s measurements applying (rotated) standard and
b=0 b=1 must be at a maximum angle y Hadamard basis measurements
< VAR GRS
+) If y =0, measure X + Z
q=0 Zq If y =1, measure X — Z b :
Can a malicious quantum prover do
b= b=1 any better than 0.85? Acceptifa@® b=xAy

a= [BGKPV23, NZ23]: No!



Verifiable delegation

How do the [RUV13],[Gri1l7] non-local games work?

* |Ingredient #1: Circuit-to-Hamiltonian
* Q,x > Hyp, = X; H;, where each H; contains only X or Z terms

e If Q(x) =0, 3|Y) s.t. (l/J|HQ,x|l/J> >v+e€
« IfQ(x) =1, V|Y), (Y|Hoxlyp) v

* Ingredient #2: Quantum teleportation 2
—— 1[;



Verifiable delegation

How do the [RUV13],[Gri1l7] non-local games work?

* |Ingredient #1: Circuit-to-Hamiltonian
* Q,x > Hyp, = X; H;, where each H; contains only X or Z terms

e If Q(x) =0, 3|Y) s.t. (l/J|HQ,x|l/J> >v+e€
« IfQ(x) =1, V|Y), (Y|Hoxlyp) v

* Ingredient #2: Quantum teleportation /"
Z AVAVA VYV A"aN X"Z5
N ﬁ )

(] \measure}

|
* Ingredient #3: Rigidity r,Ss



Verifiable delegation: Highly simplified

Non-local game for O, x

w»AN\/V\@

-
X
\\ }i// Either standard or Hadamard
a b .
basis measurements

Sample g < {Hamiltonian, CHSH}

If g =Ham:x =Tel,a = (r,s),y =H;, b = (Y|X"Z°H;Z° X" [y)

accept if average of measurement results = v + € .
Ensures that Bob is honestly

performing the standard and
Hadamard basis measurements

If g = CHSH: play many copies of CHSH game
accept if average win probability = 0.85

Can only win if [y} is a valid witness that Q(x) = 0



Verifiable delegation: Highly simplified

Non-local game for Q. x Quantum prover @, x Classical verifier

sz ) ANV ﬁ Sample g < {Ham, CHSH}
g, -

Blind delegation of | «—

\\ / Alice’s strategy a
Sample g < {Hamiltonian, CHSH} y
If g =Ham:x =Tel,a = (r,s),y =H;, b = (Y|X"Z°H;Z° X" [y)
accept if average of measurement results = v + € b

v

If g = CHSH: play many copies of CHSH game
accept if average win probability ~ 0.85 Key: Doesn’t know which

Can only win if |) is a valid witness that Q(x) = 0 game is being played Will only accept if Q(x) = 0



Recap

Classical-client guantum-
server protocols

Crypto “Bridge”

[ Proofs of qguantumness ]

[ J4TCF ]_{ Oblivious BB84 ] [ Blind Delegation of ]

(e )

State Preparation Quantum Computation

/ |

[ Cryptographic ] [ Verifiable Delegation of]

group actions Quantum Computation
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