Examples of PQC Schemes:
Falcon Sighature Scheme

Pierre-Alain Fouque
Centre Inria de I’'Université de Rennes

Some of these slides were made by Alice Pellet—Mary or Thomas Prest

Sighature scheme

Algorithms:
* KeyGen (n) = (pk, sk)
* Sign(m,sk) = s, Verify(m,s,pk) =yes/no

k
KeyGen (n) = (pk, sk) P . Store pk

Message m; m,s
Sign(m,sk) = s

Verify(m,s,pk) =vyes/no

* Correctness: Verify(m,s,pk) =ves (if Sign(m,sk) = s and KeyGen(n) =(pk,sk))
* Security: an attacker not knowing sk cannot forge valid pairs (m,s)

Falcon signature scheme (FNDSA)

* Falcon signature scheme:
e Hash-and-sign signature
* hard lattice from NTRU assumption with polynomials of degree d=512 / 1024

* Falcon is one of the three post-quantum signature schemes selected to
be standardized by NIST in 2022

* Advantage: Very compact|pk|+]|sig| the shorter among lattice schemes
* Drawback: Signature process requires floating-point

[Falcon] Fouque, Hoffstein, Kirchner, Lyubashevsky, Pornin, Prest, Ricosset, Seiler, Whyte, Zhang. NIST

Falcon’s performances

Post-quantum standards (NIST 2022)
RSA EdDSA | Falcon Dilithium SPHINCS+

Public key size (bytes) | 256 32 897 1312 32
Signature size (bytes) | 256 64 666 2420 17088
Signature time (ps) 665 51 241 208 35584
Verification time (us) 19 142 52 74 2091

Main drawback of post-quantum crypto is the size of the signature
and public-key (1 KB)

Lattice-based Hash-and-Sign
signature

Finding a close vector using a short basis

¢ |npUtZ X=3.7b1'1.4b2
e o o o o e * Goal: find s € L close to x
R . /5. . . . * Algo: round each coordinate
® ° b%‘ E ®

Finding a close vector using a short basis

* Input: x=3.7b,-1.4b,

* Goal: find s€L close to x

* Algo: round each coordinate
* Qutput: s =4b4-1b,

 The smaller the basis, the closer
the solution

* Babai’s round-off algorithm

Finding a close vector using a short basis

* Input: x = 3.7b;-1.4b,

* Goal: find s € L close to x

* Algo: round each coordinate
* Qutput: s =4b;-1b,

* The smaller the basis, the closer
the solution

* Babai’s round-off algorithm
* Area={x,b;+x,b,: | x| <1/2}

Hash-and-sign: first idea [GGH97]

s - == - . = > * KeyGen:
o ° o o ° . * pk = bad basis of L (HNF basis)
o ®(m)® . = . * sk =short basis of L
m
[[- ° ® ° ° ° Sign(m;Sk):

e x = H(m) hash the message
e output s € L close to H(m)

[GGH97] Goldreich, Goldwasser, Halevi: Public-key cryptosystems from lattice reduction problems. CRYPTO

Hash-and-sign: first idea [GGH97]

e s e e . e KeyGen:
o ° ° o o ‘ * pk = bad basis of L (HNF basis)
N ®/(m) H . : . * sk = short basis of L
m
. . . - . e Sign(m,sk):

e x = H(m) hash the message
e output s € L close to H(m)
 Verify(m,s,pk):
e Check thats € L
PY PY PY PY P P * Check that H(m)-S is small

[GGH97] Goldreich, Goldwasser, Halevi: Public-key cryptosystems from lattice reduction problems. CRYPTO

Parallelepided attack [NR0O6]

e o o o e e * Parallelepided Attack:
® » ® @ o 1 e Ask for a signature s on m
® o @ o @ o
X
&
@ o [o o @®
[] @ ® q
bV
® ® b2 @ [®
® o [o o o
[} ® @® ® L |
o ® J ® [®

[NRO6] Nguyen and Regev. Learning a parallelepided: Cryptanalysis of GGH and NTRU signatures. J. of Cryptology

Parallelepided attack [NR0O6]

R B
T
~

. J

[NRO6] Nguyen and Regev. Learning a parallelepided: Cryptanalysis of GGH and NTRU signatures. J. of Cryptology

Parallelepided attack [NR0O6]

' * Parallelepided Attack:
/)/// e Ask for a signature s on m
e o 167 | .

* Plot H(m)-s

[NRO6] Nguyen and Regev. Learning a parallelepided: Cryptanalysis of GGH and NTRU signatures. J. of Cryptology

Parallelepided attack [NR0O6]

~

* Parallelepided Attack:

e Ask for a signature s on m
* Plot H(m)-s
* Repeat

o
N
3

TR
RS
.

\

[NRO6] Nguyen and Regev. Learning a parallelepided: Cryptanalysis of GGH and NTRU signatures. J. of Cryptology

Parallelepided attack [NRO6]

: : v o * Parallelepided Attack:
| //// ! * Ask for a signature s on m

* Plot H(m)-s
* Repeat

parallelepided, one can recover

the short basis

[NRO6] Nguyen and Regev. Learning a parallelepided: Cryptanalysis of GGH and NTRU signatures. J. of Cryptology

Preventing the attack [GPV0S]
7 T T T T * Idea: do not decode
// ! deterministically but randomly

o

’ o L L J
\.

J

[GPVO08] Gentry, Peikert,Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. STOC

Preventing the attack [GPV0S]

[. o o o o o \
* |dea: do not decode
® ® ® ® o q e . .
deterministically but randomly
° !;/ ® | ° . ° ° °
: @ |
= e o e e * Sign(m,sk):
® . o5 e o) e x = H(m) hash the message
o o o o o o * Sample s € LNB,(x) (small radius r)
o o o o o o
o o o o o (|
o o o o ® o

[GPVO08] Gentry, Peikert,Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. STOC

Preventing the attack [GPV0S]

[. o o ® ® o .
* |dea: do not decode
o o o o o | _ .
deterministically but randomly
® & s ° ° °
! @ |
®) T e) °® ® .
N * Sign(m,sk):
s = 2 s . ‘ * x = H(m) hash the message
o o o o o o * Sample s € LNB,(x) (small radius r)
° /6/1_ H\\ ° ° °
4 ® ; o] |
° \\\ ® Q/f ° °)
N e = J

[GPVO08] Gentry, Peikert,Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. STOC

Preventing the attack [GPV0S]

[. ® [] [[[i
* |dea: do not decode
® ® ® o ® .. .
deterministically but randomly
@® ® ® o o ®
® @ @] ® ®
e o o o o Sign(m,sk):
/ . e x = H(m) hash the message
® ® o/ ? @S ® :
o H(m)e * Sample s € LNB,(x) (small radius r)
® 0 o\\\\ ° o / o
6‘/ ° \0\\\—0// ® ‘
e o /9// B e &

[GPVO08] Gentry, Peikert,Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. STOC

Preventing the attack [GPV0S]

~
J

* |dea: do not decode

@ o ® @® ® ® o .
deterministically but randomly
[® ® @ ® q
[J ® ® @ J o
[o o o o ® ¢ Slgn(mISk):
. e x = H(m) hash the message
* Sample s€LMNB,(x) (small radius r)
A T How can we sample lattice point
@ ® ® ® q .
' around the point x ?
e . e /Q/ #® ® ®

[GPVO08] Gentry, Peikert,Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. STOC

NTRU Scheme

NTRU [HPS98]

* Parameters:
e g prime and large (e.g. g=16411)
 CKVqginteger (e.g. C=5)
* NTRU instance:
e Sample f,g random integers in [-C,C] (e.g. f=-2, g=3)
* Return h=g/f mod q (e.g. h=-5471 mod 16411)

* NTRU Assumption: given h, there is no efficient algorithm that can
finduandvs.t. |ul,|v|<Cand h=u/v mod g

* Careful: for integer it is easy, replace them by polynomials and
compute in Z [X]/(X"d+1) for d a power of 2

[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS

NTRU Cryptosystem

* =128 and p=3: p is small and g security parameter (not too large !)
* R=Z,[X]/(x%+1) where d is a power of 2

sk: (f, gz ER, are polynomials with small coefficients s.t. fis invertible mod p
and q, (f= 1+pf’)

* pk: h=pg/finR,
* Encryption: c=m+hr where m,reR, with small L2-norm (OTP hr = U(Z,))

* Decryption:
e Compute M =fc mod g=mf+rpg mod g
* Asm, f, r and g are short, the equation is true over the Z: M = mf+rpg
e Compute M mod p=m

The secret key is composed of f only

Hard lattice from N

'RU assumption

* NTRU Assumption: given h, there is no efficient algorithm that can
finduandvs.t. |ul,|v|<Cand h=u/v mod q

* How do we get a hard lattice

from this ?

* Let h=f/g mod g an NTRU instance.

. Property:
(h q) and L, = E(Bh) (spanned by the columns of By) (U,V)TE Lh iff h=V/U (mOd q)
A Finding a short vector in B,
° (0..@) & 8 o o & & ° o o 8 o o o == SOIVing NTRU [C597]

NTRU Assumption = no
adversary can compute a
short basis

NTRU: wrapping up

* We have seen: under the , We can generate

e Sample f, g polynomials with short coefficients in [-C,C]
« Compute h=f/g mod (q,X%+1)
* Return L, spanned by the vectors (1,h)" and (0,q)"

* L, has dimension 2, but coefficients are polynomials

* |If we write them in some basis (1,X,...,X41) the matrice is of dimension
d and for g and 1, they become gld and Id: Module case (rank=2)

* The dimension of the lattice is 2d (1024 and 2048) for d=512 / 1024

Falcon scheme
From [DLP14] to Falcon

e KeyGen(): (pk=A, sk=B)

1. BA=0 Two improvements:
2. B has small coefficients ° Key Generation [PP19]
* Sign(m,sk=B): e Gaussian Sampler [DP16]

1. Compute cs.t. cA=H(m)
2. VEL(B)closetoc
3. S=C-V
 Verify(m,s,pk):
* sisshort
* sSA=H(m) (exists u s.t. v=uB; sA=(c-v)A=cA-vA=cA-uBA=cA=H(m))

[DLP14] Ducas, Lyubashevsky, Prest. Efficient Identity-Based Encryption over NTRU Lattices. ASIACRYPT 2014
[DP16] Fast Fourier Orthogonalization. ISSAC 2016
[PP19] Pornin, Prest. More Efficient Algorithms for NTRU Key Generation. PKC 2019

Key Generation

Key Generation B =

()|0q

* Given A=[1,h], find B short s.t. BA'=0 mod (X9+1,q)
» Half of the basis: B=[f,-g] satisfies [f,-g][1,h]"=f-gh=0 as h=f/g
* Full Trapdoor problem:
e Given f,g€Z[X]/(X4+1), find F,G €Z[X]/(X9+1) s.t. fG-gF=q mod (X9+1) det(B)=q
* Previous techniques: Resultants, HNF, ... O(n3) time and O(n?) space

* Tower of Rings: Z€Z[X]/(X?+1) €... C€Z[X]/(X92+1) < Z[X]/(X+1)
* Field norm: navigate along this tower: Q =Q[X]/(X%+1)
N:Qy=Qq,
f>ffx, where *(x)=f(-x)

Algorithm for solving NTRU equation

Problem: Given f,g € Z[x]/(x? + 1), ind F, G € Z[x]/(x? + 1) such that:

f-G-g-F=q

If we can solve the problem projected over Z;,,, i.e.:

Nz, z,,(f)-G —Nz,/z,,8) F=1

for some F’, G, then we have this relationship over Z;:

f-(fG)—g-(g"F) =1

Recursive Algorithm

From f to N(f): the coefficients

Z4 O f.g Of N(f) are twice larger, but the
A l degree is half
Zd/z > NZd/Zd/z (F), NZd/Zd/z (8) _
A ! At the bottom of the recursion,
AV NZd/Zd/4(f)7 de/zd/4 (9) wg solve the equatlo.n.over /
A ! with very large coefficients
' ' : Then, we go up the tower
Ut l

Z > Nz,/z(f),Nz,/z(8) — F, GH

Recursive g |go rithm Gain: x100 in memory (3MB => 30KB)
Gain: x100 in time (2s => 20ms)

Algorithm 1 TowerSolverR, 4(f, g)

Require: f,g € Z[x]/(x" + 1) with n a power of two
Ensure: Polynomials F, G such that the equation 1 is verified

1

2:

0:
10:
11:

12

@ XN o - AW

. return (F,G)

. if n = 1 then

Compute u,v € Z such that uf —vg =1
(F,G) « (v,u)
return (F,G)

else
F« N(f) > .9, F,G € Z[x/(X"? + 1)
g’ « N(g)

(F,G) «+ TowerSolverR, /2 4 (f,9)
F— g% (OF (7) > F,G € ZIx/(x" + 1)

G + X (x)G'(x?)

Reduce (F, G) with respect to (1.8) | attice reduction step

If1I(f,g)ll.. <C=20, lI(F,G)Il.. <120

Extended Euclidean
Algorithm over Z

Recursive Call: go down
in the tower

Go up in the tower

Gaussian Sampling algorithms

Closest vector problem: 2 algorithms

Round-Off Algorithm: Nearest Plane Algorithm:?
DtcB? DtcB?
@) z |t] @) Forj =ndownto 1:
B T RN CEU R

€ Outputv«z-B @) 7 (4]

9 Outputv«+ z-B

Output

,,,,,, :’,,,’,"i\,;.::,,,,,

1Requires precomputing the Gram-Schmidt orthogonalisation (GSO) of B: -

Gaussian Sampling ~ GvenBe2aandt e & computez € 23 such that
[(z —t) - B is small.

Algorithm 3 Kleing . (t)

~

Require: ¢ > 7n.(Z") - ||B||cs, the Gram-Schmidt orthogonalization B = L - B, the
values o; = o/||b;|| and a target t
Ensure: A vector z such that zB <— Dy (g),0.t8
forj=n,...,1do
¢j <t + > s, (85 — 25) Lij
Zj DZ,aj,cj
return z

3 algorithmic techniques:

 Randomized nearest plane [Bab85, GPV08]: High quality, O((nd)?) operations
* Randomized round-off [Bab85, Peil0]: Lower quality, O(n*d log d) operations
* Fast Fourier orthogonalization [DP16]: High quality, O(n?dlog d) operations

Fast Fourier Orthogonalization [DP16]

Consider the simplified case where we want this to be small:
(z—t)-b
Using the ring isomorphism Q, = (Qd/z)z, this is equivalent to:

be | b
rete 2t] []

p - -

Why this is nice:
»+ We can orthogonalize the second row of B w.r.t. to the first one:

» We can apply this “break and orthogonalize” trick recursively.

GSO B = LB’ is equivalent to
BB* =LB'B’*L*
Recursive strategy O(dlog?d)

Working in the FFT domain

reduces the complexity to
O(d log d)

Security |

1. o too large => K

Rényi divergence is more efficient than SD/KLD,
P 17] interesting when q is smaller

ein does not solve a hard problem and it is useless in crypto

2. 0 too small => Klein does not behave like a perfect Gaussian oracle

- Hardness
—— SD [GPVO08, DN12]
—— KLD [DLP14]

RD

RD (g < 2%)

\\ Gain 30 bits of security

q

N
>

A

[DN12] Faster Gaussian Lattice Sampling Using Lazy Floating-Point Arithmetic. ASIACRYPT 2012
[P17] Prest. Sharper Bounds in Lattice-Based Cryptography Using the Rénui Divergence. ASIACRYPT 2017

Pros and cons of Falcon

* Falcon signature:

* Post-quantum security
* Fast (comparable to RSA / EADSA)
* Relatively compact (about 3 times RSA, 15 times EdDSA)

e But there are still important open question and many improvements

* Requires floating point
* Not all devices have floating-point units

* Difficult to mask
e Can be subject to SCA
* See Raccoon if you want a masking-friendly signature scheme

* Antrag and Mitaka avoid FFO and simpler sampler without floating

[Raccoon] del Pino, Katsumata, Maller, Mouhartem, Prest, Rossi, Saarinen. Technical report, NIST
[Mitaka] Espitau, F, Gerard, Rossi, Takahashi, Tibouchi, Wallet, Yu, EUROCRYPT 2022
[Anrtag] Espitau, Nguyen, Sun, Tibouchi, Wallet. ASIACRYPT 2023

Conclusion

« FALCON: Fast Fourier lattice-based compact signatures over NTRU
» Other uses of Falcon: IBE scheme

» Careful use of tower of subrings in Z[X]/(X9+1)
» Other use: LLL over Z,[X]/(X9+1) [KEF20]

» Security Results: NTRUSIgn based on R-SIS [SS11]

* Interesting results show connection between the NTRU Assumption
and hard lattice problems [PS21, FPS22]

[KEF20] Kichner, Espitau, Fouque. Fast Reduction of Algebraic Lattices over Cyclotomic Fields, CRYPTO 2020
[SS11] Stehlé, Steinfeld. Making NTRU NTRUEncrypt and NTRUSign as Secure as Standard Worst-Case Problems
Over Ideal Lattices.EUROCRYPT 2011

[PS21] Pellet—Mary, Stehlé. On the hardness of the NTRU Problem, ASIACRYPT 2021

[FPS22] Felderhoff, Pellet—Mary, Stehlé, On Module Unique-SVP and NTRU, ASIACRYPT 22

	Slide 1: Examples of PQC Schemes: Falcon Signature Scheme
	Slide 2: Signature scheme
	Slide 3: Falcon signature scheme (FNDSA)
	Slide 4: Falcon’s performances
	Slide 5: Lattice-based Hash-and-Sign signature
	Slide 6: Finding a close vector using a short basis
	Slide 7: Finding a close vector using a short basis
	Slide 8: Finding a close vector using a short basis
	Slide 9: Hash-and-sign: first idea [GGH97]
	Slide 10: Hash-and-sign: first idea [GGH97]
	Slide 11: Parallelepided attack [NR06]
	Slide 12: Parallelepided attack [NR06]
	Slide 13: Parallelepided attack [NR06]
	Slide 14: Parallelepided attack [NR06]
	Slide 15: Parallelepided attack [NR06]
	Slide 16: Preventing the attack [GPV08]
	Slide 17: Preventing the attack [GPV08]
	Slide 18: Preventing the attack [GPV08]
	Slide 19: Preventing the attack [GPV08]
	Slide 20: Preventing the attack [GPV08]
	Slide 21: NTRU Scheme
	Slide 22: NTRU [HPS98]
	Slide 23: NTRU Cryptosystem
	Slide 24: Hard lattice from NTRU assumption
	Slide 25: NTRU: wrapping up
	Slide 26: Falcon scheme
	Slide 27: Key Generation
	Slide 28: Key Generation
	Slide 29: Algorithm for solving NTRU equation
	Slide 30: Recursive Algorithm
	Slide 31: Recursive algorithm
	Slide 32: Gaussian Sampling algorithms
	Slide 33: Closest vector problem: 2 algorithms
	Slide 34: Gaussian Sampling
	Slide 35: Fast Fourier Orthogonalization [DP16]
	Slide 36: Security [P17]
	Slide 37: Pros and cons of Falcon
	Slide 38: Conclusion

