

Examples of PQC Schemes: Falcon Signature Scheme

Pierre-Alain Fouque

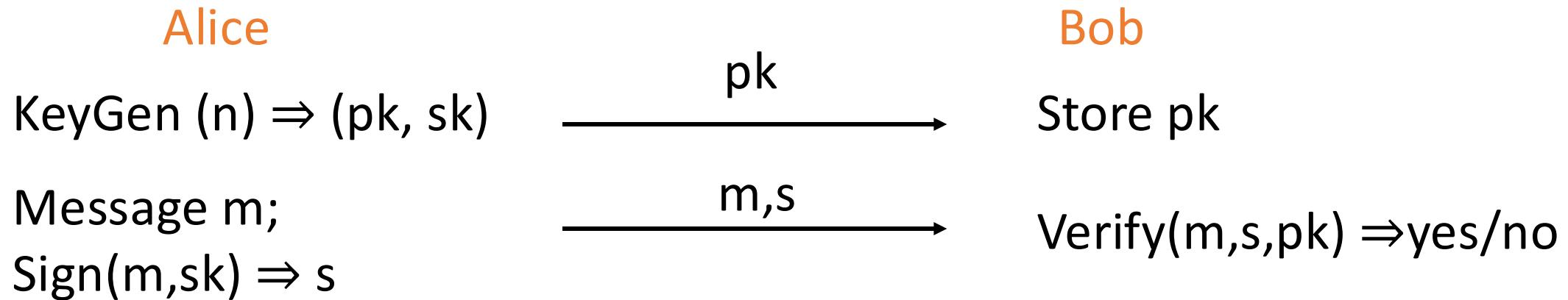
Centre Inria de l'Université de Rennes

Some of these slides were made by Alice Pellet—Mary or Thomas Prest

Signature scheme

Algorithms:

- $\text{KeyGen}(n) \Rightarrow (pk, sk)$
- $\text{Sign}(m, sk) \Rightarrow s, \text{Verify}(m, s, pk) \Rightarrow \text{yes/no}$



- **Correctness:** $\text{Verify}(m, s, pk) \Rightarrow \text{yes}$ (if $\text{Sign}(m, sk) \Rightarrow s$ and $\text{KeyGen}(n) \Rightarrow (pk, sk)$)
- **Security:** an attacker not knowing sk cannot forge valid pairs (m, s)

Falcon signature scheme (FNDSA)

- Falcon signature scheme:
 - Hash-and-sign signature
 - hard lattice from NTRU assumption with polynomials of degree $d=512 / 1024$
- Falcon is one of the three post-quantum signature schemes selected to be standardized by NIST in 2022
- Advantage: Very compact $|pk| + |sig|$ the shorter among lattice schemes
- Drawback: Signature process requires floating-point

Falcon's performances

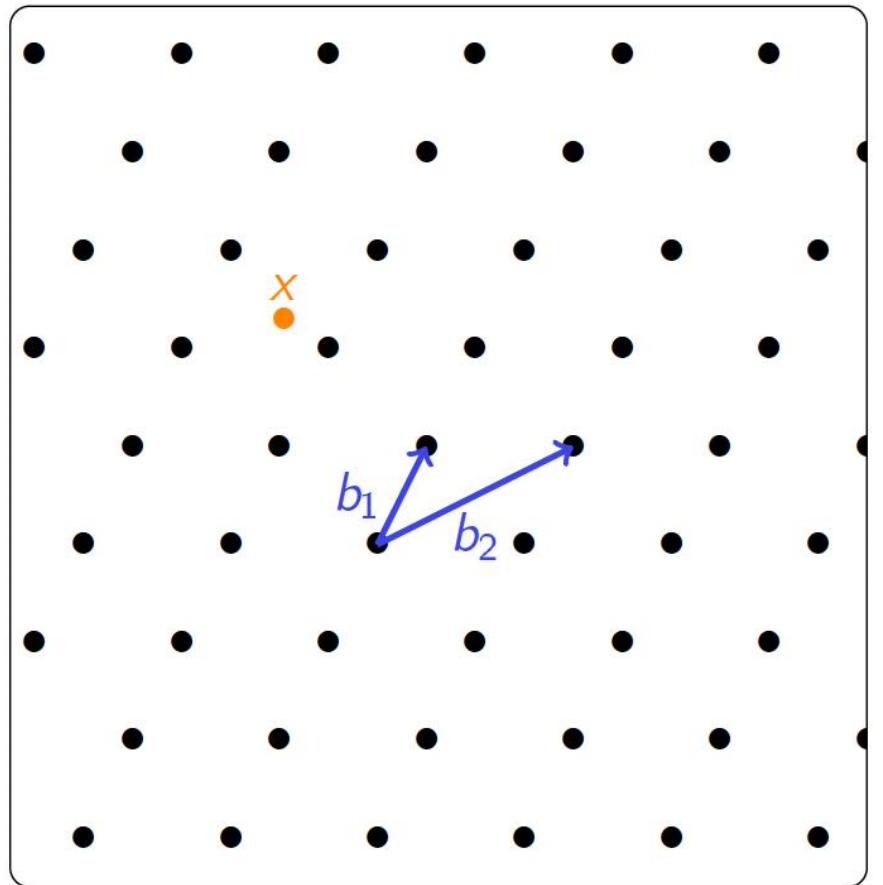
	RSA	EdDSA	Post-quantum standards (NIST 2022)		
	Falcon		Dilithium	SPHINCS+	
Public key size (bytes)	256	32	897	1312	32
Signature size (bytes)	256	64	666	2420	17088
Signature time (μ s)	665	51	241	208	35584
Verification time (μ s)	19	142	52	74	2091

Main drawback of post-quantum crypto is the size of the signature and public-key (1 KB)

Lattice-based Hash-and-Sign signature

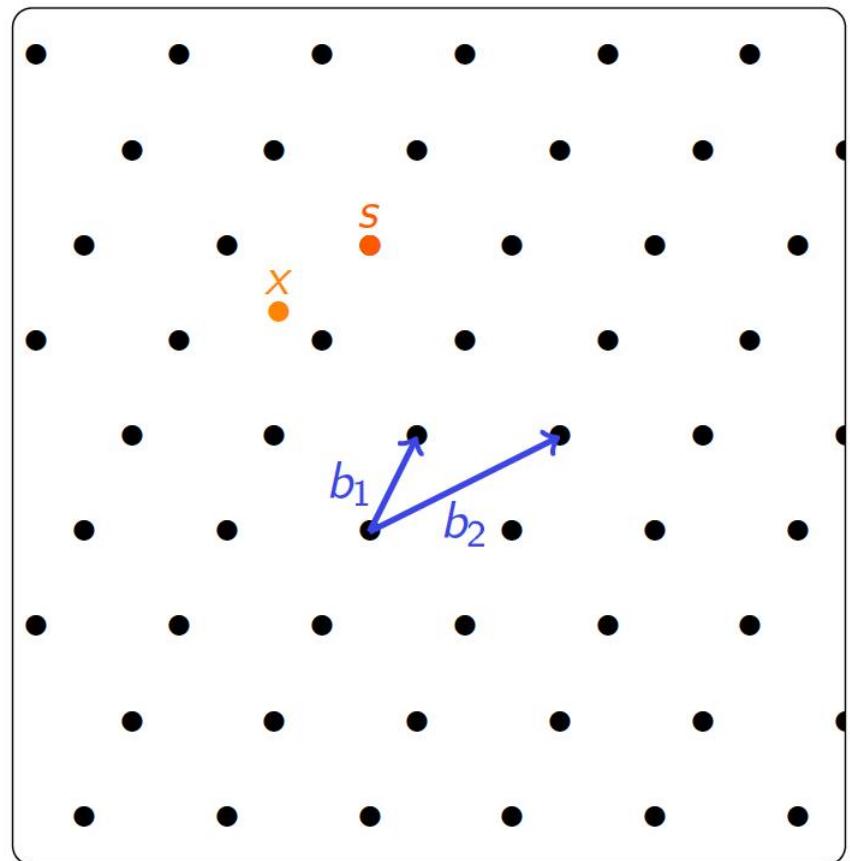
From GGH to GPV

Finding a close vector using a short basis



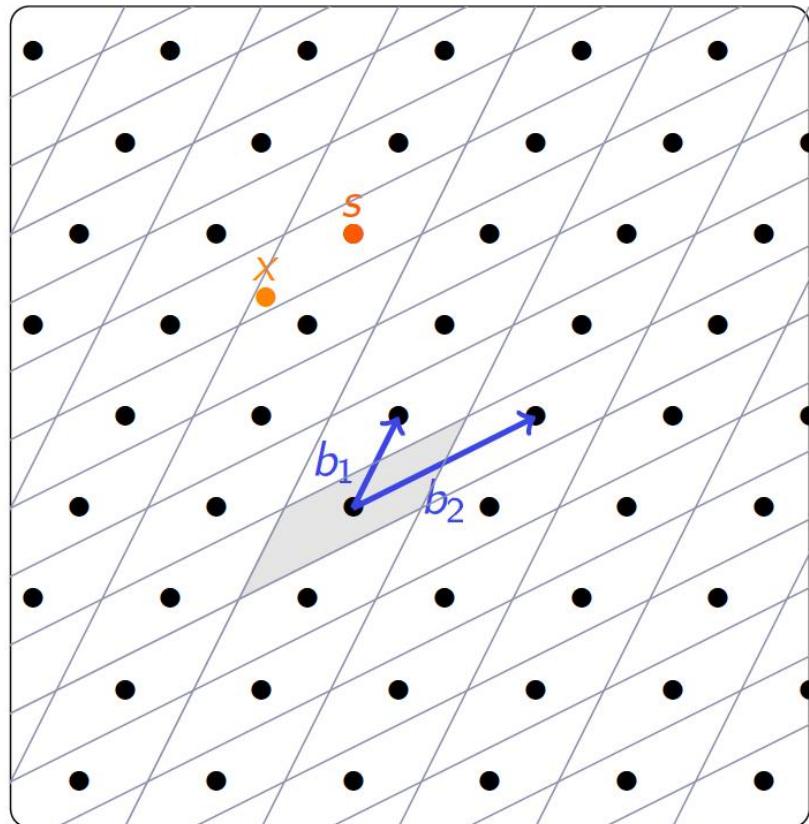
- **Input:** $x=3.7b_1-1.4b_2$
- **Goal:** find $s \in L$ close to x
- **Algo:** round each coordinate

Finding a close vector using a short basis



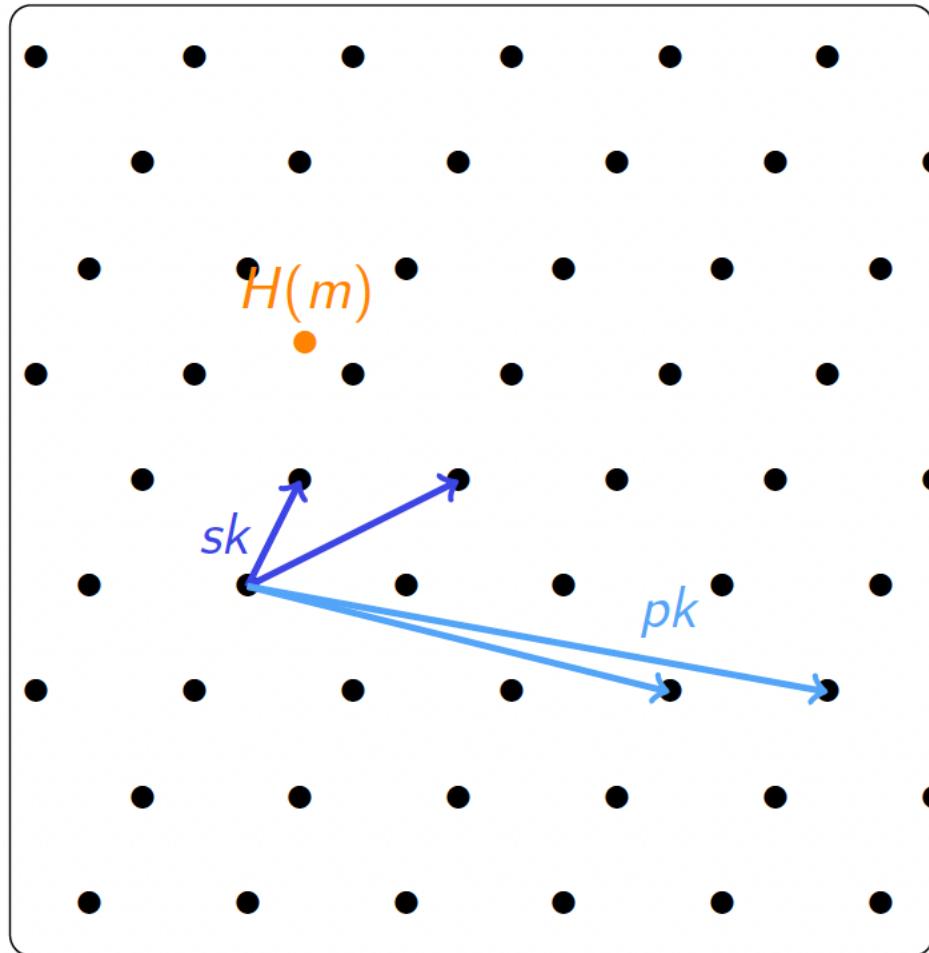
- **Input:** $x = 3.7b_1 - 1.4b_2$
- **Goal:** find $s \in L$ close to x
- **Algo:** round each coordinate
- **Output:** $s = 4b_1 - 1b_2$
- The smaller the basis, the closer the solution
- Babai's round-off algorithm

Finding a close vector using a short basis



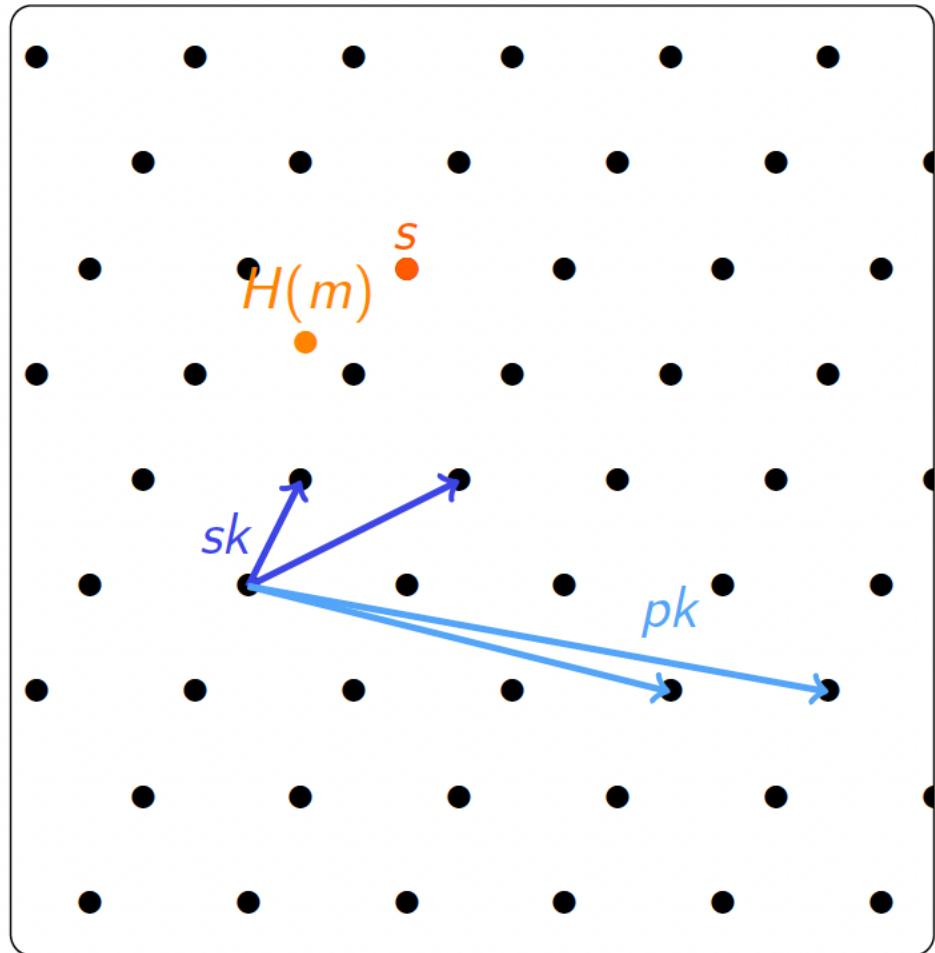
- **Input:** $x = 3.7b_1 - 1.4b_2$
- **Goal:** find $s \in L$ close to x
- **Algo:** round each coordinate
- **Output:** $s = 4b_1 - 1b_2$
- The smaller the basis, the closer the solution
- Babai's round-off algorithm
- $\text{Area} = \{x_1 b_1 + x_2 b_2 : |x_i| \leq 1/2\}$

Hash-and-sign: first idea [GGH97]



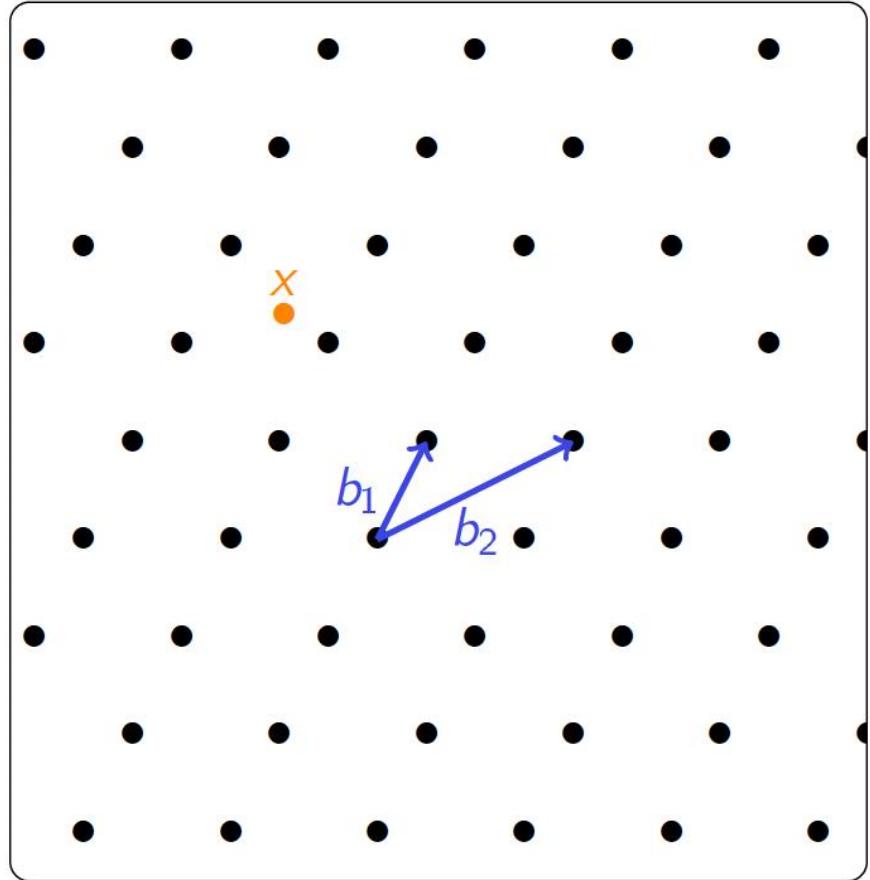
- **KeyGen:**
 - pk = bad basis of L (HNF basis)
 - sk = short basis of L
- **Sign(m, sk):**
 - $x = H(m)$ hash the message
 - output $s \in L$ close to $H(m)$

Hash-and-sign: first idea [GGH97]



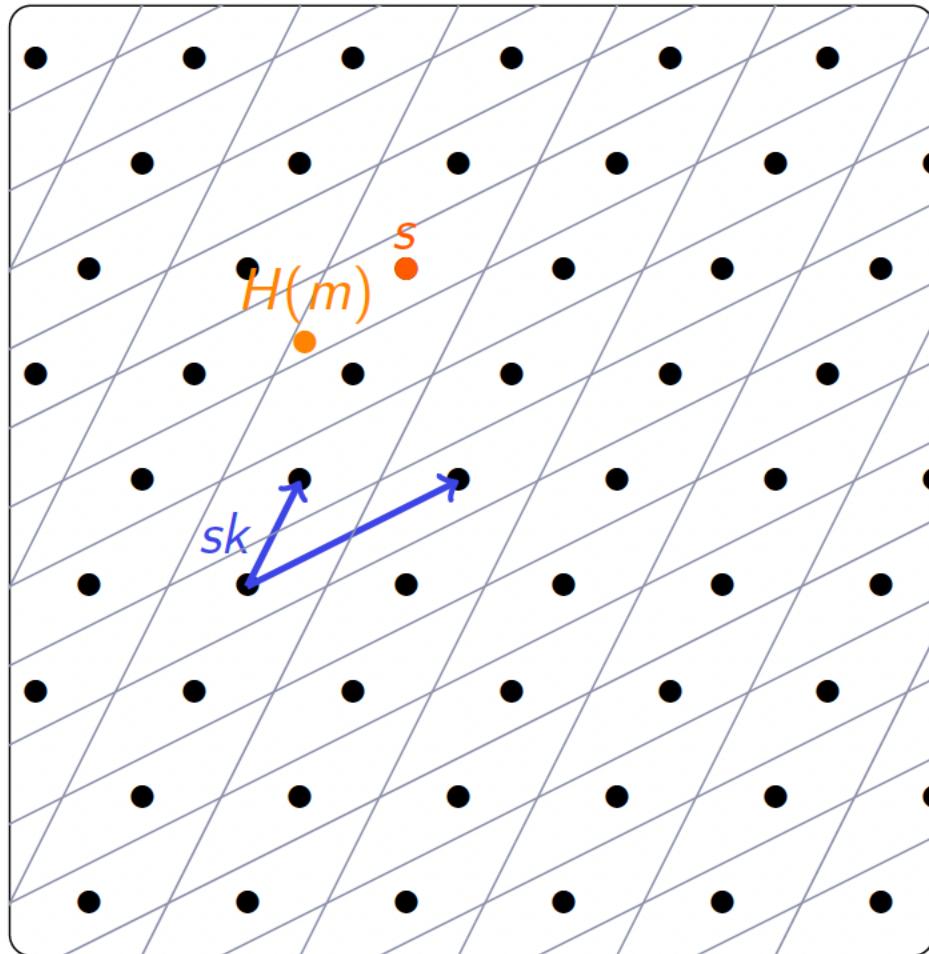
- **KeyGen:**
 - pk = bad basis of L (HNF basis)
 - sk = short basis of L
- **Sign(m, sk):**
 - $x = H(m)$ hash the message
 - output $s \in L$ close to $H(m)$
- **Verify(m, s, pk):**
 - Check that $s \in L$
 - Check that $H(m) - s$ is small

Parallelepiped attack [NR06]



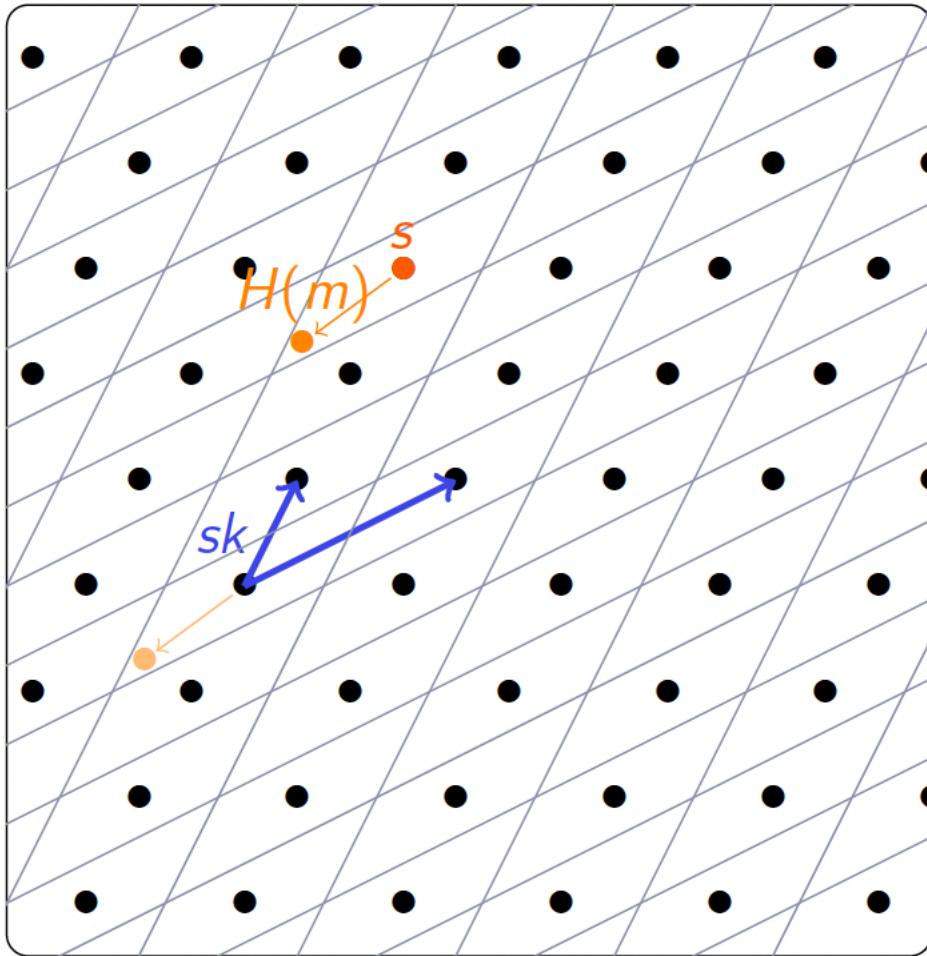
- Parallelepiped Attack:
 - Ask for a signature s on m

Parallelepiped attack [NR06]



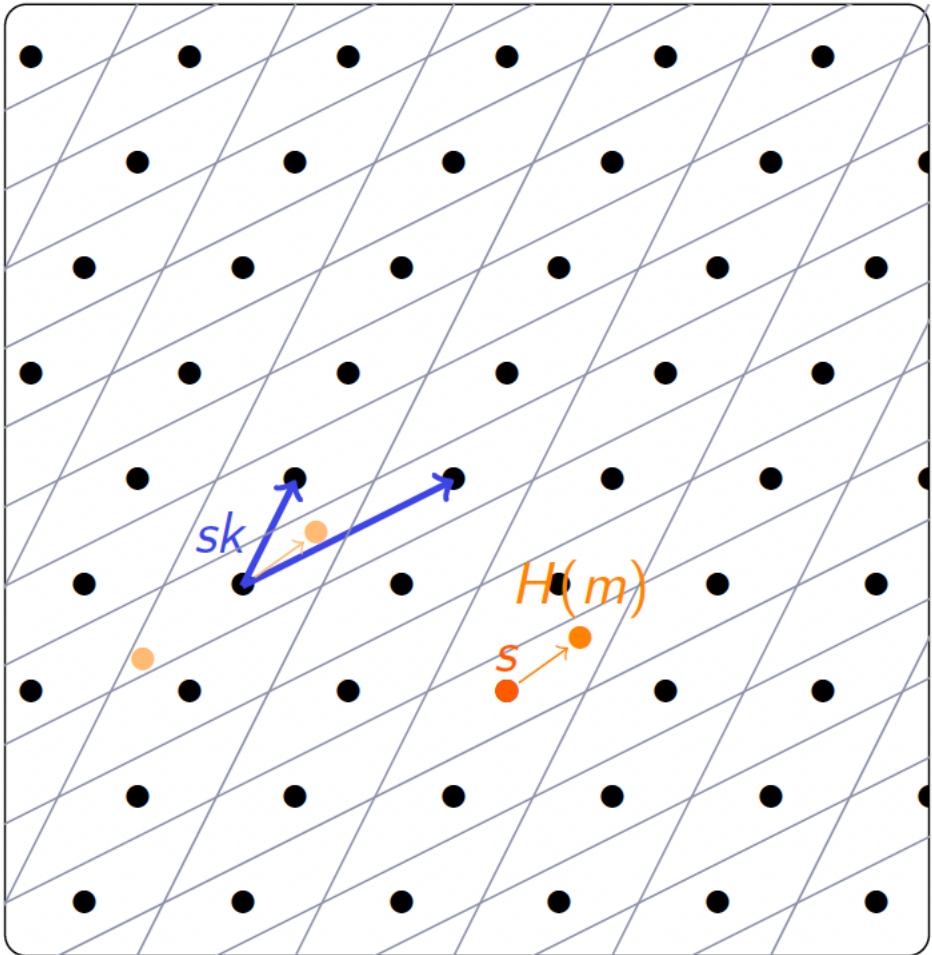
- Parallelepiped Attack:
 - Ask for a signature s on m

Parallelepiped attack [NR06]



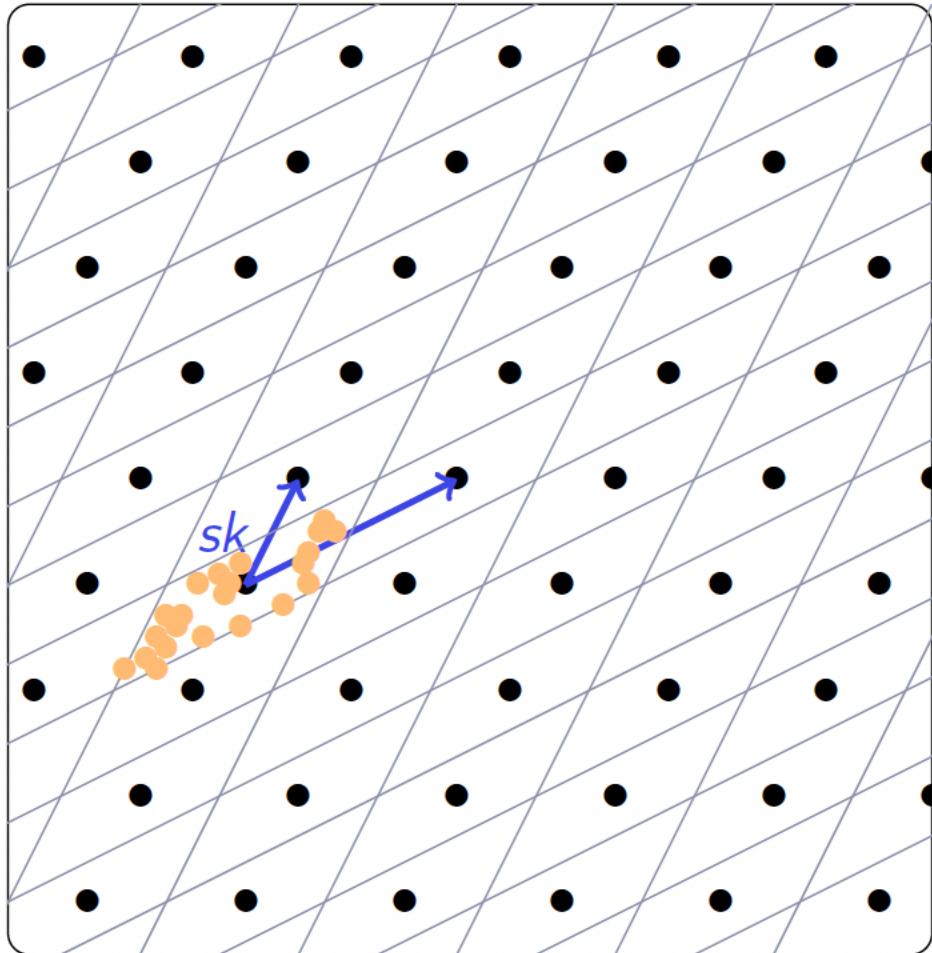
- Parallelepiped Attack:
 - Ask for a signature s on m
 - Plot $H(m)-s$

Parallelepiped attack [NR06]



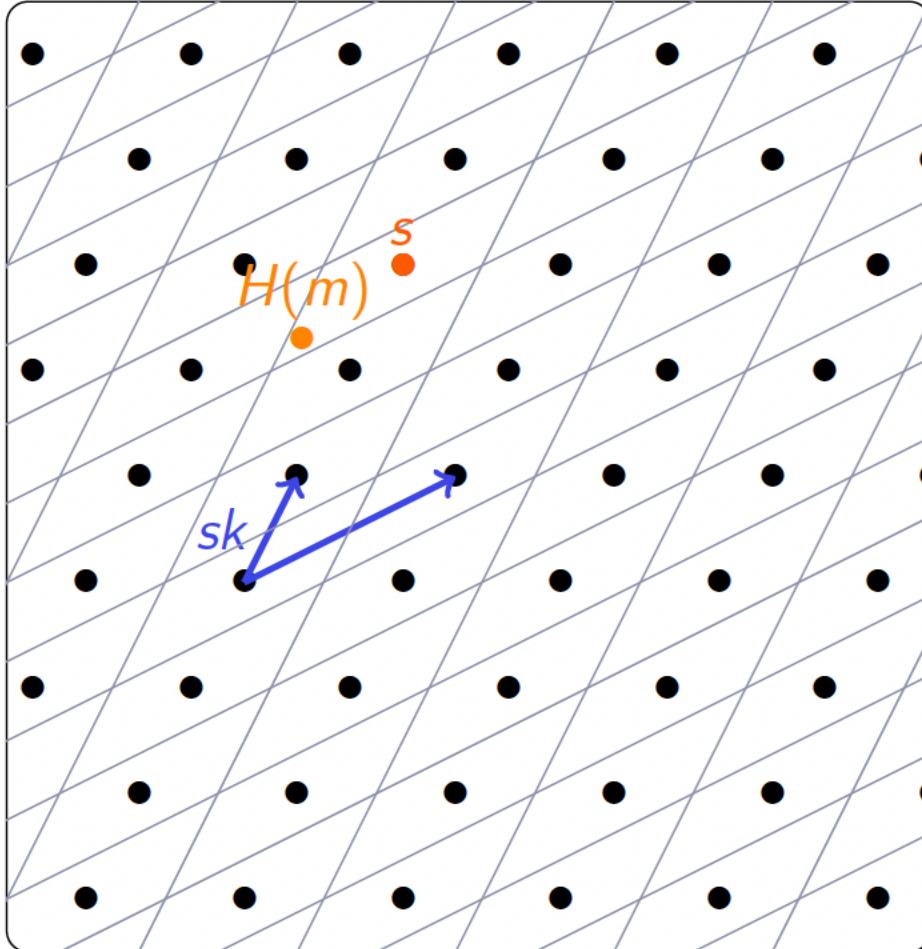
- Parallelepiped Attack:
 - Ask for a signature s on m
 - Plot $H(m)-s$
 - Repeat

Parallelepiped attack [NR06]



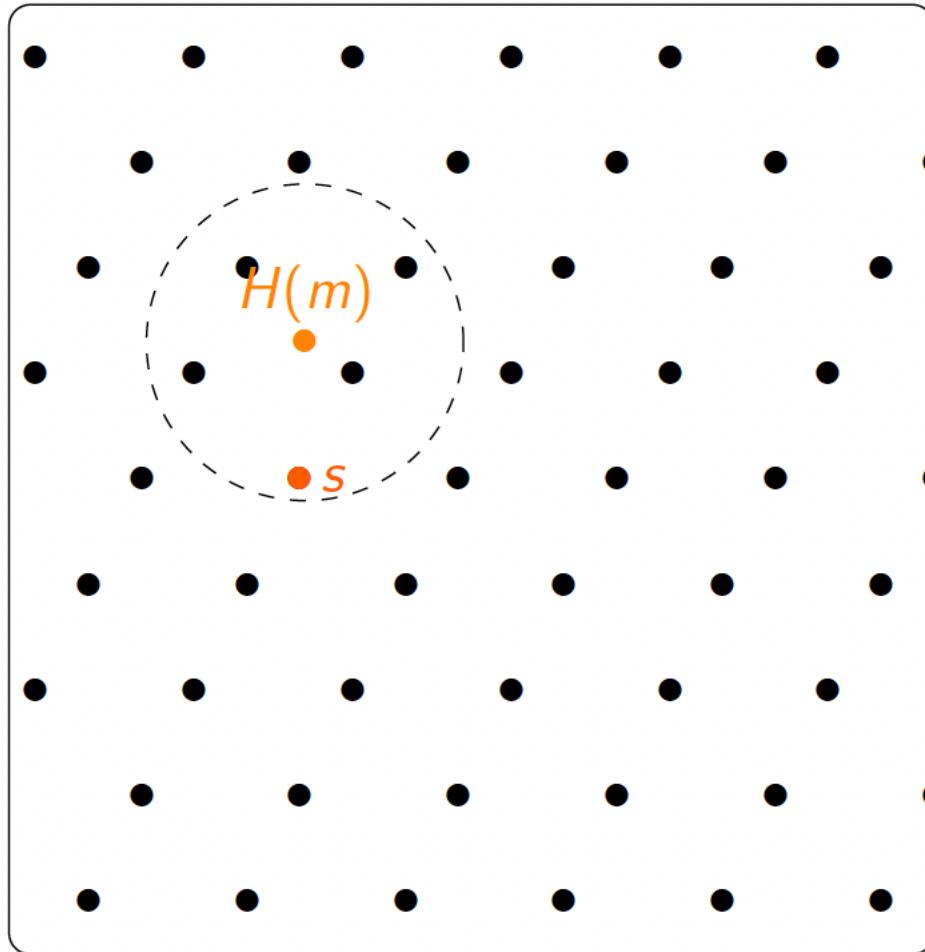
- Parallelepiped Attack:
 - Ask for a signature s on m
 - Plot $H(m)-s$
 - Repeat
- From the shape of the parallelepiped, one can recover the short basis

Preventing the attack [GPV08]



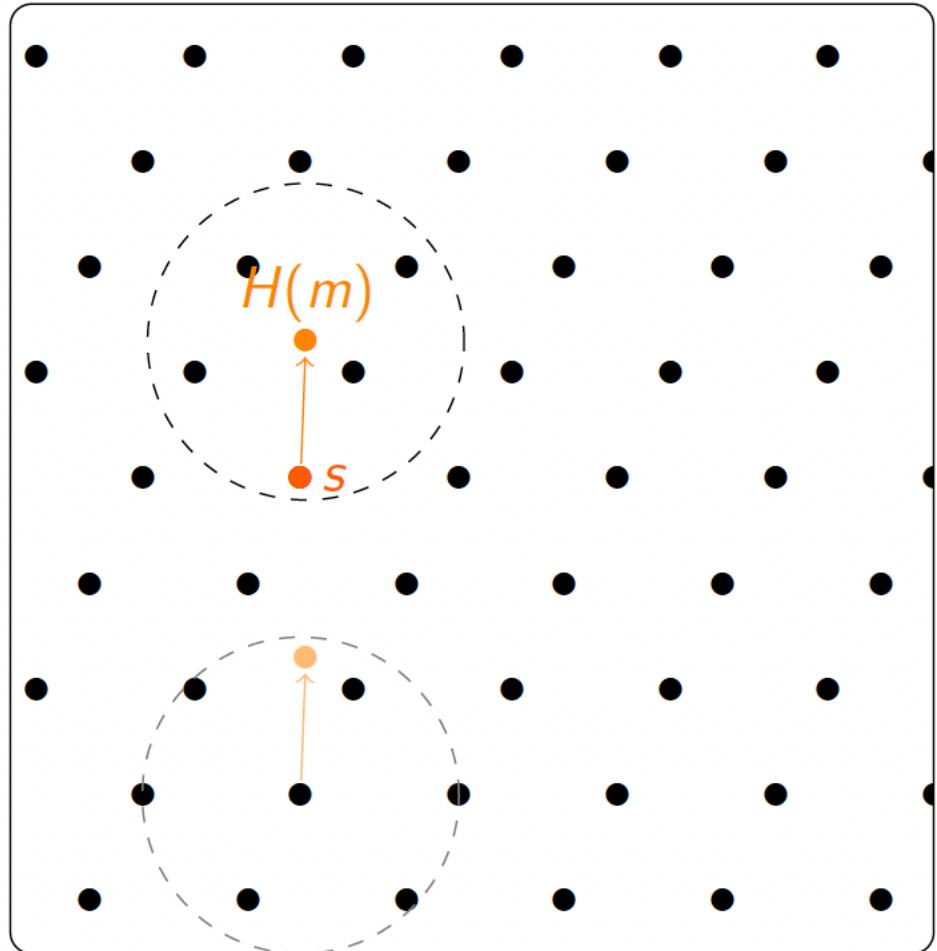
- Idea: do not decode deterministically but randomly
- $\text{Sign}(m, sk)$:
 - $x = H(m)$ hash the message

Preventing the attack [GPV08]



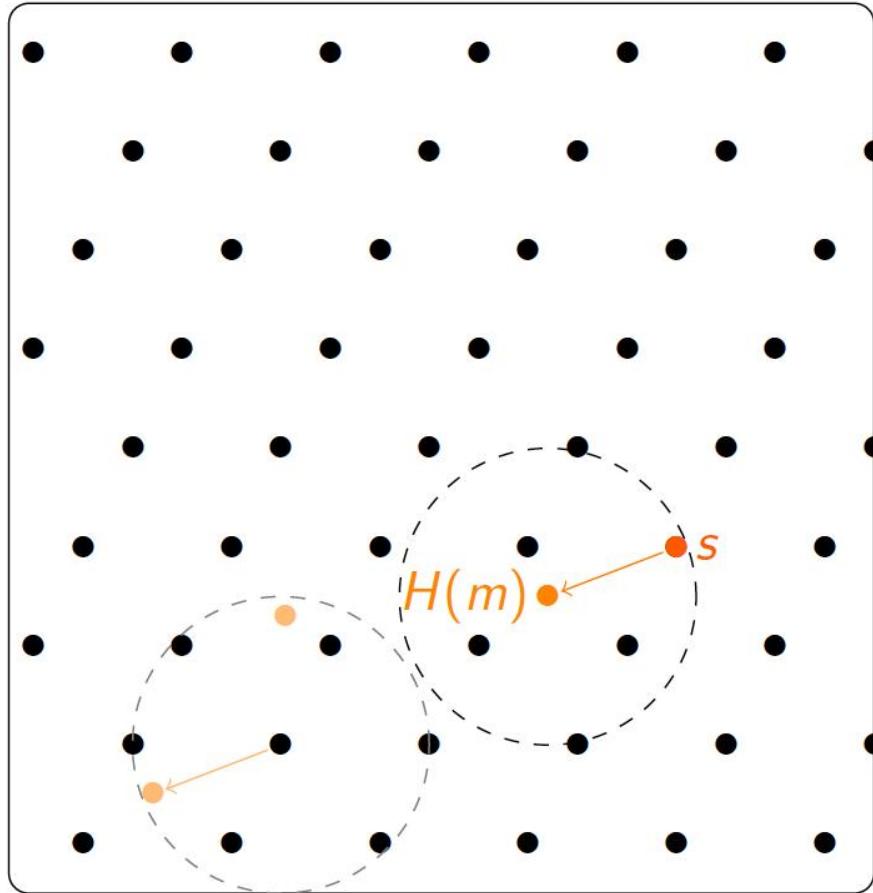
- Idea: do not decode deterministically but randomly
- $\text{Sign}(m, sk)$:
 - $x = H(m)$ hash the message
 - Sample $s \in L \cap B_r(x)$ (small radius r)

Preventing the attack [GPV08]



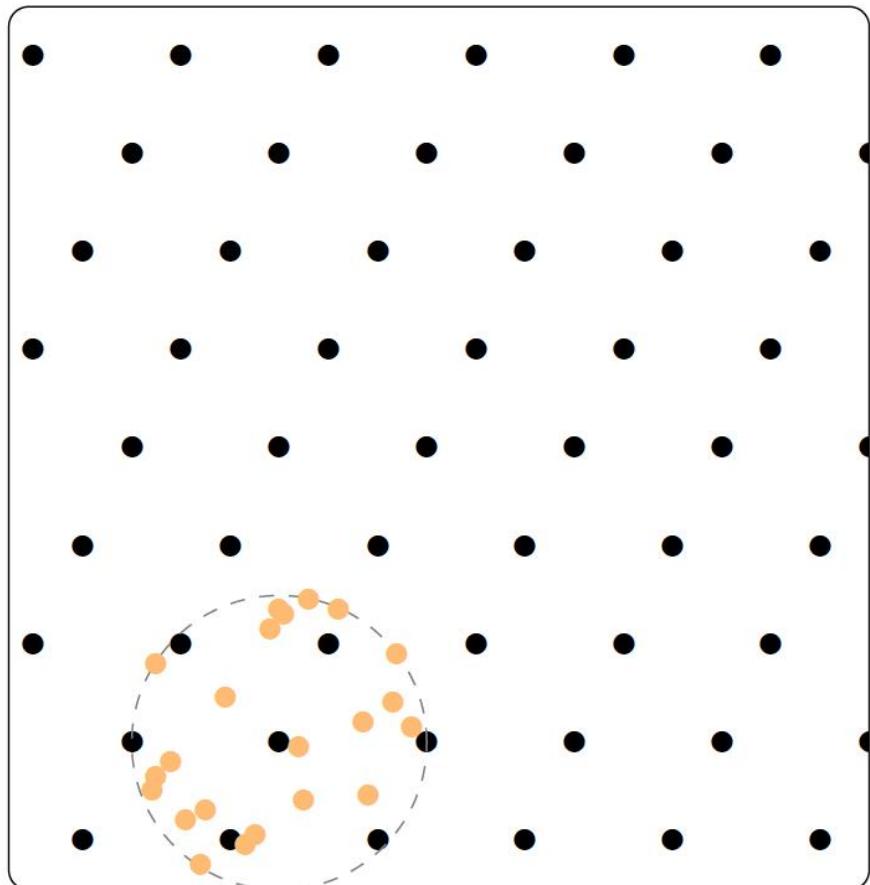
- **Idea:** do not decode deterministically but randomly
- **Sign(m, sk):**
 - $x = H(m)$ hash the message
 - Sample $s \in L \cap B_r(x)$ (small radius r)

Preventing the attack [GPV08]



- **Idea:** do not decode deterministically but randomly
- **Sign(m, sk):**
 - $x = H(m)$ hash the message
 - Sample $s \in L \cap B_r(x)$ (small radius r)

Preventing the attack [GPV08]



- Idea: do not decode deterministically but randomly
- $\text{Sign}(m, sk)$:
 - $x = H(m)$ hash the message
 - Sample $s \in L \cap B_r(x)$ (small radius r)

How can we sample lattice point around the point x ?

NTRU Scheme

NTRU [HPS98]

- Parameters:
 - q prime and large (e.g. $q=16411$)
 - $C \ll \sqrt{q}$ integer (e.g. $C=5$)
- NTRU instance:
 - Sample f, g random integers in $[-C, C]$ (e.g. $f=-2, g=3$)
 - Return $h=g/f \bmod q$ (e.g. $h=-5471 \bmod 16411$)
- NTRU Assumption: given h , there is no efficient algorithm that can find u and v s.t. $|u|, |v| \leq C$ and $h=u/v \bmod q$
- Careful: for integer it is easy, replace them by polynomials and compute in $\mathbb{Z}_q[X]/(X^d + 1)$ for d a power of 2

NTRU Cryptosystem

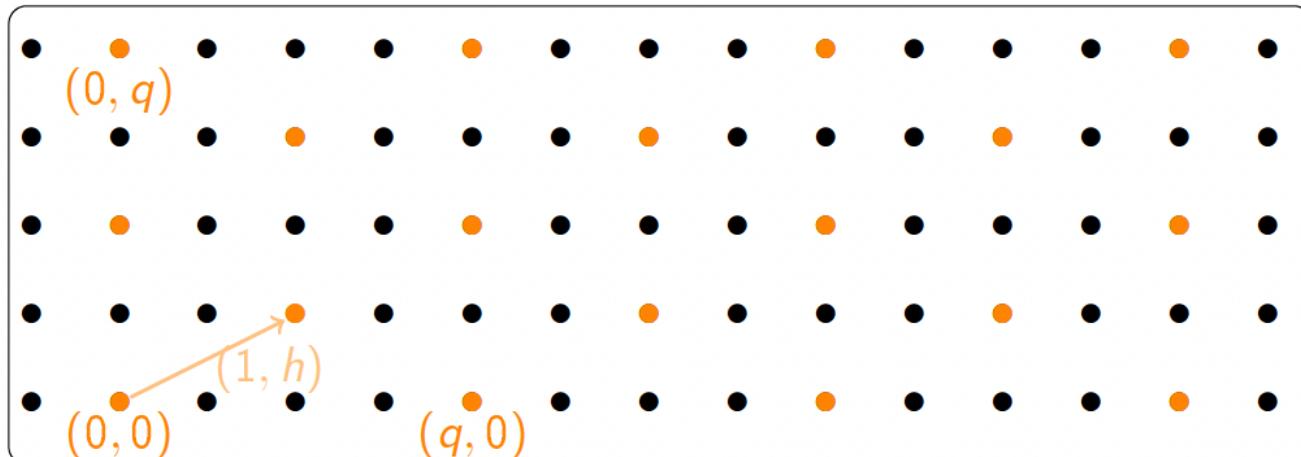
- $q=128$ and $p=3$: p is small and q security parameter (**not too large !**)
- $R_q = \mathbb{Z}_q[X]/(x^d + 1)$ where d is a power of 2
- **sk**: $(f, g) \in R_q$ are polynomials with small coefficients s.t. f is invertible mod p and q , ($f=1+pf'$)
- **pk**: $h=pg/f$ in R_q
- **Encryption**: $c=m+hr$ where $m, r \in R_q$ with small L2-norm (OTP $hr \approx U(\mathbb{Z}_q)$)
- **Decryption**:
 - Compute $M = fc \bmod q = mf + rpg \bmod q$
 - As m, f, r and g are short, the equation is true over the \mathbb{Z} : $M = mf + rpg$
 - Compute $M \bmod p = m$

The secret key is composed of f only

Hard lattice from NTRU assumption

- **NTRU Assumption:** given h , there is no efficient algorithm that can find u and v s.t. $|u|, |v| \leq C$ and $h = u/v \pmod{q}$
- How do we get a hard lattice from this ?
- Let $h = f/g \pmod{q}$ an NTRU instance.

$$B_h = \begin{pmatrix} 1 & 0 \\ h & q \end{pmatrix} \quad \text{and} \quad \mathcal{L}_h = \mathcal{L}(B_h) \quad (\text{spanned by the columns of } B_h)$$



Property:

$(u, v)^T \in \mathcal{L}_h$ iff $h = v/u \pmod{q}$

Finding a short vector in B_h
⇒ Solving NTRU [CS97]

NTRU Assumption ⇒ no
adversary can compute a
short basis

NTRU: wrapping up

- We have seen: under the **NTRU Assumption**, we can generate random hard lattices:
 - Sample f, g polynomials with short coefficients in $[-C, C]$
 - Compute $h = f/g \bmod (q, X^d + 1)$
 - Return L_h spanned by the vectors $(1, h)^T$ and $(0, q)^T$
- L_h has dimension 2, but coefficients are polynomials
- If we write them in some basis $(1, X, \dots, X^{d-1})$ the matrix is of dimension d and for q and 1, they become qI_d and I_d : **Module case (rank=2)**
- The dimension of the lattice is $2d$ (1024 and 2048) for $d=512 / 1024$

Falcon scheme

- **KeyGen():** $(pk=A, sk=B)$
 1. $BA = 0$
 2. B has small coefficients
- **Sign($m, sk=B$):**
 1. Compute c s.t. $cA = H(m)$
 2. $v \in L(B)$ close to c
 3. $s = c - v$
- **Verify(m, s, pk):**
 - s is short
 - $sA = H(m)$ (exists u s.t. $v = uB$; $sA = (c - v)A = cA - vA = cA - uBA = cA = H(m)$)

From [DLP14] to Falcon

Two improvements:

- Key Generation [PP19]
- Gaussian Sampler [DP16]

Key Generation

Key Generation

$$\mathbf{B} = \left[\begin{array}{c|c} g & -f \\ \hline \mathbf{G} & -\mathbf{F} \end{array} \right]$$

- Given $A=[1,h]$, find B short s.t. $BA^T=0 \pmod{(X^d+1, q)}$
 - Half of the basis: $B=[f, -g]$ satisfies $[f, -g][1, h]^T = f - gh = 0$ as $h = f/g$
 - Full Trapdoor problem:
 - Given $f, g \in \mathbb{Z}[X]/(X^d+1)$, find $F, G \in \mathbb{Z}[X]/(X^d+1)$ s.t. $fG - gF = q \pmod{(X^d+1)}$ $\det(B) = q$
 - Previous techniques: Resultants, HNF, ... $O(n^3)$ time and $O(n^2)$ space
- Tower of Rings: $\mathbb{Z} \subseteq \mathbb{Z}[X]/(X^2+1) \subseteq \dots \subseteq \mathbb{Z}[X]/(X^{d/2}+1) \subseteq \mathbb{Z}[X]/(X^d+1)$
 - Field norm: navigate along this tower: $Q_d = \mathbb{Q}[X]/(X^d+1)$
$$N: Q_d \rightarrow Q_{d/2}$$
$$f \mapsto f^x, \text{ where } f^x(x) = f(-x)$$

Algorithm for solving NTRU equation

Problem: Given $f, g \in \mathbb{Z}[x]/(x^d + 1)$, find $F, G \in \mathbb{Z}[x]/(x^d + 1)$ such that:

$$f \cdot G - g \cdot F = q$$

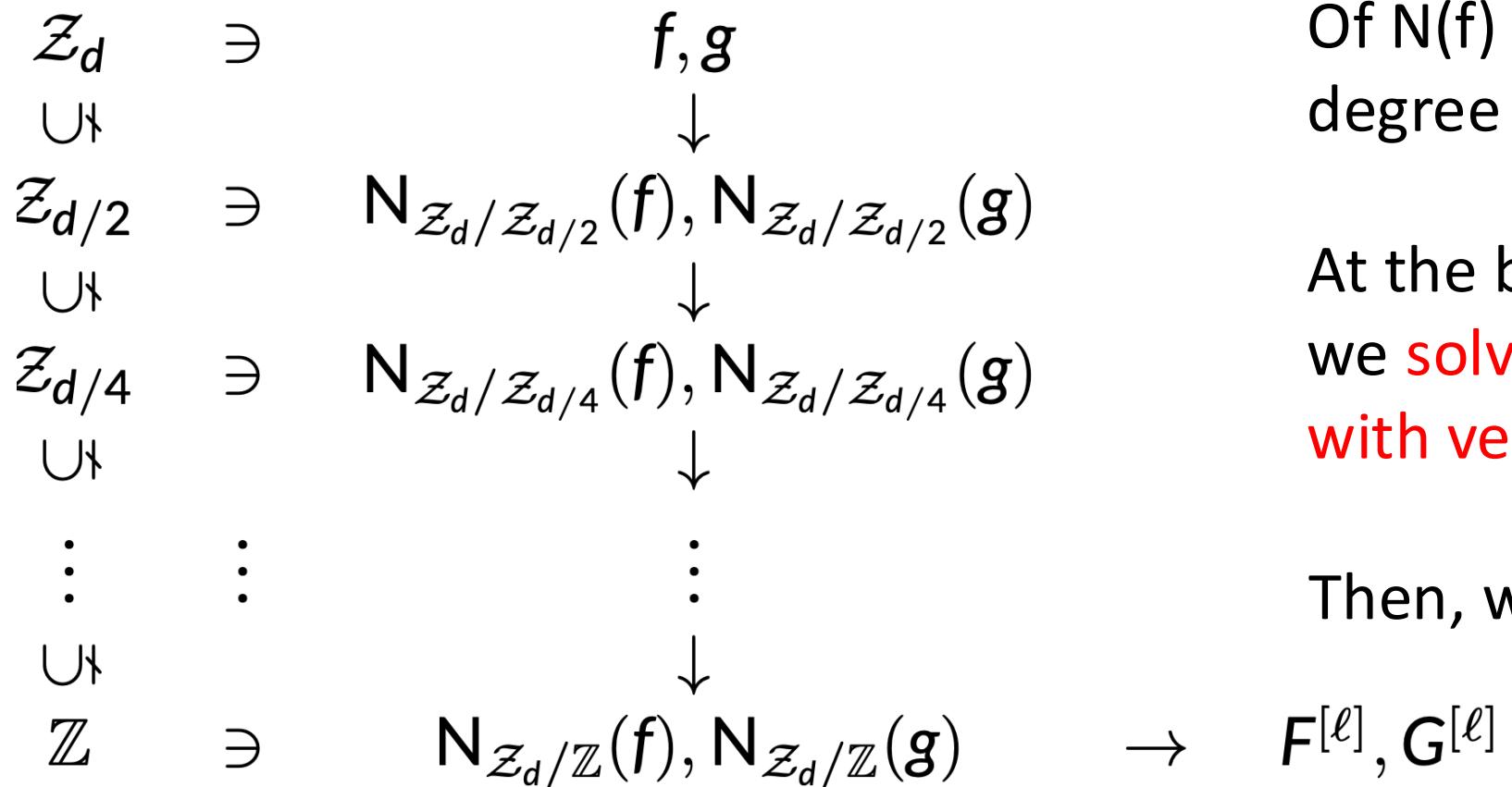
If we can solve the problem projected over $\mathcal{Z}_{d/2}$, i.e.:

$$\mathsf{N}_{\mathcal{Z}_d/\mathcal{Z}_{d/2}}(f) \cdot G' - \mathsf{N}_{\mathcal{Z}_d/\mathcal{Z}_{d/2}}(g) \cdot F' = 1$$

for some F', G' , then we have this relationship over \mathcal{Z}_d :

$$f \cdot (f^\times G') - g \cdot (g^\times F') = 1$$

Recursive Algorithm



From f to $N(f)$: the coefficients
Of $N(f)$ are twice larger, but the
degree is half

At the bottom of the recursion,
we **solve the equation over Z**
with very large coefficients

Then, we go up the tower

Recursive algorithm

Gain: x100 in memory (3MB => 30KB)
Gain: x100 in time (2s => 20ms)

Algorithm 1 TowerSolverR_{n,q}(f, g)

Require: $f, g \in \mathbb{Z}[x]/(x^n + 1)$ with n a power of two

Ensure: Polynomials F, G such that the equation 1 is verified

```
1: if  $n = 1$  then
2:   Compute  $u, v \in \mathbb{Z}$  such that  $uf - vg = 1$            ←
3:    $(F, G) \leftarrow (v, u)$ 
4:   return  $(F, G)$ 
5: else
6:    $f' \leftarrow N(f)$                                  $\triangleright f' \in \mathbb{Z}[x]/(x^{n/2} + 1)$ 
7:    $g' \leftarrow N(g)$ 
8:    $(F', G') \leftarrow \text{TowerSolverR}_{n/2,q}(f', g')$       ←
9:    $F \leftarrow g^{\times}(x)F'(x^2)$                           $\triangleright F \in \mathbb{Z}[x]/(x^n + 1)$ 
10:   $G \leftarrow f^{\times}(x)G'(x^2)$                          ←
11:  Reduce  $(F, G)$  with respect to  $(f, g)$ 
12: return  $(F, G)$ 
```

Lattice reduction step

Extended Euclidean
Algorithm over \mathbb{Z}

Recursive Call: go down
in the tower
Go up in the tower

If $\|(f,g)\|_{\infty} < C=20$, $\|(F,G)\|_{\infty} < 120$

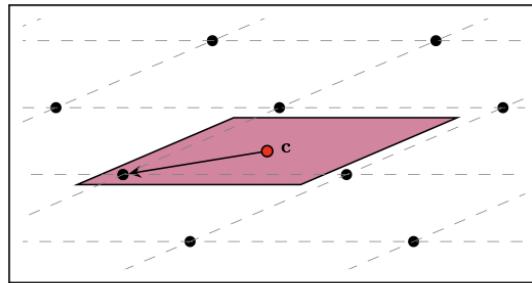
Gaussian Sampling algorithms

Closest vector problem: 2 algorithms

Round-Off Algorithm:

- 1 $t \leftarrow c \cdot B^{-1}$
- 2 $z \leftarrow \lfloor t \rfloor$
- 3 Output $v \leftarrow z \cdot B$

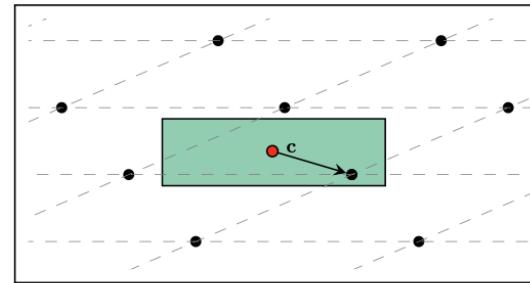
Output:



Nearest Plane Algorithm:¹

- 1 $t \leftarrow c \cdot B^{-1}$
- 2 For $j = n$ down to 1:
 - 1 $\hat{t}_j \leftarrow t_j + \sum_{i>j} (t_i - z_i) \cdot L_{i,j}$
 - 2 $z_j \leftarrow \lfloor \hat{t}_j \rfloor$
- 3 Output $v \leftarrow z \cdot B$

Output:



¹Requires precomputing the Gram-Schmidt orthogonalisation (GSO) of B : $B = L \cdot \tilde{B}$.

Gaussian Sampling

Given $\mathbf{B} \in \mathcal{Z}_d^{n \times n}$ and $\mathbf{t} \in \mathcal{Q}_d^n$, compute $\mathbf{z} \in \mathcal{Z}_d^n$ such that $\|(\mathbf{z} - \mathbf{t}) \cdot \mathbf{B}\|$ is small.

Algorithm 3 $\text{Klein}_{\mathbf{L}, \sigma}(\mathbf{t})$

Require: $\sigma \geq \eta_\epsilon(\mathbb{Z}^n) \cdot \|\mathbf{B}\|_{\text{GS}}$, the Gram-Schmidt orthogonalization $\mathbf{B} = \mathbf{L} \cdot \tilde{\mathbf{B}}$, the values $\sigma_j = \sigma / \|\tilde{\mathbf{b}}_j\|$ and a target \mathbf{t}

Ensure: A vector \mathbf{z} such that $\mathbf{zB} \leftarrow D_{\Lambda(\mathbf{B}), \sigma, \mathbf{tB}}$

for $j = n, \dots, 1$ **do**

$$c_j \leftarrow t_j + \sum_{i>j} (t_j - z_j) L_{ij}$$

$$z_j \leftarrow D_{\mathbb{Z}, \sigma_j, c_j}$$

return \mathbf{z}

3 algorithmic techniques:

- Randomized nearest plane [Bab85, GPV08]: High quality, $O((nd)^2)$ operations
- Randomized round-off [Bab85, Pei10]: Lower quality, $O(n^2d \log d)$ operations
- **Fast Fourier orthogonalization [DP16]:** High quality, $O(n^2d \log d)$ operations

Fast Fourier Orthogonalization [DP16]

Consider the simplified case where we want this to be small:

$$(z - t) \cdot b$$

Using the ring isomorphism $\mathcal{Q}_d \cong (\mathcal{Q}_{d/2})^2$, this is equivalent to:

$$\begin{bmatrix} z_e - t_e & z_o - t_o \end{bmatrix} \cdot \underbrace{\begin{bmatrix} b_e & b_o \\ xb_o & b_e \end{bmatrix}}_{\mathbf{B}}$$

Why this is nice:

» We can orthogonalize the second row of \mathbf{B} w.r.t. to the first one:

$$\tilde{\mathbf{b}}_2 \leftarrow \mathbf{b}_2 - \underbrace{\frac{\langle \mathbf{b}_2, \mathbf{b}_1 \rangle}{\langle \mathbf{b}_2, \mathbf{b}_1 \rangle}}_{L_{2,1}} \cdot \mathbf{b}_1$$

» We can apply this “break and orthogonalize” trick recursively.

GSO $\mathbf{B} = \mathbf{L}\mathbf{B}'$ is equivalent to $\mathbf{B}\mathbf{B}^* = \mathbf{L}\mathbf{B}'\mathbf{B}'^*\mathbf{L}^*$

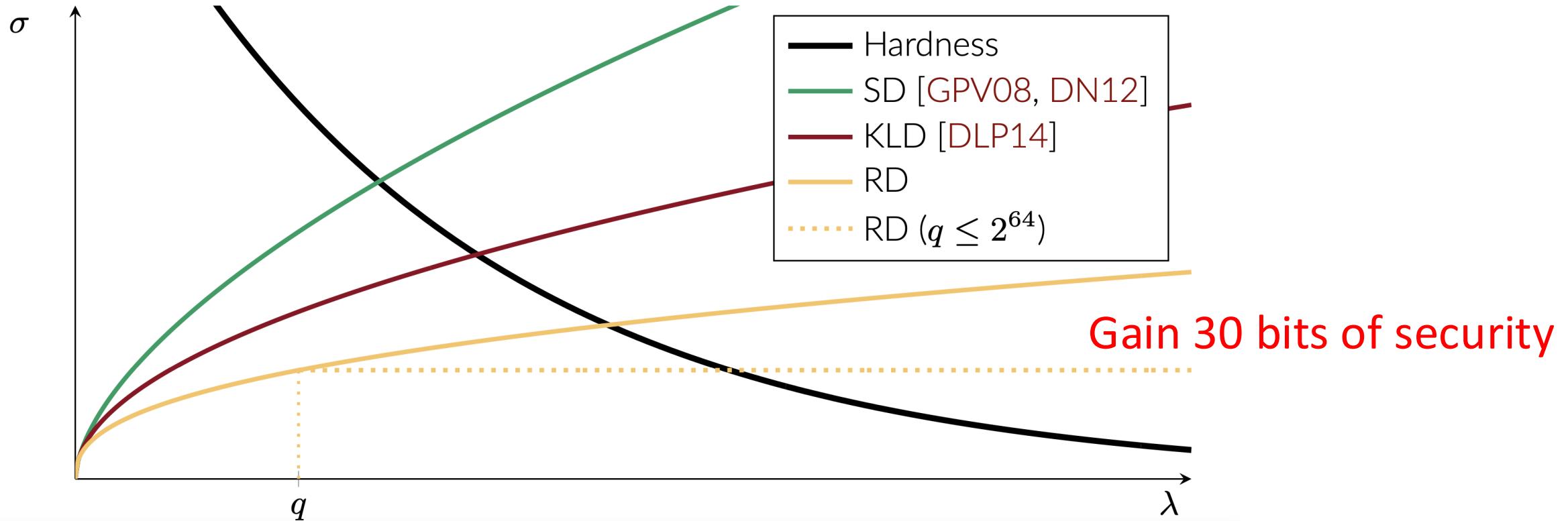
Recursive strategy $O(d \log^2 d)$

Working in the FFT domain reduces the complexity to **$O(d \log d)$**

Security [P17]

Rényi divergence is more efficient than SD/KLD, interesting when q is smaller

1. σ too large => Klein does not solve a hard problem and it is useless in crypto
2. σ too small => Klein does not behave like a perfect Gaussian oracle



[DN12] Faster Gaussian Lattice Sampling Using Lazy Floating-Point Arithmetic. ASIACRYPT 2012

[P17] Prest. Sharper Bounds in Lattice-Based Cryptography Using the Rényi Divergence. ASIACRYPT 2017

Pros and cons of Falcon

- **Falcon signature:**
 - Post-quantum security
 - Fast (comparable to RSA / EdDSA)
 - Relatively compact (about 3 times RSA, 15 times EdDSA)
- **But there are still important open question and many improvements**
- **Requires floating point**
 - Not all devices have floating-point units
- **Difficult to mask**
 - Can be subject to SCA
 - See Raccoon if you want a masking-friendly signature scheme
- **Antrag and Mitaka avoid FFO and simpler sampler without floating**

[Raccoon] del Pino, Katsumata, Maller, Mouhartem, Prest, Rossi, Saarinen. Technical report, NIST
[Mitaka] Espitau, F, Gerard, Rossi, Takahashi, Tibouchi, Wallet, Yu, EUROCRYPT 2022
[Anrtag] Espitau, Nguyen, Sun, Tibouchi, Wallet. ASIACRYPT 2023

Conclusion

- **FALCON: *Fast Fourier lattice-based compact signatures over NTRU***
- Other uses of Falcon: IBE scheme
- **Careful use of tower of subrings in $\mathbb{Z}_q[X]/(X^d+1)$**
 - Other use: LLL over $\mathbb{Z}_q[X]/(X^d+1)$ [KEF20]
- Security Results: NTRUSign based on R-SIS [SS11]
- Interesting results show connection between the NTRU Assumption and hard lattice problems [PS21, FPS22]

[KEF20] Kichner, Espitau, Fouque. Fast Reduction of Algebraic Lattices over Cyclotomic Fields, CRYPTO 2020

[SS11] Stehlé, Steinfeld. Making NTRU NTRUEncrypt and NTRUSign as Secure as Standard Worst-Case Problems Over Ideal Lattices. EUROCRYPT 2011

[PS21] Pellet—Mary, Stehlé. On the hardness of the NTRU Problem, ASIACRYPT 2021

[FPS22] Felderhoff, Pellet—Mary, Stehlé, On Module Unique-SVP and NTRU, ASIACRYPT 22