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Talk Plan – 2nd Part

• The quantum delivery verification problem.

• Tokenized signatures.
➢Coset states and classical proofs of quantum information deletion.

• Semi-quantum money.
➢Classical delegation of unclonable state generation (technical).
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Scenario I
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The Quantum Delivery Verification Problem
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The Quantum Delivery Verification Problem
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Still waiting 
for my 

money…

? ? ?
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Scenario I



The Quantum Delivery Verification Problem
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The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

𝜓 𝑝𝑘

Sent! Have 
a nice day

Scenario II



The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘

Scenario III



The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

𝜓 𝑝𝑘
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The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

𝜓 𝑝𝑘 → |𝜙⟩

Scenario III

Channel can be actively adversarial, 
or just faulty. Does not matter.



The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

Scenario III

|𝜙⟩

Quantum state was unclonable and is 
now destroyed.

We cannot try sending again.



The Quantum Delivery Verification Problem

Q:

How can you guarantee & prove that you have sent an 
unclonable quantum state (to some given destination)?



Tokenized Signatures



Tokenized Signatures
[Ben-David-Sattath-2016]

Definition [Tokenized Signatures Scheme] :
Given by three polynomial-time quantum algorithms, 
and one classical algorithm, 

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen 1𝑛  .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩  .

• 𝜎𝑚 ∈ {0,1}𝑛 ← Sign 𝑝𝑘, 𝜓 𝑝𝑘, 𝑚 ∈ 0,1  .

• 𝑏 ∈ 0,1 ← SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1  .



Tokenized Signatures

•Correctness 1:

Pr
𝑝𝑘, 𝜓 𝑝𝑘 ←Gen(1𝑛)

1, 𝜓 𝑝𝑘 ← Ver 𝑝𝑘, 𝜓 𝑝𝑘 = 1 .



Tokenized Signatures

Ver

•Correctness 2: If the verifier accepted the state, the state 
can be used to successfully sign on any bit 𝑚 ∈ 0,1 .

𝑝𝑘, |𝜙⟩ 1, |𝜙′⟩
Sign

𝑝𝑘, 𝑚 ∈ 0,1

SignVer

𝑝𝑘, 𝑚 ∈ 0,1

𝜎𝑚
1



Tokenized Signatures

• Security:

Gen 𝐴∗

poly-time

𝜎0

𝜎1

𝑝𝑘, 𝜓 𝑝𝑘



Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability



Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

Q:

Tokenized signatures imply PKQM. How?



Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

A:

Assume you can cheat the verifier. Then you can sign on both 0 and 1.



Tokenized Signatures

• Security:

Gen 𝐴∗

poly-time

𝜓0

𝜓1

𝑝𝑘, 𝜓 𝑝𝑘



Tokenized Signatures

Ver

•Correctness 2: If the verifier accepted the state, the state 
can be used to successfully sign on any bit 𝑚 ∈ 0,1 .

𝑝𝑘, 𝜓0 1, 𝜓0
′

Sign

𝑝𝑘, 0

SignVer

𝑝𝑘, 0

𝜎0
1



Tokenized Signatures

Ver

•Correctness 2: If the verifier accepted the state, the state 
can be used to successfully sign on any bit 𝑚 ∈ 0,1 .

𝑝𝑘, 𝜓1 1, 𝜓1
′

Sign

𝑝𝑘, 1

SignVer

𝑝𝑘, 1

𝜎1
1



Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

A:

Assume you can cheat the verifier. Then you can sign on both 0 and 1.



Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

Note: 𝜎𝑚 ∈ {0,1}𝑛 serves as a classical proof of destruction for the 
quantum information in 𝜓 𝑝𝑘.



The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝑝𝑘
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The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝑝𝑘, val𝑝𝑘

𝜓 𝑝𝑘

𝑝𝑘′, val𝑝𝑘′

𝜓 𝑝𝑘′



The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝜓 𝑝𝑘 = 𝜓 𝑝𝑘1
, ⋯ , 𝜓 𝑝𝑘𝜆

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆
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The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝜓 𝑝𝑘 = 𝜓 𝑝𝑘1
, ⋯ , 𝜓 𝑝𝑘𝜆

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

1. ℎ ← 𝐻 𝑝𝑘′ .

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆

2. 𝜎ℎ ∈ {0,1}𝑛⋅𝜆 ← Sign 𝑝𝑘, 𝜓 𝑝𝑘 , ℎ . 



The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

𝜎
𝐻 𝑝𝑘′

𝑝𝑘′

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆

Note: We got classical-only 
communication for free!



How to Construct Tokenized Signatures

Definition [Coset State]:

Let 𝑛 ∈ ℕ and let 𝑆 ⊆ 0,1 𝑛 a subspace of 0,1 𝑛 and 
let 𝑥, 𝑧 ∈ 0,1 𝑛.

The coset state of 𝑆 with string shift 𝑥 and phase shift 𝑧 
is defined as

𝑆 𝑥,𝑧 ≔
1

𝑆
෍

𝑢∈𝑆

−1 𝑧,𝑢 ⋅ 𝑥 + 𝑢  .



How to Construct Tokenized Signatures

Lemma [Quantum Fourier Transform of a Coset State]:
Let 𝑛 ∈ ℕ and let 𝑆 ⊆ 0,1 𝑛 a subspace of 0,1 𝑛 and let 𝑥, 𝑧 ∈
0,1 𝑛. Then,

𝐻⊗𝑛 ⋅ 𝑆 𝑥,𝑧 = 𝑆⊥ 𝑧,𝑥.

Proof: By calculation.



How to Construct Tokenized Signatures

Theorem [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:
Assume the existence of a quantum-secure iO and injective OWFs.

Let 𝑆 a random subspace 𝑆 ⊆ {0,1}𝑛 of dimension 
𝑛

2
, and let 𝑥, 𝑧 ∈

0,1 𝑛 random strings.
For every quantum polynomial-time algorithm 𝐴∗, the following 
probability is negligible:

Pr
Ο𝑆+𝑥,Ο𝑆⊥+𝑧, 𝑆 𝑥,𝑧 ←Gen(1𝑛)

𝐴∗ Ο𝑆+𝑥 , Ο𝑆⊥+𝑧, 𝑆 𝑥,𝑧 = 𝑢, 𝑣 ,

𝑢 ∈ 𝑆 + 𝑥,

𝑣 ∈ 𝑆⊥ + 𝑧

 .



How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen(1𝑛).

• 𝜓 𝑝𝑘 = 𝑆 𝑥,𝑧.

•  𝑝𝑘 = Obf𝑆+𝑥, Obf𝑆⊥+𝑧 .

•  Ver 𝑝𝑘, |𝜙⟩ :
➢First, check that the rightmost qubit of 𝑈𝑆+𝑥 𝜙 |0⟩  is 1.

➢Now the state is 𝜙′ ≔ σ𝑢∈𝑆 𝛼𝑢
′ ⋅ 𝑥 + 𝑢 . Apply 𝐻⊗𝑛 ⋅ 𝜙′ = |𝜙′′⟩.

➢Finally, check that the rightmost qubit of 𝑈𝑆⊥+𝑧 𝜙′′ |0⟩  is 1.



How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

•  Sign 𝑝𝑘, 𝑆 𝑥,𝑧, 𝑚 ∈ 0,1  : ?

•  SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1  : ?



How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

•  Sign 𝑝𝑘, 𝑆 𝑥,𝑧, 𝑚 ∈ 0,1  : Execute 𝐻⊗𝑛 𝑚
⋅ 𝑆 𝑥,𝑧, and 

measure.

•  SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1  :



How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

•  Sign 𝑝𝑘, 𝑆 𝑥,𝑧, 𝑚 ∈ 0,1  : Execute 𝐻⊗𝑛 𝑚
⋅ 𝑆 𝑥,𝑧, and 

measure.

•  SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1  : If 𝑚 = 0 then check 𝜎𝑚 ∈ 𝑆 + 𝑥, 
otherwise, check 𝜎𝑚 ∈ 𝑆⊥ + 𝑧.



The Quantum Delivery Verification Problem
(Strikes Again)
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The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘 𝑝𝑘

Scenario I

𝜓 𝑝𝑘



The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

Scenario I

𝑝𝑘

𝜓 𝑝𝑘

Where is 
my money?



The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

Scenario II

𝜓 𝑝𝑘

𝑝𝑘



The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

Scenario II

𝜓 𝑝𝑘

𝑝𝑘
Sent!



The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

Scenario III

𝜓 𝑝𝑘

𝑝𝑘



The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

𝜓 𝑝𝑘

Scenario III

𝑝𝑘



The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

𝜓 𝑝𝑘 → |𝜙⟩

Scenario III

Channel can be actively adversarial, 
or just faulty. Does not matter.

𝑝𝑘



The Quantum Delivery Verification Problem
(Strikes Again)

Q:

Why doesn’t the solution from before work?

That is, why doesn’t tokenized signatures solve the 
problem?



The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝜓 𝑝𝑘 = 𝜓 𝑝𝑘1
, ⋯ , 𝜓 𝑝𝑘𝜆

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆



The Quantum Delivery Verification Problem
(Strikes Again)

Q:

Why doesn’t the solution from before work?

That is, why doesn’t tokenized signatures solve the 
problem?

A:

The previous solution assumed the two parties already 
have money states! For this, the bank needs to distribute 

states in the first place.



Public-key Semi-quantum 
Money



The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘
When 𝜓 𝑝𝑘 is already generated, 

it is unknown how to send it.



The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘
We need to somehow let the 
receiver generate it by itself.



The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘
Idea: If you can classically delegate 

the generation of the state,
then you can prove in ZK that the 
(classical) instructions yield a valid 

state.



The Quantum Delivery Verification Problem

Definition [Tokenized Signatures Scheme] :

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen 1𝑛  .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩  .

• 𝜎𝑚 ∈ {0,1}𝑛 ← Sign 𝑝𝑘, 𝜓 𝑝𝑘 , 𝑚 ∈ 0,1  .

• 𝑏 ∈ 0,1 ← SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1  .



Semi-quantum Tokenized Signatures
[S-2021], [S-2022]

Definition [Semi-quantum Tokenized Signatures]:

• 𝑝𝑘, Rec: 𝜓 𝑝𝑘 ← ⟨ Sen, Rec ⟩ 1𝑛  .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩  .

• 𝜎𝑚 ∈ {0,1}𝑛 ← Sign 𝑝𝑘, 𝜓 𝑝𝑘 , 𝑚 ∈ 0,1  .

• 𝑏 ∈ 0,1 ← SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1  .



Step 1 [S-2021]:

Classical delegation of unclonable state generation. 

Step 2 [S-2022]:

A different technique for signing quantum money states, 
tailored for states that resulted from delegation.

Semi-quantum Tokenized Signatures
[S-2021], [S-2022]



Classical delegation of state generation:

RecSen



Classical delegation of state generation:

RecSen



Classical delegation of state generation:

Rec

𝑝𝑘 𝜓 𝑝𝑘

Sen



Rec∗

Security - Remote No Cloning

Sen



Security - Remote No Cloning

Sen Rec∗



Security - Remote No Cloning

𝜓0 , 𝜓1Sen Rec∗



Security - Remote No Cloning

Main difference: 𝜓 𝑝𝑘 is unclonable for the generating computer.

Sen Rec∗

Ver 𝑝𝑘, 𝜓 0 = 1

Ver 𝑝𝑘, 𝜓 1 = 1

with negligible 
probability



Public-key Semi-quantum Money
Introduced in [Radian-Sattath-2019]

Definition [Public-key Semi-quantum Money]:

• 𝑝𝑘, Rec: 𝜓 𝑝𝑘 ← ⟨ Sen, Rec ⟩ 1𝑛  .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩  .



Theorem [S-2021]: 

Assume,

•Quantum sub-exponential hardness of LWE, and

•Quantum-secure indistinguishability obfuscation for 
classical circuits.

Then, there exists a Public-Key Semi-Quantum Money 
Scheme.

Public-key Semi-quantum Money



Construct a protocol:

•  Sen : A classical sender, wants to delegate the state 
generation.

•  Rec : A quantum receiver, generates the state. 
Possibly malicious.

At the end of interaction: Sen outputs 𝑝𝑘, Rec outputs 
|𝜓⟩𝑝𝑘.

Public-key Semi-quantum Money - Intuition



• 𝑔𝑘 ← 𝜒: Classically efficiently samplable 
distribution.

• 𝜓 𝛽 , 𝛽 ← 𝐺(𝑔𝑘): A quantum polynomial-time 
algorithm, outputs classical 𝛽 ∈ {0,1}𝑛 and a 
quantum 𝜓 𝛽.

Public-key Semi-quantum Money - Intuition



• 𝑔𝑘 ← 𝜒: Classically efficiently samplable 
distribution.

• 𝜓 𝛽 , 𝛽 ← 𝐺(𝑔𝑘): A quantum polynomial-time 
algorithm, outputs classical 𝛽 ∈ {0,1}𝑛 and a 
quantum 𝜓 𝛽.

Unclonability: Given a sampled 𝑔𝑘, it is 
computationally impossible to compute 

𝜓 𝛽 , 𝜓 𝛽 , 𝛽

Public-key Semi-quantum Money - Intuition



RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2. 

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

A General Template



A General Template

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2. 

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

Q:
The current task 
can be achieved 

with standard 
assumptions.

How?



A General Template

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2. 

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

Q:
The current task 
can be achieved 

with standard 
assumptions.

How?

A: 𝑔𝑘 is a CRH key. 
𝐺 𝑔𝑘  computes in superposition and measures the output of the CRH 𝐻.



A General Template

RecSen
𝑔𝑘1. 𝜒

↓
ℎ𝑘 2. 

𝐺 ℎ𝑘
↓

෍

𝑥∈ 0,1 𝑛:𝐻 𝑥 =𝑦

|𝑥⟩ , 𝑦

Q:
The current task 
can be achieved 

with standard 
assumptions.

How?

A: 𝑔𝑘 is a CRH key. 
𝐺 𝑔𝑘  computes in superposition and measures the output of the CRH 𝐻.



A General Template

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2. 

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

Q:
What about 

public verification
Of 𝜓 𝛽?



A General Template

Q:
What about 

public verification
Of 𝜓 𝛽?

A:
Like before, we 
will try to use 
obfuscation.

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2. 

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽



• 𝑔𝑘, 𝑠𝑘 ← 𝜒: Classically efficiently samplable 
distribution.

• 𝜓 𝛽 , 𝛽 ← 𝐺(𝑔𝑘): A quantum polynomial-time 
algorithm, outputs classical 𝛽 ∈ {0,1}𝑛 and a 
quantum 𝜓 𝛽.

A General Template



Verification: 
1. There is an efficient classical computation 𝐶:   

∀𝛽: 𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽. 𝑓𝛽 is a classical circuit.

2. 𝜓 𝛽 can be verified, having quantum oracle 
access to 𝑓𝛽.

Unclonability: For every 𝛽, the state 𝜓 𝛽 is 
unclonable, even given 𝑔𝑘 AND oracle access to 𝑓𝛽.

A General Template



Rec1. (𝑔𝑘, 𝑠𝑘) ← 𝜒 

A General Template

Sen 𝑔𝑘

𝛽

3. 𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽

Obf𝑓𝛽

2. 
𝐺 𝑔𝑘

↓

𝜓 𝛽 , 𝛽



Public-key Semi-quantum Money - Intuition

•We want to implement the template.

•  (𝑔𝑘, 𝑠𝑘) ← 𝜒.

• 𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘 .

•  𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽.
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•We want to implement the template.

•  (𝑔𝑘, 𝑠𝑘) ← 𝜒.

• 𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘 .

•  𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽.

Q: What is a minimal but expressive property we need 
from these?



Public-key Semi-quantum Money - Intuition

•We want to implement the template.

•  (𝑔𝑘, 𝑠𝑘) ← 𝜒.

• 𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘 .

•  𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽.

Q: What is a minimal but expressive property we need 
from these?

A: Measurement result 𝛽 must contain entropy.



Public-key Semi-quantum Money - Intuition

(𝑔𝑘, 𝑠𝑘) ← 𝜒 

𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘

Easy to generate entropy honestly



Rec∗

Public-key Semi-quantum Money - Intuition

← 𝑔𝑘
?

𝜓 𝛽 , 𝛽 ←

(𝑔𝑘, 𝑠𝑘) ← 𝜒 

Still high-entropy!



Rec∗

Public-key Semi-quantum Money - Intuition

← 𝑔𝑘
?

𝜓 𝛽 , 𝛽 ←

(𝑔𝑘, 𝑠𝑘) ← 𝜒 

Q:
We claim that for 𝜓 𝛽 to be unclonable, the classical part 𝛽 must 

have a non-trivial amount of entropy. Why?



Public-key Semi-quantum Money - Intuition

A:
If some specific 𝛽 can be sampled with 𝜓 𝛽, with good probability,

then this can be done twice, and we cloned 𝜓 𝛽 with good probability.

Rec∗

← 𝑔𝑘
?

𝜓 𝛽 , 𝛽 ←

(𝑔𝑘, 𝑠𝑘) ← 𝜒 



Public-key Semi-quantum Money - Intuition

Meaning:
𝜓 𝛽 is a quantum proof for the entropy of 𝛽.

Rec∗

← 𝑔𝑘
?

𝜓 𝛽 , 𝛽 ←

(𝑔𝑘, 𝑠𝑘) ← 𝜒 



Hybrid Quantum Fully-Homomorphic Encryption
[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]



Hybrid Quantum Fully-Homomorphic Encryption
[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]

• Quantum Fully-Homomorphic Encryption (QFHE):
➢ Encryption scheme Enc, Dec, Eval .
➢ Enc 𝑄 𝑦 ← Eval Enc(𝑦), 𝑄  .

• Hybrid QFHE:
➢For every |𝜓⟩, Enc |𝜓⟩ ≔ 𝜓 𝑥,𝑧, ct𝑥,𝑧  .
➢ 𝜓 𝑥,𝑧 is the quantum one-time pad encryption of 𝜓 ,

𝜓 ≔ ෍

𝑦∈{0,1}𝑛

𝛼𝑦 ⋅ 𝑦  ,

𝜓 𝑥,𝑧 ≔ ෍

𝑦∈{0,1}𝑛

𝛼𝑦 ⋅ −1 𝑧,𝑦 ⋅ 𝑥 + 𝑦  .



Hybrid Quantum Fully-Homomorphic Encryption
[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← Enc(𝑦) 

𝑄(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄

𝑥, 𝑧 = Dec𝑠𝑘(ct𝑥,𝑧) 



Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition 
𝑥, 𝑧 ← 𝑟 is sometimes randomized.



Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition 
𝑥, 𝑧 ← 𝑟 is sometimes randomized.

More precisely: When,
𝑄(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄

Is executed honestly, the mapping 𝑥, 𝑧 ← 𝑟 is random for 
some circuits 𝑄.



Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition 
𝑥, 𝑧 ← 𝑟 is sometimes randomized.

For example:

• If 𝑄 is a Clifford circuit , the mapping is deterministic.

• If 𝑄 contains Toffoli gates, the mapping is randomized.

∃ Hybrid QFHE scheme with deterministic pad-transition?
OR,

∃ 𝑄∗ where the pad-transition uncontrollably random?



Public-key Semi-quantum Money - Intuition

Why should we care? 

∃ Hybrid QFHE scheme with deterministic pad-transition?
OR,

∃ 𝑄∗ where the pad-transition uncontrollably random?



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

∃ Hybrid QFHE scheme with deterministic pad-transition?
OR,

∃ 𝑄∗ where the pad-transition uncontrollably random?



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

We wanted
(𝑔𝑘, 𝑠𝑘) ← 𝜒 

𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘

forced entropy



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

 

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← 𝜒𝑄𝐹𝐻𝐸 

𝑄∗(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄∗



←

Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

 

( , ) 𝐺( 𝑔𝑘 )𝜓 𝛽 𝛽

𝜒 ←) ( 𝑔𝑘 , 𝑠𝑘 

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← 𝜒𝑄𝐹𝐻𝐸 

𝑄∗(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄∗



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

 

If the pad 𝑥, 𝑧  must be randomized, so is ct𝑥,𝑧 = 𝛽!

←( , ) 𝐺( 𝑔𝑘 )𝜓 𝛽 𝛽

𝜒 ←) ( 𝑔𝑘 , 𝑠𝑘 

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← 𝜒𝑄𝐹𝐻𝐸 

𝑄∗(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄∗



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

 

If the pad 𝑥, 𝑧  must be randomized, so is ct𝑥,𝑧 = 𝛽!

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← 𝜒𝑄𝐹𝐻𝐸 

𝑄∗(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄∗



Public-key Semi-quantum Money - Intuition

We define a quantum Subspace-Generating Circuit (SGC) to 
be a circuit 𝑄𝑆𝐺  that maps:

∀ subspace 𝑆 ⊆ {0,1}𝑛 and basis 𝑀𝑆 , 
𝑄𝑆𝐺 𝑀𝑆 = 𝑆  .



Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are 
synergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting 
state is unclonable (the pad 𝑥′, 𝑧′ must contain entropy).

2. Subspace states were known to be publicly verifiable. 
However, due to the structure of Hybrid QFHE, even an 
encrypted subspace state is publicly verifiable.



Homomorphic Evaluation of SGC Generates Unclonable States



Homomorphic Evaluation of SGC Generates Unclonable States

𝑀𝑆 ⊕ 𝑟, ct𝑟 ← Enc(𝑀𝑆) 

𝑀𝑆 ← random subspace 𝑆 ⊆ {0,1}𝑛 



Homomorphic Evaluation of SGC Generates Unclonable States

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑀𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

A∗

𝑀𝑆 ⊕ 𝑟, ct𝑟 ← Enc(𝑀𝑆) 

𝑀𝑆 ← random subspace 𝑆 ⊆ {0,1}𝑛 



Homomorphic Evaluation of SGC Generates Unclonable States

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑀𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

A∗

𝑀𝑆 ⊕ 𝑟, ct𝑟 ← Enc(𝑀𝑆) 

𝑀𝑆 ← random subspace 𝑆 ⊆ {0,1}𝑛 

Unclonable!



Lemma (informal):

Let 𝑆 a random subspace 𝑆 ⊆ {0,1}𝑛 of dimension 
𝑛

2
. 

Let 𝑀𝑆 ∈ {0,1}
𝑛

2
×𝑛

a basis for 𝑆.

Then, no quantum polynomial-time A∗ can get 𝑀𝑆 ⊕ 𝑟, ct𝑟  
an encryption by Enc(𝑀𝑆) , and output,

|𝑆⟩𝑥,𝑧, |𝑆⟩𝑥,𝑧, ct𝑥,𝑧  ,

For some 𝑥, 𝑧.

Homomorphic Evaluation of SGC Generates Unclonable States



Proof:

• Let 𝑀𝑆 ∈ {0,1}
𝑛

2
×𝑛

 a basis for a random subspace 𝑆 ⊆
0,1 𝑛 , dim 𝑆 =

𝑛

2
 .

• Assume a quantum poly-time A∗, gets an encryption 
𝑀𝑆 ⊕ 𝑟, ct𝑟  and outputs,

|𝑆⟩𝑥,𝑧, |𝑆⟩𝑥,𝑧, ct𝑥,𝑧 .

• Observe: 𝑆 takes negligible fraction 
2

𝑛
2

2𝑛 = 2−
𝑛

2  from 0,1 𝑛. By 

security of QFHE, computationally hard to find s ∈ 𝑆 ∖ 0 .

Homomorphic Evaluation of SGC Generates Unclonable States



Proof (continued):

• How can the reduction use |𝑆⟩𝑥,𝑧, |𝑆⟩𝑥,𝑧, ct𝑥,𝑧  to find a 
vector s ∈ 𝑆 ∖ 0 ?

1. Measure one copy:  get  𝑣 + 𝑥 ← |𝑆⟩𝑥,𝑧,  for 𝑣 ∈ 𝑆.

2. Add 𝑣 + 𝑥 to the other superposition: 

Homomorphic Evaluation of SGC Generates Unclonable States



Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition: 
𝐶𝑣+𝑥 𝑆 𝑥,𝑧

Homomorphic Evaluation of SGC Generates Unclonable States



Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition: 
𝐶𝑣+𝑥 𝑆 𝑥,𝑧

= 𝐶𝑣+𝑥 ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States



Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition: 
𝐶𝑣+𝑥 𝑆 𝑥,𝑧

= 𝐶𝑣+𝑥 ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑢

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑥 + 𝑣 + 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States



Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition: 

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑥 + 𝑣 + 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States



Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition: 

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑥 + 𝑣 + 𝑢

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑣 + 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States

On one hand,
string shift cancels



Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition: 

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑥 + 𝑣 + 𝑢

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑣 + 𝑢

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States

On one hand,
string shift cancels

On the other hand,
Subspace 

undisturbed!



Proof (continued):

• Finally, measuring σ𝑢∈𝑆 −1 ⟨𝑧,𝑢⟩ 𝑢  yields s ∈ 𝑆 ∖ 0  with 
high probability. 

• This in contradiction to the security of the hybrid QFHE.

Homomorphic Evaluation of SGC Generates Unclonable States

∎



Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are 
synergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting 
state is unclonable (the pad 𝑥′, 𝑧′ must contain entropy).

2. Subspace states were known to be publicly verifiable. 
However, due to the structure of Hybrid QFHE, even an 
encrypted subspace state is publicly verifiable.



Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are 
synergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting 
state is unclonable (the pad 𝑥′, 𝑧′ must contain entropy).

2. Subspace states were known to be publicly verifiable. 
However, due to the structure of Hybrid QFHE, even an 
encrypted subspace state is publicly verifiable.



RecSen
𝑆 ⊕ 𝑟, ct𝑟

1. Enc 𝑆
↓

𝑆 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 2. 

Eval 𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

↓

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧

Encrypted Subspace State Verification

How to verify |𝑆⟩𝑥,𝑧?



Encrypted Subspace State Verification

[Aaronson-Christiano-2012]:

Given quantum oracle access to membership for 𝑆 and 
𝑆⊥, the state |𝑆⟩ can be verified.

•We want to verify the encrypted 𝑆 𝑥,𝑧.



Encrypted Subspace State Verification

Hybrid QFHE is useful in two ways for our verification:

1. By the exact same techniques from [AC-12], the 
state 𝑆 𝑥,𝑧 can be verified with quantum oracle 
access to membership in 𝑆 + 𝑥 and 𝑆⊥ + 𝑧.

2. Even though 𝑥, 𝑧 randomly distribute, the sender 
can know the pads by decrypting the message of 
the receiver.



ct𝑥,𝑧

3. Dec𝑠𝑘(ct𝑥,𝑧) 
↓

𝑥, 𝑧

O𝑆+𝑥 ,O𝑆⊥+𝑧

Encrypted Subspace State Verification

Verifiable!

RecSen
𝑆 ⊕ 𝑟, ct𝑟

1. Enc 𝑆
↓

𝑆 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 2. 

Eval 𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

↓

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧



ct𝑥,𝑧

3. Dec𝑠𝑘(ct𝑥,𝑧) 
↓

𝑥, 𝑧

O𝑆+𝑥 ,O𝑆⊥+𝑧

Encrypted Subspace State Verification

RecSen
𝑆 ⊕ 𝑟, ct𝑟

1. Enc 𝑆
↓

𝑆 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 2. 

Eval 𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

↓

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧

Additional hurdles – in [S-2021]



Two Open Problems

1. Reduce assumptions: Can we construct PKQM from 
non-iO assumptions? Possibly lattice-based?

2. Increase functionality: Can we make semi-
quantum schemes non-interactive? This will imply 
Quantum Lightning [Zhandry-2018] or even One-
Shot Signatures [Amos-Georgiou-Kiayias-Zhandry-
2020].
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