
Omri Shmueli

Quantum Money
(and what it really captures)

Part II

Warsaw IACR Summer School on Post-quantum Cryptography 2024

Talk Plan – 2nd Part

• The quantum delivery verification problem.

• Tokenized signatures.
➢Coset states and classical proofs of quantum information deletion.

• Semi-quantum money.
➢Classical delegation of unclonable state generation (technical).

The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘

Scenario I

The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

𝜓 𝑝𝑘

Scenario I

The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

𝜓 𝑝𝑘

Still waiting
for my

money…

Scenario I

The Quantum Delivery Verification Problem

𝑝𝑘

𝜓 𝑝𝑘

Still waiting
for my

money…

? ? ?

𝑝𝑘

Scenario I

The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘

Scenario II

The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

𝜓 𝑝𝑘

Sent! Have
a nice day

Scenario II

The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘

Scenario III

The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

𝜓 𝑝𝑘

Scenario III

The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

𝜓 𝑝𝑘 → |𝜙⟩

Scenario III

Channel can be actively adversarial,
or just faulty. Does not matter.

The Quantum Delivery Verification Problem

𝑝𝑘 𝑝𝑘

Scenario III

|𝜙⟩

Quantum state was unclonable and is
now destroyed.

We cannot try sending again.

The Quantum Delivery Verification Problem

Q:

How can you guarantee & prove that you have sent an
unclonable quantum state (to some given destination)?

Tokenized Signatures

Tokenized Signatures
[Ben-David-Sattath-2016]

Definition [Tokenized Signatures Scheme] :
Given by three polynomial-time quantum algorithms,
and one classical algorithm,

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen 1𝑛 .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩ .

• 𝜎𝑚 ∈ {0,1}𝑛 ← Sign 𝑝𝑘, 𝜓 𝑝𝑘, 𝑚 ∈ 0,1 .

• 𝑏 ∈ 0,1 ← SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1 .

Tokenized Signatures

•Correctness 1:

Pr
𝑝𝑘, 𝜓 𝑝𝑘 ←Gen(1𝑛)

1, 𝜓 𝑝𝑘 ← Ver 𝑝𝑘, 𝜓 𝑝𝑘 = 1 .

Tokenized Signatures

Ver

•Correctness 2: If the verifier accepted the state, the state
can be used to successfully sign on any bit 𝑚 ∈ 0,1 .

𝑝𝑘, |𝜙⟩ 1, |𝜙′⟩
Sign

𝑝𝑘, 𝑚 ∈ 0,1

SignVer

𝑝𝑘, 𝑚 ∈ 0,1

𝜎𝑚
1

Tokenized Signatures

• Security:

Gen 𝐴∗

poly-time

𝜎0

𝜎1

𝑝𝑘, 𝜓 𝑝𝑘

Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

Q:

Tokenized signatures imply PKQM. How?

Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

A:

Assume you can cheat the verifier. Then you can sign on both 0 and 1.

Tokenized Signatures

• Security:

Gen 𝐴∗

poly-time

𝜓0

𝜓1

𝑝𝑘, 𝜓 𝑝𝑘

Tokenized Signatures

Ver

•Correctness 2: If the verifier accepted the state, the state
can be used to successfully sign on any bit 𝑚 ∈ 0,1 .

𝑝𝑘, 𝜓0 1, 𝜓0
′

Sign

𝑝𝑘, 0

SignVer

𝑝𝑘, 0

𝜎0
1

Tokenized Signatures

Ver

•Correctness 2: If the verifier accepted the state, the state
can be used to successfully sign on any bit 𝑚 ∈ 0,1 .

𝑝𝑘, 𝜓1 1, 𝜓1
′

Sign

𝑝𝑘, 1

SignVer

𝑝𝑘, 1

𝜎1
1

Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

A:

Assume you can cheat the verifier. Then you can sign on both 0 and 1.

Tokenized Signatures

• Security:

SignVer 𝑝𝑘, 𝜎0, 0 = 1

SignVer 𝑝𝑘, 𝜎1, 1 = 1Gen 𝐴∗

poly-time

with negligible probability

Note: 𝜎𝑚 ∈ {0,1}𝑛 serves as a classical proof of destruction for the
quantum information in 𝜓 𝑝𝑘.

The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝑝𝑘

𝜓 𝑝𝑘

The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝑝𝑘, val𝑝𝑘

𝜓 𝑝𝑘

𝑝𝑘′, val𝑝𝑘′

𝜓 𝑝𝑘′

The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝜓 𝑝𝑘 = 𝜓 𝑝𝑘1
, ⋯ , 𝜓 𝑝𝑘𝜆

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆

The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝜓 𝑝𝑘 = 𝜓 𝑝𝑘1
, ⋯ , 𝜓 𝑝𝑘𝜆

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

𝑝𝑘′

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆

The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝜓 𝑝𝑘 = 𝜓 𝑝𝑘1
, ⋯ , 𝜓 𝑝𝑘𝜆

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

1. ℎ ← 𝐻 𝑝𝑘′ .

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆

2. 𝜎ℎ ∈ {0,1}𝑛⋅𝜆 ← Sign 𝑝𝑘, 𝜓 𝑝𝑘 , ℎ .

The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

𝜎
𝐻 𝑝𝑘′

𝑝𝑘′

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆

Note: We got classical-only
communication for free!

How to Construct Tokenized Signatures

Definition [Coset State]:

Let 𝑛 ∈ ℕ and let 𝑆 ⊆ 0,1 𝑛 a subspace of 0,1 𝑛 and
let 𝑥, 𝑧 ∈ 0,1 𝑛.

The coset state of 𝑆 with string shift 𝑥 and phase shift 𝑧
is defined as

𝑆 𝑥,𝑧 ≔
1

𝑆
෍

𝑢∈𝑆

−1 𝑧,𝑢 ⋅ 𝑥 + 𝑢 .

How to Construct Tokenized Signatures

Lemma [Quantum Fourier Transform of a Coset State]:
Let 𝑛 ∈ ℕ and let 𝑆 ⊆ 0,1 𝑛 a subspace of 0,1 𝑛 and let 𝑥, 𝑧 ∈
0,1 𝑛. Then,

𝐻⊗𝑛 ⋅ 𝑆 𝑥,𝑧 = 𝑆⊥ 𝑧,𝑥.

Proof: By calculation.

How to Construct Tokenized Signatures

Theorem [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:
Assume the existence of a quantum-secure iO and injective OWFs.

Let 𝑆 a random subspace 𝑆 ⊆ {0,1}𝑛 of dimension
𝑛

2
, and let 𝑥, 𝑧 ∈

0,1 𝑛 random strings.
For every quantum polynomial-time algorithm 𝐴∗, the following
probability is negligible:

Pr
Ο𝑆+𝑥,Ο𝑆⊥+𝑧, 𝑆 𝑥,𝑧 ←Gen(1𝑛)

𝐴∗ Ο𝑆+𝑥 , Ο𝑆⊥+𝑧, 𝑆 𝑥,𝑧 = 𝑢, 𝑣 ,

𝑢 ∈ 𝑆 + 𝑥,

𝑣 ∈ 𝑆⊥ + 𝑧

 .

How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen(1𝑛).

• 𝜓 𝑝𝑘 = 𝑆 𝑥,𝑧.

• 𝑝𝑘 = Obf𝑆+𝑥, Obf𝑆⊥+𝑧 .

• Ver 𝑝𝑘, |𝜙⟩ :
➢First, check that the rightmost qubit of 𝑈𝑆+𝑥 𝜙 |0⟩ is 1.

➢Now the state is 𝜙′ ≔ σ𝑢∈𝑆 𝛼𝑢
′ ⋅ 𝑥 + 𝑢 . Apply 𝐻⊗𝑛 ⋅ 𝜙′ = |𝜙′′⟩.

➢Finally, check that the rightmost qubit of 𝑈𝑆⊥+𝑧 𝜙′′ |0⟩ is 1.

How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

• Sign 𝑝𝑘, 𝑆 𝑥,𝑧, 𝑚 ∈ 0,1 : ?

• SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1 : ?

How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

• Sign 𝑝𝑘, 𝑆 𝑥,𝑧, 𝑚 ∈ 0,1 : Execute 𝐻⊗𝑛 𝑚
⋅ 𝑆 𝑥,𝑧, and

measure.

• SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1 :

How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

• Sign 𝑝𝑘, 𝑆 𝑥,𝑧, 𝑚 ∈ 0,1 : Execute 𝐻⊗𝑛 𝑚
⋅ 𝑆 𝑥,𝑧, and

measure.

• SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1 : If 𝑚 = 0 then check 𝜎𝑚 ∈ 𝑆 + 𝑥,
otherwise, check 𝜎𝑚 ∈ 𝑆⊥ + 𝑧.

The Quantum Delivery Verification Problem
(Strikes Again)

The Quantum Delivery Verification Problem
(Strikes Again)

The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘 𝑝𝑘

Scenario I

𝜓 𝑝𝑘

The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

Scenario I

𝑝𝑘

𝜓 𝑝𝑘

Where is
my money?

The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

Scenario II

𝜓 𝑝𝑘

𝑝𝑘

The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

Scenario II

𝜓 𝑝𝑘

𝑝𝑘
Sent!

The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

Scenario III

𝜓 𝑝𝑘

𝑝𝑘

The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

𝜓 𝑝𝑘

Scenario III

𝑝𝑘

The Quantum Delivery Verification Problem
(Strikes Again)

𝑝𝑘

𝜓 𝑝𝑘 → |𝜙⟩

Scenario III

Channel can be actively adversarial,
or just faulty. Does not matter.

𝑝𝑘

The Quantum Delivery Verification Problem
(Strikes Again)

Q:

Why doesn’t the solution from before work?

That is, why doesn’t tokenized signatures solve the
problem?

The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

𝜓 𝑝𝑘 = 𝜓 𝑝𝑘1
, ⋯ , 𝜓 𝑝𝑘𝜆

𝑝𝑘 = 𝑝𝑘1, ⋯ , 𝑝𝑘𝜆, val𝑝𝑘

𝜓
𝑝𝑘′ = 𝜓 𝑝𝑘1

′ , ⋯ , 𝜓 𝑝𝑘𝜆
′

𝑝𝑘′ = 𝑝𝑘1
′ , ⋯ , 𝑝𝑘𝜆

′ , val
𝑝𝑘′

A CRH 𝐻: 0,1 ∗ → 0,1 𝜆

The Quantum Delivery Verification Problem
(Strikes Again)

Q:

Why doesn’t the solution from before work?

That is, why doesn’t tokenized signatures solve the
problem?

A:

The previous solution assumed the two parties already
have money states! For this, the bank needs to distribute

states in the first place.

Public-key Semi-quantum
Money

The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘
When 𝜓 𝑝𝑘 is already generated,

it is unknown how to send it.

The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘
We need to somehow let the
receiver generate it by itself.

The Quantum Delivery Verification Problem

𝜓 𝑝𝑘

𝑝𝑘 𝑝𝑘
Idea: If you can classically delegate

the generation of the state,
then you can prove in ZK that the
(classical) instructions yield a valid

state.

The Quantum Delivery Verification Problem

Definition [Tokenized Signatures Scheme] :

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen 1𝑛 .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩ .

• 𝜎𝑚 ∈ {0,1}𝑛 ← Sign 𝑝𝑘, 𝜓 𝑝𝑘 , 𝑚 ∈ 0,1 .

• 𝑏 ∈ 0,1 ← SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1 .

Semi-quantum Tokenized Signatures
[S-2021], [S-2022]

Definition [Semi-quantum Tokenized Signatures]:

• 𝑝𝑘, Rec: 𝜓 𝑝𝑘 ← ⟨ Sen, Rec ⟩ 1𝑛 .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩ .

• 𝜎𝑚 ∈ {0,1}𝑛 ← Sign 𝑝𝑘, 𝜓 𝑝𝑘 , 𝑚 ∈ 0,1 .

• 𝑏 ∈ 0,1 ← SignVer 𝑝𝑘, 𝜎𝑚, 𝑚 ∈ 0,1 .

Step 1 [S-2021]:

Classical delegation of unclonable state generation.

Step 2 [S-2022]:

A different technique for signing quantum money states,
tailored for states that resulted from delegation.

Semi-quantum Tokenized Signatures
[S-2021], [S-2022]

Classical delegation of state generation:

RecSen

Classical delegation of state generation:

RecSen

Classical delegation of state generation:

Rec

𝑝𝑘 𝜓 𝑝𝑘

Sen

Rec∗

Security - Remote No Cloning

Sen

Security - Remote No Cloning

Sen Rec∗

Security - Remote No Cloning

𝜓0 , 𝜓1Sen Rec∗

Security - Remote No Cloning

Main difference: 𝜓 𝑝𝑘 is unclonable for the generating computer.

Sen Rec∗

Ver 𝑝𝑘, 𝜓 0 = 1

Ver 𝑝𝑘, 𝜓 1 = 1

with negligible
probability

Public-key Semi-quantum Money
Introduced in [Radian-Sattath-2019]

Definition [Public-key Semi-quantum Money]:

• 𝑝𝑘, Rec: 𝜓 𝑝𝑘 ← ⟨ Sen, Rec ⟩ 1𝑛 .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩ .

Theorem [S-2021]:

Assume,

•Quantum sub-exponential hardness of LWE, and

•Quantum-secure indistinguishability obfuscation for
classical circuits.

Then, there exists a Public-Key Semi-Quantum Money
Scheme.

Public-key Semi-quantum Money

Construct a protocol:

• Sen : A classical sender, wants to delegate the state
generation.

• Rec : A quantum receiver, generates the state.
Possibly malicious.

At the end of interaction: Sen outputs 𝑝𝑘, Rec outputs
|𝜓⟩𝑝𝑘.

Public-key Semi-quantum Money - Intuition

• 𝑔𝑘 ← 𝜒: Classically efficiently samplable
distribution.

• 𝜓 𝛽 , 𝛽 ← 𝐺(𝑔𝑘): A quantum polynomial-time
algorithm, outputs classical 𝛽 ∈ {0,1}𝑛 and a
quantum 𝜓 𝛽.

Public-key Semi-quantum Money - Intuition

• 𝑔𝑘 ← 𝜒: Classically efficiently samplable
distribution.

• 𝜓 𝛽 , 𝛽 ← 𝐺(𝑔𝑘): A quantum polynomial-time
algorithm, outputs classical 𝛽 ∈ {0,1}𝑛 and a
quantum 𝜓 𝛽.

Unclonability: Given a sampled 𝑔𝑘, it is
computationally impossible to compute

𝜓 𝛽 , 𝜓 𝛽 , 𝛽

Public-key Semi-quantum Money - Intuition

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2.

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

A General Template

A General Template

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2.

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

Q:
The current task
can be achieved

with standard
assumptions.

How?

A General Template

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2.

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

Q:
The current task
can be achieved

with standard
assumptions.

How?

A: 𝑔𝑘 is a CRH key.
𝐺 𝑔𝑘 computes in superposition and measures the output of the CRH 𝐻.

A General Template

RecSen
𝑔𝑘1. 𝜒

↓
ℎ𝑘 2.

𝐺 ℎ𝑘
↓

෍

𝑥∈ 0,1 𝑛:𝐻 𝑥 =𝑦

|𝑥⟩ , 𝑦

Q:
The current task
can be achieved

with standard
assumptions.

How?

A: 𝑔𝑘 is a CRH key.
𝐺 𝑔𝑘 computes in superposition and measures the output of the CRH 𝐻.

A General Template

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2.

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

Q:
What about

public verification
Of 𝜓 𝛽?

A General Template

Q:
What about

public verification
Of 𝜓 𝛽?

A:
Like before, we
will try to use
obfuscation.

RecSen
𝑔𝑘1. 𝜒

↓
𝑔𝑘 2.

𝐺 𝑔𝑘
↓

𝜓 𝛽 , 𝛽

• 𝑔𝑘, 𝑠𝑘 ← 𝜒: Classically efficiently samplable
distribution.

• 𝜓 𝛽 , 𝛽 ← 𝐺(𝑔𝑘): A quantum polynomial-time
algorithm, outputs classical 𝛽 ∈ {0,1}𝑛 and a
quantum 𝜓 𝛽.

A General Template

Verification:
1. There is an efficient classical computation 𝐶:

∀𝛽: 𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽. 𝑓𝛽 is a classical circuit.

2. 𝜓 𝛽 can be verified, having quantum oracle
access to 𝑓𝛽.

Unclonability: For every 𝛽, the state 𝜓 𝛽 is
unclonable, even given 𝑔𝑘 AND oracle access to 𝑓𝛽.

A General Template

Rec1. (𝑔𝑘, 𝑠𝑘) ← 𝜒

A General Template

Sen 𝑔𝑘

𝛽

3. 𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽

Obf𝑓𝛽

2.
𝐺 𝑔𝑘

↓

𝜓 𝛽 , 𝛽

Public-key Semi-quantum Money - Intuition

•We want to implement the template.

• (𝑔𝑘, 𝑠𝑘) ← 𝜒.

• 𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘 .

• 𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽.

Public-key Semi-quantum Money - Intuition

•We want to implement the template.

• (𝑔𝑘, 𝑠𝑘) ← 𝜒.

• 𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘 .

• 𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽.

Q: What is a minimal but expressive property we need
from these?

Public-key Semi-quantum Money - Intuition

•We want to implement the template.

• (𝑔𝑘, 𝑠𝑘) ← 𝜒.

• 𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘 .

• 𝐶 𝑠𝑘, 𝛽 = 𝑓𝛽.

Q: What is a minimal but expressive property we need
from these?

A: Measurement result 𝛽 must contain entropy.

Public-key Semi-quantum Money - Intuition

(𝑔𝑘, 𝑠𝑘) ← 𝜒

𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘

Easy to generate entropy honestly

Rec∗

Public-key Semi-quantum Money - Intuition

← 𝑔𝑘
?

𝜓 𝛽 , 𝛽 ←

(𝑔𝑘, 𝑠𝑘) ← 𝜒

Still high-entropy!

Rec∗

Public-key Semi-quantum Money - Intuition

← 𝑔𝑘
?

𝜓 𝛽 , 𝛽 ←

(𝑔𝑘, 𝑠𝑘) ← 𝜒

Q:
We claim that for 𝜓 𝛽 to be unclonable, the classical part 𝛽 must

have a non-trivial amount of entropy. Why?

Public-key Semi-quantum Money - Intuition

A:
If some specific 𝛽 can be sampled with 𝜓 𝛽, with good probability,

then this can be done twice, and we cloned 𝜓 𝛽 with good probability.

Rec∗

← 𝑔𝑘
?

𝜓 𝛽 , 𝛽 ←

(𝑔𝑘, 𝑠𝑘) ← 𝜒

Public-key Semi-quantum Money - Intuition

Meaning:
𝜓 𝛽 is a quantum proof for the entropy of 𝛽.

Rec∗

← 𝑔𝑘
?

𝜓 𝛽 , 𝛽 ←

(𝑔𝑘, 𝑠𝑘) ← 𝜒

Hybrid Quantum Fully-Homomorphic Encryption
[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]

Hybrid Quantum Fully-Homomorphic Encryption
[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]

• Quantum Fully-Homomorphic Encryption (QFHE):
➢ Encryption scheme Enc, Dec, Eval .
➢ Enc 𝑄 𝑦 ← Eval Enc(𝑦), 𝑄 .

• Hybrid QFHE:
➢For every |𝜓⟩, Enc |𝜓⟩ ≔ 𝜓 𝑥,𝑧, ct𝑥,𝑧 .
➢ 𝜓 𝑥,𝑧 is the quantum one-time pad encryption of 𝜓 ,

𝜓 ≔ ෍

𝑦∈{0,1}𝑛

𝛼𝑦 ⋅ 𝑦 ,

𝜓 𝑥,𝑧 ≔ ෍

𝑦∈{0,1}𝑛

𝛼𝑦 ⋅ −1 𝑧,𝑦 ⋅ 𝑥 + 𝑦 .

Hybrid Quantum Fully-Homomorphic Encryption
[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← Enc(𝑦)

𝑄(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄

𝑥, 𝑧 = Dec𝑠𝑘(ct𝑥,𝑧)

Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition
𝑥, 𝑧 ← 𝑟 is sometimes randomized.

Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition
𝑥, 𝑧 ← 𝑟 is sometimes randomized.

More precisely: When,
𝑄(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄

Is executed honestly, the mapping 𝑥, 𝑧 ← 𝑟 is random for
some circuits 𝑄.

Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition
𝑥, 𝑧 ← 𝑟 is sometimes randomized.

For example:

• If 𝑄 is a Clifford circuit , the mapping is deterministic.

• If 𝑄 contains Toffoli gates, the mapping is randomized.

∃ Hybrid QFHE scheme with deterministic pad-transition?
OR,

∃ 𝑄∗ where the pad-transition uncontrollably random?

Public-key Semi-quantum Money - Intuition

Why should we care?

∃ Hybrid QFHE scheme with deterministic pad-transition?
OR,

∃ 𝑄∗ where the pad-transition uncontrollably random?

Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

∃ Hybrid QFHE scheme with deterministic pad-transition?
OR,

∃ 𝑄∗ where the pad-transition uncontrollably random?

Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

We wanted
(𝑔𝑘, 𝑠𝑘) ← 𝜒

𝜓 𝛽 , 𝛽 ← 𝐺 𝑔𝑘

forced entropy

Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← 𝜒𝑄𝐹𝐻𝐸

𝑄∗(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄∗

←

Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

(,) 𝐺(𝑔𝑘)𝜓 𝛽 𝛽

𝜒 ←) (𝑔𝑘 , 𝑠𝑘

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← 𝜒𝑄𝐹𝐻𝐸

𝑄∗(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄∗

Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

If the pad 𝑥, 𝑧 must be randomized, so is ct𝑥,𝑧 = 𝛽!

←(,) 𝐺(𝑔𝑘)𝜓 𝛽 𝛽

𝜒 ←) (𝑔𝑘 , 𝑠𝑘

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← 𝜒𝑄𝐹𝐻𝐸

𝑄∗(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄∗

Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such 𝑄∗.

If the pad 𝑥, 𝑧 must be randomized, so is ct𝑥,𝑧 = 𝛽!

𝑦 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 ← 𝜒𝑄𝐹𝐻𝐸

𝑄∗(𝑦)𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑦 ⊕ 𝑟, ct𝑟 , 𝑄∗

Public-key Semi-quantum Money - Intuition

We define a quantum Subspace-Generating Circuit (SGC) to
be a circuit 𝑄𝑆𝐺 that maps:

∀ subspace 𝑆 ⊆ {0,1}𝑛 and basis 𝑀𝑆 ,
𝑄𝑆𝐺 𝑀𝑆 = 𝑆 .

Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are
synergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting
state is unclonable (the pad 𝑥′, 𝑧′ must contain entropy).

2. Subspace states were known to be publicly verifiable.
However, due to the structure of Hybrid QFHE, even an
encrypted subspace state is publicly verifiable.

Homomorphic Evaluation of SGC Generates Unclonable States

Homomorphic Evaluation of SGC Generates Unclonable States

𝑀𝑆 ⊕ 𝑟, ct𝑟 ← Enc(𝑀𝑆)

𝑀𝑆 ← random subspace 𝑆 ⊆ {0,1}𝑛

Homomorphic Evaluation of SGC Generates Unclonable States

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑀𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

A∗

𝑀𝑆 ⊕ 𝑟, ct𝑟 ← Enc(𝑀𝑆)

𝑀𝑆 ← random subspace 𝑆 ⊆ {0,1}𝑛

Homomorphic Evaluation of SGC Generates Unclonable States

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧 ← Eval 𝑀𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

A∗

𝑀𝑆 ⊕ 𝑟, ct𝑟 ← Enc(𝑀𝑆)

𝑀𝑆 ← random subspace 𝑆 ⊆ {0,1}𝑛

Unclonable!

Lemma (informal):

Let 𝑆 a random subspace 𝑆 ⊆ {0,1}𝑛 of dimension
𝑛

2
.

Let 𝑀𝑆 ∈ {0,1}
𝑛

2
×𝑛

a basis for 𝑆.

Then, no quantum polynomial-time A∗ can get 𝑀𝑆 ⊕ 𝑟, ct𝑟
an encryption by Enc(𝑀𝑆) , and output,

|𝑆⟩𝑥,𝑧, |𝑆⟩𝑥,𝑧, ct𝑥,𝑧 ,

For some 𝑥, 𝑧.

Homomorphic Evaluation of SGC Generates Unclonable States

Proof:

• Let 𝑀𝑆 ∈ {0,1}
𝑛

2
×𝑛

 a basis for a random subspace 𝑆 ⊆
0,1 𝑛 , dim 𝑆 =

𝑛

2
 .

• Assume a quantum poly-time A∗, gets an encryption
𝑀𝑆 ⊕ 𝑟, ct𝑟 and outputs,

|𝑆⟩𝑥,𝑧, |𝑆⟩𝑥,𝑧, ct𝑥,𝑧 .

• Observe: 𝑆 takes negligible fraction
2

𝑛
2

2𝑛 = 2−
𝑛

2 from 0,1 𝑛. By

security of QFHE, computationally hard to find s ∈ 𝑆 ∖ 0 .

Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

• How can the reduction use |𝑆⟩𝑥,𝑧, |𝑆⟩𝑥,𝑧, ct𝑥,𝑧 to find a
vector s ∈ 𝑆 ∖ 0 ?

1. Measure one copy: get 𝑣 + 𝑥 ← |𝑆⟩𝑥,𝑧, for 𝑣 ∈ 𝑆.

2. Add 𝑣 + 𝑥 to the other superposition:

Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition:
𝐶𝑣+𝑥 𝑆 𝑥,𝑧

Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition:
𝐶𝑣+𝑥 𝑆 𝑥,𝑧

= 𝐶𝑣+𝑥 ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition:
𝐶𝑣+𝑥 𝑆 𝑥,𝑧

= 𝐶𝑣+𝑥 ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑢

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑥 + 𝑣 + 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition:

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑥 + 𝑣 + 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition:

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑥 + 𝑣 + 𝑢

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑣 + 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States

On one hand,
string shift cancels

Proof (continued):

2. Add 𝑣 + 𝑥 to the other superposition:

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑥 + 𝑥 + 𝑣 + 𝑢

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑣 + 𝑢

= ෍

𝑢∈𝑆

−1 ⟨𝑧,𝑢⟩ 𝑢

Homomorphic Evaluation of SGC Generates Unclonable States

On one hand,
string shift cancels

On the other hand,
Subspace

undisturbed!

Proof (continued):

• Finally, measuring σ𝑢∈𝑆 −1 ⟨𝑧,𝑢⟩ 𝑢 yields s ∈ 𝑆 ∖ 0 with
high probability.

• This in contradiction to the security of the hybrid QFHE.

Homomorphic Evaluation of SGC Generates Unclonable States

∎

Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are
synergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting
state is unclonable (the pad 𝑥′, 𝑧′ must contain entropy).

2. Subspace states were known to be publicly verifiable.
However, due to the structure of Hybrid QFHE, even an
encrypted subspace state is publicly verifiable.

Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are
synergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting
state is unclonable (the pad 𝑥′, 𝑧′ must contain entropy).

2. Subspace states were known to be publicly verifiable.
However, due to the structure of Hybrid QFHE, even an
encrypted subspace state is publicly verifiable.

RecSen
𝑆 ⊕ 𝑟, ct𝑟

1. Enc 𝑆
↓

𝑆 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 2.

Eval 𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

↓

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧

Encrypted Subspace State Verification

How to verify |𝑆⟩𝑥,𝑧?

Encrypted Subspace State Verification

[Aaronson-Christiano-2012]:

Given quantum oracle access to membership for 𝑆 and
𝑆⊥, the state |𝑆⟩ can be verified.

•We want to verify the encrypted 𝑆 𝑥,𝑧.

Encrypted Subspace State Verification

Hybrid QFHE is useful in two ways for our verification:

1. By the exact same techniques from [AC-12], the
state 𝑆 𝑥,𝑧 can be verified with quantum oracle
access to membership in 𝑆 + 𝑥 and 𝑆⊥ + 𝑧.

2. Even though 𝑥, 𝑧 randomly distribute, the sender
can know the pads by decrypting the message of
the receiver.

ct𝑥,𝑧

3. Dec𝑠𝑘(ct𝑥,𝑧)
↓

𝑥, 𝑧

O𝑆+𝑥 ,O𝑆⊥+𝑧

Encrypted Subspace State Verification

Verifiable!

RecSen
𝑆 ⊕ 𝑟, ct𝑟

1. Enc 𝑆
↓

𝑆 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 2.

Eval 𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

↓

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧

ct𝑥,𝑧

3. Dec𝑠𝑘(ct𝑥,𝑧)
↓

𝑥, 𝑧

O𝑆+𝑥 ,O𝑆⊥+𝑧

Encrypted Subspace State Verification

RecSen
𝑆 ⊕ 𝑟, ct𝑟

1. Enc 𝑆
↓

𝑆 ⊕ 𝑟, ct𝑟 , 𝑠𝑘 2.

Eval 𝑆 ⊕ 𝑟, ct𝑟 , 𝑄𝑆𝐺

↓

|𝑆⟩𝑥,𝑧, ct𝑥,𝑧

Additional hurdles – in [S-2021]

Two Open Problems

1. Reduce assumptions: Can we construct PKQM from
non-iO assumptions? Possibly lattice-based?

2. Increase functionality: Can we make semi-
quantum schemes non-interactive? This will imply
Quantum Lightning [Zhandry-2018] or even One-
Shot Signatures [Amos-Georgiou-Kiayias-Zhandry-
2020].

	Slide 1
	Slide 2: Talk Plan – 2nd Part
	Slide 3: The Quantum Delivery Verification Problem
	Slide 4: The Quantum Delivery Verification Problem
	Slide 5: The Quantum Delivery Verification Problem
	Slide 6: The Quantum Delivery Verification Problem
	Slide 7: The Quantum Delivery Verification Problem
	Slide 8: The Quantum Delivery Verification Problem
	Slide 9: The Quantum Delivery Verification Problem
	Slide 10: The Quantum Delivery Verification Problem
	Slide 11: The Quantum Delivery Verification Problem
	Slide 12: The Quantum Delivery Verification Problem
	Slide 13: The Quantum Delivery Verification Problem
	Slide 14: Tokenized Signatures
	Slide 15: Tokenized Signatures [Ben-David-Sattath-2016]
	Slide 16: Tokenized Signatures
	Slide 17: Tokenized Signatures
	Slide 18: Tokenized Signatures
	Slide 19: Tokenized Signatures
	Slide 20: Tokenized Signatures
	Slide 21: Tokenized Signatures
	Slide 22: Tokenized Signatures
	Slide 23: Tokenized Signatures
	Slide 24: Tokenized Signatures
	Slide 25: Tokenized Signatures
	Slide 26: Tokenized Signatures
	Slide 27: The Quantum Delivery Verification Problem: Solution using Tokenized Signatures
	Slide 28: The Quantum Delivery Verification Problem: Solution using Tokenized Signatures
	Slide 29: The Quantum Delivery Verification Problem: Solution using Tokenized Signatures
	Slide 30: The Quantum Delivery Verification Problem: Solution using Tokenized Signatures
	Slide 31: The Quantum Delivery Verification Problem: Solution using Tokenized Signatures
	Slide 32: The Quantum Delivery Verification Problem: Solution using Tokenized Signatures
	Slide 33: How to Construct Tokenized Signatures
	Slide 34: How to Construct Tokenized Signatures
	Slide 35: How to Construct Tokenized Signatures
	Slide 36: How to Construct Tokenized Signatures
	Slide 37: How to Construct Tokenized Signatures
	Slide 38: How to Construct Tokenized Signatures
	Slide 39: How to Construct Tokenized Signatures
	Slide 40: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 41: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 42: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 43: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 44: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 45: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 46: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 47: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 48: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 49: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 50: The Quantum Delivery Verification Problem: Solution using Tokenized Signatures
	Slide 51: The Quantum Delivery Verification Problem (Strikes Again)
	Slide 52: Public-key Semi-quantum Money
	Slide 53: The Quantum Delivery Verification Problem
	Slide 54: The Quantum Delivery Verification Problem
	Slide 55: The Quantum Delivery Verification Problem
	Slide 56: The Quantum Delivery Verification Problem
	Slide 57: Semi-quantum Tokenized Signatures [S-2021], [S-2022]
	Slide 58: Semi-quantum Tokenized Signatures [S-2021], [S-2022]
	Slide 59: Classical delegation of state generation:
	Slide 60: Classical delegation of state generation:
	Slide 61: Classical delegation of state generation:
	Slide 62: Security - Remote No Cloning
	Slide 63: Security - Remote No Cloning
	Slide 64: Security - Remote No Cloning
	Slide 65: Security - Remote No Cloning
	Slide 66: Public-key Semi-quantum Money Introduced in [Radian-Sattath-2019]
	Slide 67: Public-key Semi-quantum Money
	Slide 68: Public-key Semi-quantum Money - Intuition
	Slide 69: Public-key Semi-quantum Money - Intuition
	Slide 70: Public-key Semi-quantum Money - Intuition
	Slide 71: A General Template
	Slide 72: A General Template
	Slide 73: A General Template
	Slide 74: A General Template
	Slide 75: A General Template
	Slide 76: A General Template
	Slide 77: A General Template
	Slide 78: A General Template
	Slide 79: A General Template
	Slide 80: Public-key Semi-quantum Money - Intuition
	Slide 81: Public-key Semi-quantum Money - Intuition
	Slide 82: Public-key Semi-quantum Money - Intuition
	Slide 83: Public-key Semi-quantum Money - Intuition
	Slide 84: Public-key Semi-quantum Money - Intuition
	Slide 85: Public-key Semi-quantum Money - Intuition
	Slide 86: Public-key Semi-quantum Money - Intuition
	Slide 87: Public-key Semi-quantum Money - Intuition
	Slide 88: Hybrid Quantum Fully-Homomorphic Encryption [Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]
	Slide 89: Hybrid Quantum Fully-Homomorphic Encryption [Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]
	Slide 90: Hybrid Quantum Fully-Homomorphic Encryption [Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]
	Slide 91: Public-key Semi-quantum Money - Intuition
	Slide 92: Public-key Semi-quantum Money - Intuition
	Slide 93: Public-key Semi-quantum Money - Intuition
	Slide 94: Public-key Semi-quantum Money - Intuition
	Slide 95: Public-key Semi-quantum Money - Intuition
	Slide 96: Public-key Semi-quantum Money - Intuition
	Slide 97: Public-key Semi-quantum Money - Intuition
	Slide 98: Public-key Semi-quantum Money - Intuition
	Slide 99: Public-key Semi-quantum Money - Intuition
	Slide 100: Public-key Semi-quantum Money - Intuition
	Slide 101: Public-key Semi-quantum Money - Intuition
	Slide 102: Public-key Semi-quantum Money - Intuition
	Slide 103: Public-key Semi-quantum Money - Intuition
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Public-key Semi-quantum Money - Intuition
	Slide 119: Public-key Semi-quantum Money - Intuition
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

