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Talk Plan — 2"d Part

* The quantum delivery verification problem.

* Tokenized signatures.
» Coset states and classical proofs of quantum information deletion.

* Semi-quantum money.
» Classical delegation of unclonable state generation (technical).
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The Quantum Delivery Verification Problem

Channel can be actively adversarial,
or just faulty. Does not matter.

4
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The Quantum Delivery Verification Problem

Quantum state was unclonable and is
now destroyed.
We cannot try sending again.

) )

|®)

Scenario Il



The Quantum Delivery Verification Problem

Q:
How can you guarantee & prove that you have sent an
unclonable quantum state (to some given destination)?




Tokenized Signatures



Tokenized Signatures
[Ben-David-Sattath-2016]

Definition [Tokenized Signatures Scheme] :

Given by three polynomial-time quantum algorithms,
and one classical algorithm,

* (pk, l)pr) < Gen(1™).

* ( |9")) « Ver(pk, [¢)) .
( ) « Sign(pk, [¥)pi, )
( ) (pk, om, ) -




Tokenized Signatures

* Correctness 1:

( |1/J>pk) Gen( )[( ‘lp)l’k) < Ver( , hp)pk)] =1.



Tokenized Signatures

* Correctness 2: If the verifier accepted the state, the state
can be used to successfully sign on any bit




* Security:

Tokenized Signatures

poly-time



Tokenized Signatures

* Security:
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with negligible probability




Tokenized Signatures

* Security:

( 10—0))=1

Gen A ( 01, ) =1

poly-time

with negligible probability

Q:
Tokenized signatures imply PKQM. How?



Tokenized Signatures

* Security:

( 10—0))=1

Gen A ( 01, ) =1

poly-time

with negligible probability

A:
Assume you can cheat the verifier. Then you can sign on both 0 and 1.



Tokenized Signatures

* Security:

[1o)

A*

poly-time

[11)




Tokenized Signatures

* Correctness 2: If the verifier accepted the state, the state
can be used to successfully sign on any bit




Tokenized Signatures

* Correctness 2: If the verifier accepted the state, the state
can be used to successfully sign on any bit




Tokenized Signatures

* Security:

( 10—0))=1

Gen A ( 01, ) =1

poly-time

with negligible probability

A:
Assume you can cheat the verifier. Then you can sign on both 0 and 1.



Tokenized Signatures

* Security:
( )O-O) ) — 1
e 3
Gen A (pk,01,1) = 1
poly-time
with negligible probability
Note: serves as a classical proof of destruction for the

quantum information in [1),.
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The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

A CRH H:{0,1}* - {0,1}*

1 | 4

2. ( ) « Sign( N)g )w

|M V) = (llp)pk{' |l/’>pkﬁ)




The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

A CRH H: {0,1}* = {0,1}*

) )

Note: We got .classical-only |¢)W = (ll/’)pk{' e WJ)Pkﬁ)
communication for free!



How to Construct Tokenized Signatures

Definition [Coset State]:

Letn € NandletS € {0,1}" a subspace of {0,1}" and
let x,z € {0,1}".

The coset state of S with string shift x and phase shift z
is defined as

5y 1= —— Z( DE - x4 1)

uES



How to Construct Tokenized Signatures

Lemma [Quantum Fourier Transform of a Coset State]:
Letn € Nand letS € {0,1}" a subspace of {0,1}" and let x,z €
{0,1}". Then,

H®n ) |S>x,Z — |SJ‘>Z’x.

Proof: By calculation.



How to Construct Tokenized Signatures

Theorem [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

Assume the existence of a quantum-secure iO and injective OWEFs.

Let S a random subspace S € {0,1}" of dlmen5|on — andletx,z €
{0,1}"™ random strings.

For every quantum polynomial-time algorithm A", the following
probability is negligible:

A" (0542, 05145, 1SY77) = (w,v),
( [$9<2)Gen(r uES +x,
' ' veESt+z



How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

* (0K, [Y)pi) < Gen(17™).

* [W)pic = 1S)¥7.
. = (O Of 4 ) Obf5l+z)'
* Ver(pk,|p)):

> First, check that the rightmost qubit of Us,, (|¢)|0)) is 1.
>Now the stateis |¢') == Y ccal, - |x + u). Apply HO™ - |¢p') = |¢"').
> Finally, check that the rightmost qubit of Uc1, . (|¢p""}|0)) is 1.



How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

» Sign(pk, |S)*?, ):?
. (pk, o, ):?



How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

 Sign(pk, |S)*?, ) : Execute (H®")m - |S)*#4, and
measure.

y (pk, om, ):



How to Construct Tokenized Signatures

Construction [Ben-David-Sattath-2018] + [Coladangelo-Liu-Liu-
Zhandry-2021]:

 Sign(pk, |S)*?, ) : Execute (H®")m - |S)*#4, and
measure.

. (pk, o, ) : If m = 0 then check €S + x,
otherwise, check o, € S+ + z.
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The Quantum Delivery Verification Problem
(Strikes Again)
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The Quantum Delivery Verification Problem
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Scenario |



The Quantum Delivery Verification Problem
(Strikes Again)

Scenario |l



The Quantum Delivery Verification Problem
(Strikes Again)

Scenario |l



The Quantum Delivery Verification Problem
(Strikes Again)

Scenario Il



The Quantum Delivery Verification Problem
(Strikes Again)

|l/)>pk

Scenario Il



The Quantum Delivery Verification Problem
(Strikes Again)

Channel can be actively adversarial,
or just faulty. Does not matter.

| 4
PV)pk = |9)

)

Scenario Il



The Quantum Delivery Verification Problem
(Strikes Again)

Q:

Why doesn’t the solution from before work?

That is, why doesn’t tokenized signatures solve the
problem?



The Quantum Delivery Verification Problem:
Solution using Tokenized Signatures

A CRH H:{0,1}* - {0,1}4

)

Wz = (Wi [P, W = (i W)

)



The Quantum Delivery Verification Problem
(Strikes Again)

Why doesn’t the so
That is, why doesn’t to

Q:

ution from before work?

kenized signatures solve the

problem?

A:

The previous solution assumed the two parties already
have money states! For this, the bank needs to distribute
states in the first place.



Public-key -quantum
Money



The Quantum Delivery Verification Problem

When [), is already generated,
it is unknown how to send it.

)




The Quantum Delivery Verification Problem

We need to somehow let the

receiver generate it by itself.
O

)




The Quantum Delivery Verification Problem

Idea: If you can

4

then you can prove in ZK that the 4
(classical) instructions yield a valid
state.




The Quantum Delivery Verification Problem

Definition [Tokenized Sighatures Scheme] :

* (pk, [P)pi) < Gen(1™).

( 1@")) < Ver(pk, |¢)) .
* ( ) « Sign(pk, [¥)pi, ).
* ( ) (pk, om, ) -



Semi-quantum Tokenized Signatures
[S-2021], [S-2022]

Definition [Semi-quantum Tokenized Sighatures]:

’ ( ) INEE: h/J)pk) « ( ,Rec)(1).

* ( @")) « Ver(pk, [¢)) .
* ( ) « Sign(pk, [¥)pi, ).
* ( ) (pk, o, ) -



Semi-quantum Tokenized Signatures
[S-2021], [S-2022]

Step 1 [S-2021]:

Classical delegation of unclonable state generation.

Step 2 [S-2022]:

A different technique for signing quantum money states,
tailored for states that resulted from delegation.



Classical delegation of state generation:

Rec
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Classical delegation of state generation:

Rec

|1/J>pk



Security - Remote No Cloning
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Security - Remote No Cloning

(o), [h1)) Rec”



Security - Remote No Cloning

Main difference: |1}, is unclonable for the generating computer.

Rec”

Ver(pk, |)o) = 1
Ver( ) l/)>1) — 1

with negligible
probability




Public-key Semi-quantum Money
Introduced in [Radian-Sattath-2019]

Definition [Public-key Semi-quantum Money]:

’ ( ) INEE: h/J)pk) « ( ,Rec)(1).
* ( @' « Ver(pk, |¢)) .



Public-key Semi-quantum Money

Theorem [S-2021]:
Assume,
* Quantum sub-exponential hardness of LWE, and

* Quantum-secure indistinguishability obfuscation for
classical circuits.

Then, there exists a Public-Key Semi-Quantum Money
Scheme.



Public-key Semi-quantum Money - Intuition

Construct a protocol:

. . A classical sender, wants to delegate the state
generation.

 Rec : A quantum receiver, generates the state.
Possibly malicious.

At the end of interaction: outputs p/, Rec outputs

h/’)pk-



Public-key Semi-quantum Money - Intuition

. . Classically efficiently samplable
distribution.

‘ (W)ﬁ, ) «— G(gk): A quantum polynomial-time
algorithm, outputs classical / € {0,1}" and a
quantum [} 5.



Public-key Semi-quantum Money - Intuition

. . Classically efficiently samplable
distribution.

‘ (W)ﬁ, ) «— G(gk): A quantum polynomial-time
algorithm, outputs classical / € {0,1}" and a
quantum [} 5.

Unclonability: Given a sampled gk, it is
computationally impossible to compute



A General Template

Rec
G(gk)
res



A General Template

Q:

2.
The current task G(gk)
can be achieved l
with standard (Iv)g. B)

assumptions.
How?



A General Template

1.
l
Q: 2.
The current task G(gk)
can be achieved l
with standard (lp)g, £)

assumptions.
How?

A: is a CRH key.
G (gk) computes in superposition and measures the output of the CRH H.



A General Template

The current task
can be achieved
with standard
assumptions.
How?

]
8
N———

xE{O,l}n:H(x)=y/
A: is a CRH key.

G (gk) computes in superposition and measures the output of the CRH H.



A General Template

Q:

2.
What about G(gk)
public verification l
Of h/))ﬁ? (|1/J>3, )



A General Template

Q:
What about
public verification
Of |1/J)ﬁ?
A:
Like before, we
will try to use
obfuscation.

G(gk)
(1v)g, 1)



A General Template

. O . Classically efficiently samplable
distribution.

. (h/))ﬁ, ) — G(gk): A guantum polynomial-time
algorithm, outputs classical / € {0,1}" and a
quantum [} 5.



A General Template

Verification:
1. There is an efficient classical computation
V[: . [ 5 is a classical circuit.
2. h/))ﬁ can be verified, having quantum oracle
access to

Unclonability: For every [, the state [) is
unclonable, even given AND oracle access to



A General Template

Rec

(I¥)p. )



Public-key Semi-quantum Money - Intuition

* We want to implement the template.

* (lW)g, 17) « G(gk).
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* (lW)g, 17) « G(gk).

Q: What is a minimal but expressive property we need
from these?




Public-key Semi-quantum Money - Intuition

* We want to implement the template.

* (lW)g, 17) « G(gk).

Q: What is a minimal but expressive property we need
from these?

A: Measurement result // must contain entropy.




Public-key Semi-quantum Money - Intuition

(1Y), ) < G(gk)

Easy to generate entropy honestly



Public-key Semi-quantum Money - Intuition

Rec”

(¥)s,2) ?

Still high-entropy!



Public-key Semi-quantum Money - Intuition

Rec”

(1)g, 1) ?

Q:
We claim that for Ilp)ﬁ to be unclonable, the classical part / must
have a non-trivial amount of entropy. Why?



Public-key Semi-quantum Money - Intuition

Rec”

(1)g, 1) ?

A:
If some specific // can be sampled with )3, with good probability,
then this can be done twice, and we cloned |z/))ﬁ with good probability.




Public-key Semi-quantum Money - Intuition

Rec”

(1)g, 1) ?

Meaning:
[Y) 5 is a quantum proof for the entropy of



Hybrid Quantum Fully-Homomorphic Encryption

[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]



Hybrid Quantum Fully-Homomorphic Encryption

[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]

e Quantum Fully-Homomorphic Encryption (QFHE):
» Encryption scheme (Enc, Dec, Eval).

> Enc(Q(y)) « Eval( Q).

* Hybrid QFHE:
»For every |Y), Enc(|y)) = (It,b)x'z, ) .

> |Y)*Z is the quantum one-time pad encryption of |),

= ) ay-ly),

y€{0,1}"

W= Yy (<D x4 y)

y€{0,1}"



Hybrid Quantum Fully-Homomorphic Encryption

[Broadbent-Jeffrey-2015], [Dulek-Schaffner-Speelman-2016], [Mahadev-2018]

(Q(»)*#,ct,,) « Eval( ,Q)



Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition
(x,z) « ris sometimes randomized.



Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition
(x,z) « ris sometimes randomized.

More precisely: When,
(QU)**,ct, ) « Eval( ,Q)

Is executed honestly, the mapping (x, z) < r is random for
some circuits Q.




Public-key Semi-quantum Money - Intuition

Observation:

In all Hybrid QFHE constructions we know, the pad-transition
(x,z) « ris sometimes randomized.

For example:
* If Q is a Clifford circuit , the mapping is deterministic.
* If Q contains Toffoli gates, the mapping is randomized.
3 Hybrid QFHE scheme with deterministic pad-transition?

OR,
3 Q" where the pad-transition uncontrollably random?




Public-key Semi-quantum Money - Intuition

Why should we care?
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Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such Q".

3 Hybrid QFHE scheme with deterministic pad-transition?
OR,
3 Q" where the pad-transition uncontrollably random?




Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such Q".



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such Q".
We wanted

forced entropy



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such Q".

(Q*(¥)*#, ct,,) « Eval( ,Q*)
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Why should we care? Assume we found such Q".

(Q*(¥)*#, ct,,) « Eval( ,Q*)
C s ) « G )



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such Q".

(Q*(¥)*#, ct,,) « Eval( ,Q*)
C s ) « G )

If the pad (x, z) must be randomized, so is = S



Public-key Semi-quantum Money - Intuition

Why should we care? Assume we found such Q".

(Q*(¥)*#, ct,,) « Eval( ,Q*)

If the pad (x, z) must be randomized, so is



Public-key Semi-quantum Money - Intuition

We define a quantum Subspace-Generating Circuit (SGC) to
be a circuit Q5 that maps:

V subspace S € {0,1}" and basis M«
Qsc(Ms) = [S).



Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are
synergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting
state is unclonable (the pad x', z' must contain entropy).

2. Subspace states were known to be publicly verifiable.
However, due to the structure of Hybrid QFHE, even an
encrypted subspace state is publicly verifiable.




Homomorphic Evaluation of SGC Generates Unclonable States
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Homomorphic Evaluation of SGC Generates Unclonable States

M¢ < random subspace S < {0,1}"

(Mg @ r,ct,.) « Enc(My)

A*

(1S)*?,ct, ) « Eval((Ms & 7, ct,), Qsg)




Homomorphic Evaluation of SGC Generates Unclonable States

Ms < random subspace S < {0,1}"

(Mg @ r,ct,.) « Enc(My)

A*

(1577, ct,.,) « Eval((Ms D 7, ct,), Qsg)

Unclonable!



Homomorphic Evaluation of SGC Generates Unclonable States

Lemma (informal):

Let S a random subspace S € {0,1}" of dimension g

Let Ms € {0,1}(3xn)a basis for S.

Then, no quantum polynomial-time A™ can get
an encryption by , and output,

(1SY%2, 1Sy, cty )
For some x, Z.



Homomorphic Evaluation of SGC Generates Unclonable States

Proof:

* Let M € {0, 1}(
{0,1}*, dim(S) =

* Assume a quantum poly-time A", gets an encryption
and outputs,

(lS)x’Z, |S>x,z’ )

* Observe: S takes negligible fraction 2_721 = 2 2 from {0,1}". By

security of QFHE, computationally hard to find s € (S \ {0}).

) a basis for a random subspace S ©
n
2




Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

* How can the reduction use (|S)x'z, |S)*4, ) to find a
vectors € (S \ {0})?

1. Measure one copy: get v + x « |S)*?, forv € S.
2. Add v + x to the other superposition:



Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

2. Add v + x to the other superposition:
Cv+x(|5>x’z)



Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

2. Add v + x to the other superposition:
Cv+x(|5>x’z)

— Lyix z(_1)<2'u>|x+u>

UES



Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

2. Add v + x to the other superposition:
Cv+x(|5>x’z)

— Lyix z(_1)<2'u>|x+u>

UES

= Z(—1)<Z'u>|x +x + v+ u)

UES



Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):
2. Add v + x to the other superposition:

— Z(—1)<Z'u>|x +x + v+ u)

UES



Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):
2. Add v + x to the other superposition:

— 2(—1)<Z'”>|x +x + v+ u)

UES

On one hand, — Z(_l)(zf’f‘)h} u)

string shift cancels




Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):
2. Add v + x to the other superposition:

— 2(—1)<Z'”>|x +x + v+ u)

UES

On one hand, — Z(_l)(zf’f‘)h} u)

string shift cancels




Homomorphic Evaluation of SGC Generates Unclonable States

Proof (continued):

* Finally, measuring X,cs(—1)*|u) yields s € (S \ {0}) with
high probability.

* This in contradiction to the security of the hybrid QFHE.



Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are
synergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting
state is unclonable (the pad x', z' must contain entropy).

2. Subspace states were known to be publicly verifiable.
However, due to the structure of Hybrid QFHE, even an
encrypted subspace state is publicly verifiable.




Public-key Semi-quantum Money - Intuition

Hybrid QFHE and Subspace-Generating Circuits (SGC) are
svitergetic in two ways:

1. When a SGC is homomorphically evaluated, the resulting
state is unclonable (the pad x', z' must contain entropy).

2. Subspace states were known to be publicly verifiable.
However, due to the structure of Hybrid QFHE, even an
encrypted subspace state is publicly verifiable.




Encrypted Subspace State Verification

Rec

2.

Eval( ) QSG)
l

(IS), ct...)

How to verify |S)*#?



Encrypted Subspace State Verification

[Aaronson-Christiano-2012]:

Given quantum oracle access to membership for S and
S+, the state |S) can be verified.

* We want to verify the encrypted |S)*2.



Encrypted Subspace State Verification

Hybrid QFHE is useful in two ways for our verification:

1. By the exact same techniques from [AC-12], the
state |S)*# can be verified with quantum oracle

access to membershipin S + x and S* + z.

2. Even though x, z randomly distribute, the sender
can know the pads by decrypting the message of
the receiver.



Encrypted Subspace State Verification

Rec

2.

Eval( ) QSG)
l

(IS), ct...)

Verifiable!



Encrypted Subspace State Verification

Rec

2.

Eval( ) QSG)
l

(IS), ct...)

Additional hurdles —in [S-2021]



1.

2.

Two Open Problems

Reduce assumptions: Can we construct PKQM from
non-iO assumptions? Possibly lattice-based?

Increase functionality: Can we make semi-
guantum schemes non-interactive? This will imply
Quantum Lightning [Zhandry-2018] or even One-
Shot Signatures [Amos-Georgiou-Kiayias-Zhandry-
2020].
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