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Quantum Operations Recap

The quantum gates we are using in this talk:

𝑋 =
0 1
1 0

 , 𝐻 =
1

2

1 1
1 −1

 .

𝑋 0 = 1  , 𝑋 1 = 0  ,

𝐻 0 = + ≔
1

2
0 + 1 ,

𝐻 1 = − ≔
1

2
0 − 1  .



Quantum Operations Recap

A pure quantum state: A quantum state |𝜓⟩ consisting of 𝑛 ∈
ℕ qubits:

𝜓 ≔  ෍

𝑥∈ 0,1 𝑛

𝛼𝑥 ⋅ 𝑥  , 

∀𝑥 ∈ 0,1 𝑛 ∶ 𝛼𝑥 ∈ ℂ ,

෍

𝑥∈ 0,1 𝑛

𝛼𝑥
2 = 1 .

A mixed quantum state: Is just a (classical) distribution over 
quantum states: 𝜓 ← 𝐷, 𝐷 = 𝑝𝑖 , 𝜓𝑖 𝑖∈𝑀 .



The No-Cloning Theorem

|𝜓⟩ 𝐴
Unbounded

|𝜓⟩

|𝜓⟩

No-Cloning Theorem (informal):

“There is no quantum operation that can copy arbitrary 
quantum states.”



The No-Cloning Theorem

𝑄
Efficient
sampler

|𝜓⟩
𝐴

Unbounded

|𝜓⟩

|𝜓⟩

Theorem [No-cloning, cryptographic version]:

With non-negligible 
probability



The No-Cloning Theorem

Theorem [No-cloning, cryptographic version]:
∃ a quantum polynomial time algorithm 𝑄, 
• For input 𝑛 ∈ ℕ, 𝑄 1𝑛  samples an 𝑛-qubit state |𝜓⟩.
• For every (possibly unbounded) quantum algorithm 𝐴,

Pr
𝜓 ←𝑄 1𝑛

𝐴 |𝜓⟩ = |𝜓⟩|𝜓⟩ ≤ 2−Ω 𝑛  .

Actually: Many different algorithms for 𝑄!



•A quantum system can hold an unclonable quantum state 
𝜓

⇒ Quantum systems can be rare physical objects.

• States take tiny physical space.

• Transferred through communication channels, 
immediately over large distances.

Quantum Money – the vision



Idealized digital cash:
1. Takes negligible physical space, 2. Locally algorithmically verifiable,

3. Provably unforgeable, 4. Can be sent instantaneously.

Quantum Money – the vision



Talk Plan – 1st Part

• Quantum money – Definition.

• Quantum money – Why it is about quantum cryptography, 
and not about money.

• Private-key quantum money.
➢Basic techniques for sampling unclonable states.

• Public-key quantum money.
➢Construction paradigm: Range and quantumness checks.
➢Subspace states and quantum Fourier transform.

• PKQM in the standard model.
➢Subspace-hiding obfuscation.



Quantum Money

Definition [Secret-Key Quantum Money, Wiesner-
1969]:

Given by two polynomial-time quantum algorithms, 

• 𝑠𝑘, 𝜓 𝑠𝑘 ← Gen 1𝑛  .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑠𝑘, |𝜙⟩  .



Quantum Money

•Correctness:

Pr
𝑠𝑘, 𝜓 𝑠𝑘 ←Gen(1𝑛)

1, 𝜓 𝑠𝑘 ← Ver 𝑠𝑘, 𝜓 𝑠𝑘 = 1 .



Quantum Money

•Correctness:

Pr
𝑠𝑘, 𝜓 𝑠𝑘 ←Gen(1𝑛)

1, 𝜓 𝑠𝑘 ← Ver 𝑠𝑘, 𝜓 𝑠𝑘 = 1 .

• Security:

?



Quantum Money

• Security:

Gen 𝐴∗

poly-time

𝑠𝑘

𝜓 0

𝜓 1

𝜓 𝑠𝑘



Quantum Money

• Security:

𝑠𝑘

Ver 𝑠𝑘, 𝜓 0 = 1

Ver 𝑠𝑘, 𝜓 1 = 1Gen 𝐴∗

poly-time

with negligible probability



Quantum Money

• Correctness:

Pr
𝑠𝑘, 𝜓 𝑠𝑘 ←Gen(1𝑛)

1, 𝜓 𝑠𝑘 ← Ver 𝑠𝑘, 𝜓 𝑠𝑘 = 1 .

• Security:

∀poly − time 𝐴∗: Pr
𝑠𝑘, 𝜓 𝑠𝑘 ←Gen(1𝑛)

𝐴∗ 𝜓 𝑠𝑘 = 𝜓 0 𝜓 1,

Ver 𝑠𝑘, 𝜓 0 = 1,

Ver 𝑠𝑘, 𝜓 1 = 1

≤ negl(𝑛) .



Quantum Money

What it really is:

An efficiently samplable distribution over quantum 
states that is,

(1) Verifiable given a key, (2) Unclonable.



Quantum Money can be viewed as a pre-condition 
for quantum cryptography.

Quantum Money

Quantum 
Money

Software 
Leasing

Software
Copy 

Protection

Unclonable 
Secret Keys

Unclonable 
Ciphertexts⋅ ⋅ ⋅QKD*



Breakthroughs in quantum money techniques

⇒ breakthroughs for a lot of quantum cryptography.

Quantum Money

Quantum 
Money

Software 
Leasing

Software
Copy 

Protection

Unclonable 
Secret Keys

Unclonable 
Ciphertexts⋅ ⋅ ⋅QKD*



Constructing Private-key 
Quantum Money



Constructing Quantum Money

Q:

How do we efficiently sample a distribution over 
quantum states that’s both,

(1) verifiable and (2) unclonable?



Constructing Quantum Money

Claim [single-qubit no-cloning, unitary]: Consider the following set of 
quantum states,

𝑆 ≔

0 ,
1 ,

+ ≔
1

2
0 + |1⟩ ,

− ≔
1

2
0 − |1⟩

 .

Then, there is no unitary transformation 𝑈 on 2 qubits such that:
𝑈 0 0 = 0 0 , 𝑈 1 0 = 1 1 ,

𝑈 + 0 = + + , 𝑈 − 0 = − −  .



Constructing Quantum Money

Proof [single-qubit no-cloning, unitary]: 

• Assume towards contradiction that there is such cloning 𝑈 ∈ ℂ4×4.

• 𝑈 successfully clones + , thus:

𝑈 + 0 = + + =
1

2
1,1,1,1 𝑇 .

• However, (1) the state +  is in the span of 0  and 1 , and

(2) 𝑈 successfully clones both 0  and 1 . We get:

𝑈 + 0 ≔ 𝑈
1

2
0 + 1 0 =

1

2
𝑈 0 0 + 𝑈 1 0

=
1

2
0 0 + 1 1 =

1

2
1,0,0,1 𝑇 ≠

1

2
1,1,1,1 𝑇 . ∎



Constructing Quantum Money

Lemma [single-qubit cryptographic no-cloning – no proof]:

Consider the uniform distribution over the same set as before,

𝑆 ≔

0 ,
1 ,

+ ≔
1

2
0 + |1⟩ ,

− ≔
1

2
0 − |1⟩

 .

Then, there is some constant 𝑐 ∈ ℕ s.t. for every quantum algorithm 𝐴:
Pr

𝜓 ←𝑆
𝐴 |𝜓⟩ = |𝜓⟩|𝜓⟩ ≤ 1/𝑐 .



Constructing Quantum Money

Construction:

• 𝑠𝑘, 𝜓 𝑠𝑘 ← Gen(1𝑛).

• 𝜓 𝑠𝑘 = ?

•  𝑠𝑘 = ?



Constructing Quantum Money

Construction:

• 𝑠𝑘, 𝜓 𝑠𝑘 ← Gen(1𝑛).

• 𝜓 𝑠𝑘 = 𝑛 i.i.d. samples from 𝑆.

•  𝑠𝑘 = the classical descriptions of the 𝑛 samples.



Constructing Quantum Money

Construction:

• 𝑠𝑘, 𝜓 𝑠𝑘 ← Gen(1𝑛).

• 𝜓 𝑠𝑘 = 𝐻𝑏1𝑋𝑎1 0 , ⋯ , 𝐻𝑏𝑛𝑋𝑎𝑛|0⟩

•  𝑠𝑘 = 𝑎 ∈ 0,1 𝑛, 𝑏 ∈ 0,1 𝑛 .



Constructing Quantum Money

Construction:

• 𝑠𝑘, 𝜓 𝑠𝑘 ← Gen(1𝑛).

• 𝜓 𝑠𝑘 = 𝐻𝑏1𝑋𝑎1 0 , ⋯ , 𝐻𝑏𝑛𝑋𝑎𝑛|0⟩ ≔ 𝐻⊗𝑏𝑋⊗𝑎|0𝑛⟩.

•  𝑠𝑘 = 𝑎 ∈ 0,1 𝑛, 𝑏 ∈ 0,1 𝑛 .

•  Ver 𝑠𝑘, |𝜙⟩ : ?



Constructing Quantum Money

Construction:

• 𝑠𝑘, 𝜓 𝑠𝑘 ← Gen(1𝑛).

• 𝜓 𝑠𝑘 = 𝐻𝑏1𝑋𝑎1 0 , ⋯ , 𝐻𝑏𝑛𝑋𝑎𝑛|0⟩ ≔ 𝐻⊗𝑏𝑋⊗𝑎|0𝑛⟩.

•  𝑠𝑘 = 𝑎 ∈ 0,1 𝑛, 𝑏 ∈ 0,1 𝑛 .

•  Ver 𝑠𝑘, |𝜙⟩ : Accepts iff 0𝑛 = 𝑋⊗𝑎 −1
𝐻⊗𝑏

−1
|𝜙⟩ .



Constructing Quantum Money

Claim (Security): 

∀𝐴∗: Pr
𝑠𝑘, 𝜓 𝑠𝑘 ←Gen 1𝑛

𝐴∗ 𝜓 𝑠𝑘 = 𝜓 0 𝜓 1,

Ver 𝑠𝑘, 𝜓 0 = 1,

Ver 𝑠𝑘, 𝜓 1 = 1

≤ 2−Ω 𝑛  .

Security proof sketch:
• The verification is projective: The only state that passes 

with probability 1 is 𝜓 𝑠𝑘.
• To break security w.p. 𝑝, the adversary really needs to 

clone w.p. 𝑝.



Constructing Quantum Money

∎

Security proof sketch:

• For the adversary to clone, it needs to clone all 𝑛 qubits.

•1-qubit cryptographic no-cloning ⇒ each qubit can be 

cloned with probability bounded by constant  
1

𝑐
=

1

2log 𝑐 .

• Since all qubits are i.i.d., the probability to succeed 
cloning all 𝑛 qubits is ≤ 2−𝑛⋅log 𝑐 ≤ 2−Ω 𝑛  .



𝜓 𝑠𝑘

The Public Verification Problem



The Public Verification Problem

𝜓 𝑠𝑘



𝜓 𝑠𝑘

The Public Verification Problem

? ? ?

Q: Can we publicize 𝑠𝑘?



The Public Verification Problem

No.

The state 𝜓 𝑠𝑘 is not only verified, but is generated from 
the secret key 𝑠𝑘:

• 𝜓 𝑠𝑘 = 𝐻𝑏1𝑋𝑎1 0 , ⋯ , 𝐻𝑏𝑛𝑋𝑎𝑛|0⟩ ≔ 𝐻⊗𝑏𝑋⊗𝑎|0𝑛⟩.

•  𝑠𝑘 = 𝑎 ∈ 0,1 𝑛, 𝑏 ∈ 0,1 𝑛 .

⇒ If you have the key, you can clone.



𝜓 𝑠𝑘

The Public Verification Problem

? ? ?

Q: Ok, cannot publicize 𝑠𝑘. Maybe we can verify without 𝑠𝑘?



The Public Verification Problem

No.

Without the key, random quantum information can be 
indistinguishable from random classical information.

Claim:
𝑆1, 𝑆2, ⋯ , 𝑆𝑛 ≡ |𝑠⟩ | 𝑠 ← 0,1 𝑛  .

Proof sketch: It is an easy exercise in quantum information theory to 
prove for a single qubit: 𝑆 ≡ |𝑏⟩ | 𝑏 ← {0,1} , that is:

1

4
, |0⟩ ,

1

4
, |1⟩ ,

1

4
, |+⟩ ,

1

4
, |−⟩ ≡

1

2
, |0⟩ ,

1

2
, |1⟩  .



The Public Verification Problem

• Since the conception of quantum money by Stephen 
Wiesner (1969), was open.

• First breakthrough by Scott Aaronson and Paul Christiano 
in 2012 (solution with respect to an oracle).

• Solution in the standard model by Mark Zhandry in 2018.



Public-key Quantum Money

An efficiently samplable distribution over quantum 
states that is,

(1) Publicly verifiable, (2) Unclonable.



Public-key Quantum Money

Public-key
Quantum 

Money

Software 
Leasing

Software
Copy 

Protection

Unclonable 
Secret Keys

Unclonable 
Ciphertexts⋅ ⋅ ⋅

Public-key Quantum 
Cryptography

A pre-condition for public-key quantum cryptography.



Public-key Quantum Money

Public-key
Quantum 

Money

Software 
Leasing

Software
Copy 

Protection

Unclonable 
Secret Keys

Unclonable 
Ciphertexts⋅ ⋅ ⋅

As before, technical breakthroughs in PKQM, usually imply 
breakthroughs for other stuff.



Public-key Quantum Money

Definition:

Given by two polynomial-time quantum algorithms, 

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen 1𝑛  .

• 𝑏 ∈ {0,1}, 𝜙′ ← Ver 𝑝𝑘, |𝜙⟩  .



Public-key Quantum Money

•Correctness:

Pr
𝑝𝑘, 𝜓 𝑝𝑘 ←Gen(1𝑛)

1, 𝜓 𝑝𝑘 ← Ver 𝑝𝑘, 𝜓 𝑝𝑘 = 1 .



Public-key Quantum Money

• Security:

Gen 𝐴∗

poly-time

𝜓 0

𝜓 1

𝑝𝑘, 𝜓 𝑝𝑘



Public-key Quantum Money

• Security:

Ver 𝑝𝑘, 𝜓 0 = 1

Ver 𝑝𝑘, 𝜓 1 = 1Gen 𝐴∗

poly-time

with negligible probability



Constructing Public-key Quantum Money

•We will next construct, in steps, the [Aaronson-
Christiano-2012] Public-key Quantum Money Scheme.

• The scheme is secure with respect to quantum oracle 
access to a classical function (to be defined).

•After that, we will see the construction in the plain 
model by [Zhandry-2018].



Constructing Public-key Quantum Money

Goal: Construct a PKQM scheme.

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen(1𝑛).

• 𝜓 𝑝𝑘 = ?

•  𝑝𝑘 = ?

•  Ver 𝑝𝑘, |𝜙⟩ : ?



Constructing Public-key Quantum Money

Definition [Quantum-secure Indistinguishability obfuscation]:
A classical probabilistic polynomial-time algorithm iO, 

• Obf𝐶 ← iO 1𝜆, 𝐶 , where 𝐶, Obf𝐶  are classical circuits, 𝜆 ∈ ℕ.

• Correctness: The circuits 𝐶 and Obf𝐶  have the same 
functionality.

• Security: For 𝜆 ∈ ℕ, every poly and a pair of functionally-
equivalent circuits 𝐶0, 𝐶1 that are both of size ≤ poly(𝜆):

Obf𝐶0
← iO 1𝜆, 𝐶0 ≈𝒄 Obf𝐶1

← iO 1𝜆, 𝐶1  .



Constructing Public-key Quantum Money

Quantum-secure iO:
• Hides the inner workings of an algorithm.
• Classically-secure iO is known from well-studied assumptions 

[Jain-Lin-Sahai-2020].
• Quantum-secure iO is known based on more specific 

assumptions [Brakerski-Dottling-Garg-Malavolta-2020a + b], 
[Gay-Pass-2021].

• “Ideal Obfuscation”: Obfuscated circuit Obf𝐶  sometimes 
reveals no more than oracle access to 𝐶.



Constructing Public-key Quantum Money

Classical Computation in Quantum Superposition:
• Let 𝑓: 0,1 𝑛 → 0,1 𝑚 a classical function. The unitary 

version of 𝑓 is given by the (𝑛 + 𝑚)-qubit unitary 𝑈𝑓:

∀𝑥 ∈ 0,1 𝑛 ∶ 𝑈𝑓 𝑥, 0𝑚 = 𝑥, 𝑓 𝑥  .

• A quantum oracle access to a classical function 𝑓: 0,1 𝑛 →
0,1 𝑚, is access to the (𝑛 + 𝑚)-qubit unitary 𝑈𝑓.

• There is an efficient classical algorithm that given a classical 
circuit 𝐶 implementing 𝑓: 0,1 𝑛 → 0,1 𝑚, constructs the 
(classical description of the) unitary circuit for 𝑈𝑓.



Constructing Public-key Quantum Money

Idea: Think of 𝑝𝑘 as an ideal obfuscation of some 
classical 𝑓: 0,1 𝑛 → 0,1 𝑚.

•  We know that Obf𝑓 implies (oracle only) access to 𝑈𝑓.

• 𝜓 𝑝𝑘 should be verifiable given access to 𝑈𝑓.

• 𝜓 𝑝𝑘 should remain unclonable given access to 𝑈𝑓.



Constructing Public-key Quantum Money

Gen Ver
𝜓 𝑝𝑘

𝑈𝑓𝑝𝑘 =

1, 𝜓 𝑝𝑘



Constructing Public-key Quantum Money

Gen
𝜓 𝑝𝑘

𝑈𝑓𝑝𝑘 =

𝐴∗

poly-time

𝜓 0

𝜓 1



Constructing Public-key Quantum Money

Gen

𝑈𝑓𝑝𝑘 =

𝐴∗

poly-time

Ver 𝑝𝑘, 𝜓 0 = 1

Ver 𝑝𝑘, 𝜓 1 = 1

with negligible probability



Constructing Public-key Quantum Money

Construction:

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen(1𝑛).

• 𝜓 𝑝𝑘 = Unclonable, even given access to 𝑈𝑓.

•  𝑝𝑘 =  Obf𝑓 (for now, think of as ideal obfuscation).

•  Ver 𝑝𝑘, |𝜙⟩ : 𝜓 𝑝𝑘 is verifiable given 𝑈𝑓.



Public-key Quantum Money - Intuition

Q: Find 𝑓: 0,1 𝑛 → 0,1  and 𝜓 𝑝𝑘 such that: (1) 𝜓 𝑝𝑘 is verifiable 
given access to 𝑈𝑓, (2) 𝜓 𝑝𝑘 stays unclonable given access to 𝑈𝑓.

• Clearly, 𝜓 𝑝𝑘 cannot be classical (i.e., 𝜓 𝑝𝑘 = |𝑥⟩ for some specific 
𝑥 ∈ 0,1 𝑛).

• What about very large superpositions?

• Does not necessarily work. For example, Hadamard states 𝐻⊗𝑛 ⋅
|𝑥⟩, have the largest superposition, but are easily clonable.

• It turns out that if the span of the superposition is both, random 
and intermediate size, we get an unclonable state.



Public-key Quantum Money - Intuition

Q: Find 𝑓: 0,1 𝑛 → 0,1  and 𝜓 𝑝𝑘 such that: (1) 𝜓 𝑝𝑘 is verifiable 
given access to 𝑈𝑓, (2) 𝜓 𝑝𝑘 stays unclonable given access to 𝑈𝑓.

• Pick a random subset 𝑆 ⊆ 0,1 𝑛 of size 2
𝑛

2. Output:

𝑆 ≔
1

𝑆
෍

𝑥∈𝑆

|𝑥⟩ .

• 𝑆  is unclonable.

• Importantly: 𝑆  stays unclonable even given quantum access to 
membership check in 𝑆.



Constructing Public-key Quantum Money

Construction:

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen(1𝑛).

• 𝜓 𝑝𝑘 = |𝑆⟩, for a random 𝑆 ⊆ 0,1 𝑛, 𝑆 = 2
𝑛

2 .

•  𝑝𝑘 = Obf𝑆 (ideal obfuscation for membership check in 𝑆).

•  Ver 𝑝𝑘, |𝜙⟩ : ?



Constructing Public-key Quantum Money

Ver
|𝜙⟩

𝑈𝑆𝑝𝑘 =



Constructing Public-key Quantum Money

Ver

𝑈𝑆𝑝𝑘 =

𝜙 0 = ෍

𝑥∈ 0,1 𝑛

𝛼𝑥|𝑥⟩ |0⟩ ෍

𝑥∈ 0,1 𝑛

𝛼𝑥|𝑥⟩ |𝑥 ∈? 𝑆⟩



Constructing Public-key Quantum Money

Ver

𝑈𝑆𝑝𝑘 =

Measure right qubit. 
Output the bit you 

measured.

𝜙 0 = ෍

𝑥∈ 0,1 𝑛

𝛼𝑥|𝑥⟩ |0⟩ ෍

𝑥∈ 0,1 𝑛

𝛼𝑥|𝑥⟩ |𝑥 ∈? 𝑆⟩



Constructing Public-key Quantum Money

Ver
|𝑆⟩

𝑈𝑆𝑝𝑘 =



Constructing Public-key Quantum Money

Ver

𝑈𝑆𝑝𝑘 =

Always accepts.

𝑆 0 = ෍

𝑥∈𝑆

1

𝑆
|𝑥⟩ |0⟩ ෍

𝑥∈𝑆

1

𝑆
|𝑥⟩ |1⟩



Constructing Public-key Quantum Money

Gen
|𝑆⟩

𝑈𝑆𝑝𝑘 =

𝐴∗

poly-time

|𝑆⟩

|𝑆⟩

Secure? 



Constructing Public-key Quantum Money

Gen

𝑈𝑆𝑝𝑘 =

𝐴∗

poly-time

Ver 𝑝𝑘, 𝜓 0 = 1

Ver 𝑝𝑘, 𝜓 1 = 1

with negligible probability

Forging is easier than Cloning!



Constructing Public-key Quantum Money

Gen
|𝑆⟩

𝑈𝑆𝑝𝑘 =

𝐴∗

poly-time

|𝑥⟩

|𝑥⟩

|𝑥 ∈ 𝑆⟩ ←Measure(|𝑆⟩)

Although 𝐴∗ 
cannot

clone, it can 
forge.



Public-key Quantum Money - Intuition

• Although 𝜓 𝑝𝑘 = |𝑆⟩ was unclonable, the verification could be 
cheated. Let’s focus on improving verification.

• Q: What exactly was lacking in Ver?

• A: Classical states pass verification. Ver needs to check not only for 
containment in 𝑆, but check for quantumness!

• More concretely, Ver needs to check two things:
➢Range check: The superposition 𝜙  contains only elements in 𝑆.

➢Quantumness check: The superposition 𝜙  contains many elements in 𝑆.

• In the previous scheme, Ver only checked the range.



Public-key Quantum Money - Intuition

Ver
|𝜙⟩

𝑈𝑆𝑝𝑘 =



Public-key Quantum Money - Intuition

Ver

𝑈𝑆𝑝𝑘 =

𝜙 0 = ෍

𝑥∈ 0,1 𝑛

𝛼𝑥|𝑥⟩ |0⟩ ෍
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Q:

Assume you are given a state of the form

𝜙 ≔ σ𝑥∈𝑆 𝛼𝑥 ⋅ |𝑥⟩ , for some 𝑆 ⊆ 0,1 𝑛. 

Can you check, in quantum polynomial-time, that the 
state is non-classical? (i.e., that it is not the case that 

𝛼𝑥 = 1 for some 𝑥 ∈ 𝑆).

A:

If 𝑆 is a subspace, then yes!



Constructing Public-key Quantum Money

Definition [Subspace State]:
Let 𝑛 ∈ ℕ and let 𝑆 ⊆ 0,1 𝑛 a subspace of 0,1 𝑛. The 
subspace state of 𝑆 is defined as

𝑆 ≔
1

𝑆
෍

𝑥∈𝑆

𝑥  .
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Definition [Dual Subspace]:
Let 𝑛 ∈ ℕ and let 𝑆 ⊆ 0,1 𝑛 a subspace of 0,1 𝑛. The dual 
subspace of 𝑆, denoted 𝑆⊥, is defined as the subspace of 0,1 𝑛 
such that

𝑆⊥ ≔ 𝑥 ∈ 0,1 𝑛 | ∀𝑦 ∈ 𝑆 ∶ 𝑥, 𝑦 = 0 .
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Lemma [Quantum Fourier Transform of a Subspace State]:
Let 𝑛 ∈ ℕ and let 𝑆 ⊆ 0,1 𝑛 a subspace of 0,1 𝑛. Then,

𝐻⊗𝑛 𝑆 = 𝑆⊥ .

Proof: By Calculation.
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Lemma [Quantum Fourier Transform of a Subspace State]:
Let 𝑛 ∈ ℕ and let 𝑆 ⊆ 0,1 𝑛 a subspace of 0,1 𝑛. Then,

𝐻⊗𝑛 𝑆 = 𝑆⊥ .

Q: Consider two scenarios, 𝐷0 and 𝐷1. Assume you know 𝑆.
𝐷0: You are given a 𝑥  for 𝑥 ∈ 𝑆.
𝐷1: You are given 𝑆 .

Distinguish between 𝐷0 and 𝐷1. Hint 1: What happens after 𝐻⊗𝑛?

Hint 2: 𝐻⊗𝑛|𝑥⟩ is a uniform superposition, and from the above we have 

𝐻⊗𝑛 𝑆 = 𝑆⊥ . Inside a subspace, the wider the superposition, the 
narrower its 𝐻⊗𝑛 transform will be.
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Ver1

𝑈𝑆𝑝𝑘 = 𝑈𝑆⊥

Ver2

𝐻⊗𝑛 𝜙′ = |𝜙′′⟩ 

Compute: 
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Ver2

Measure right 
qubit. Output 

the bit you 
measured.



Constructing Public-key Quantum Money

𝑈𝑆𝑝𝑘 = 𝑈𝑆⊥

|𝑆⟩ 𝐴∗

poly-time

|𝜓0⟩

|𝜓1⟩

Gen

Theorem (Aaronson-Christiano-2012, Theorem 25):
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𝑈𝑆𝑝𝑘 = 𝑈𝑆⊥

|𝑆⟩ 𝐴∗

poly-time
Gen

Ver 𝑝𝑘, 𝜓 0 = 1

Ver 𝑝𝑘, 𝜓 1 = 1

with negligible probability

Theorem (Aaronson-Christiano-2012, Theorem 25):



Public-key Quantum Money - Construction

Construction [Aaronson-Christiano-2012]:

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen(1𝑛).

• 𝜓 𝑝𝑘 = |𝑆⟩, for a random subspace 𝑆 ⊆ 0,1 𝑛, 𝑆 = 2
𝑛

2.

•  𝑝𝑘 = Obf𝑆, Obf𝑆⊥  (Idealized obfuscation).

•  Ver 𝑝𝑘, |𝜙⟩ :
➢First, check that the rightmost qubit of 𝑈𝑆 𝜙 |0⟩  is 1.

➢Now the state is 𝜙′ ≔ σ𝑥∈𝑆 𝛼𝑥
′ ⋅ 𝑥 . Apply 𝐻⊗𝑛 ⋅ 𝜙′ = |𝜙′′⟩.

➢Finally, check that the rightmost qubit of 𝑈𝑆⊥ 𝜙′′ |0⟩  is 1.



PKQM in the Standard Model

• The [A-C-2012] construction is secure only with respect to an 
oracle.

• We want a construction in the plain model, under 
computational assumptions.

• It was shown by [Zhandry-2018] that the scheme can stay as 
is, and it is secure in the standard model. Formally:
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Construction [Aaronson-Christiano-2012] + [Zhandry-2018]:

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen(1𝑛).

• 𝜓 𝑝𝑘 = |𝑆⟩, for a random subspace 𝑆 ⊆ 0,1 𝑛, 𝑆 = 2
𝑛

2.

•  𝑝𝑘 = Obf𝑆, Obf𝑆⊥  (Can we obfuscate using iO?).

•  Ver 𝑝𝑘, |𝜙⟩ :
➢First, check that the rightmost qubit of 𝑈𝑆 𝜙 |0⟩  is 1.

➢Now the state is 𝜙′ ≔ σ𝑥∈𝑆 𝛼𝑥
′ ⋅ 𝑥 . Apply 𝐻⊗𝑛 ⋅ 𝜙′ = |𝜙′′⟩.

➢Finally, check that the rightmost qubit of 𝑈𝑆⊥ 𝜙′′ |0⟩  is 1.
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Theorem (Subspace-hiding Obfuscation) [Zhandry-2018, 
Theorem 6.3]:

Assume,

• Quantum-secure iO exists (for classical circuits), and

• Quantum-secure injective OWFs exist.

Then, for every subspace 𝑆 ⊆ 0,1 𝑛 with dim 𝑆 =
𝑛

2
,

the following distributions are indistinguishable:
O𝑆 O𝑆 ← iO 𝐶𝑆  ,

 O𝑇 𝑇 ← 𝑆 ⊆ 𝑇, dim 𝑇 =
3𝑛

4
 , O𝑇 ← iO 𝐶𝑇   .
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Lemma (Hardness of Cloning Reduced-Entropy Subspace States) 
[Zhandry-2018, Section 6.2]:

Let 𝑇0, 𝑇1 ⊆ 0,1 𝑛 subspaces with dim 𝑇0 =
3𝑛

4
 , dim 𝑇1 =

𝑛

4
 , 

and 𝑇1 ⊆ 𝑇0.

Let 𝑇1 ⊆ 𝑆 ⊆ 𝑇0 a uniformly random subspace with dim 𝑆 =
𝑛

2
.

∀𝐴∗: Pr
𝑆 ←Gen 1𝑛

𝐴∗ 𝑆 = 𝑆 𝑆 ≤ 2−Ω 𝑛  .
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Lemma (Dual Check is Projective) [A-C-2012, Lemma 21]:

After a successful state verification in the [A-C-2012] PKQM, 
the state collapses to the money state 𝜓 𝑝𝑘 = |𝑆⟩.
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Theorem (Security of the [A-C-2012] construction in the 
standard model) [Zhandry-2018, Corollary 6.6]:

Assume,

• Quantum-secure iO exists (for classical circuits), and

• Quantum-secure injective OWFs exist.

Then, quantum-secure iO can be used to obfuscate the circuits 
𝐶𝑆, 𝐶𝑆⊥ from the [A-C-2012], and the scheme is secure in the 
standard model.
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Proof sketch:

In each of the following hybrids except the last, we can assume 
to have 𝑆, 𝑆⊥, so we check at the end whether state passed 
verification.

• Hyb0 : The standard security game, the adversary 𝐴 gets Ο𝑆, 
Ο𝑆⊥ and |𝑆⟩ and succeeds in forging with noticeable 
probability.

• Hyb1 : Use subspace-hiding to move from Ο𝑆 to Ο𝑇0
 for a 

random 𝑇0 with dimension 
3𝑛

4
 .
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Proof sketch:

• Hyb2 : Use subspace-hiding to move from Ο𝑆⊥ to Ο𝑇1
⊥  for a 

random 𝑇1
⊥ with dimension 

3𝑛

4
 .

• Note: 𝑇1 ⊆ 𝑆 ⊆ 𝑇0 , and dim 𝑇0 =
3𝑛

4
 , dim 𝑇1 =

dim 𝑇1
⊥ ⊥

=
𝑛

4
 .

• Hyb3 : Swap the order of sampling 𝑇1, 𝑆, 𝑇0. First sample 
𝑇1, 𝑇0, and then sample 𝑆 conditioned on 𝑇1 ⊆ 𝑆 ⊆ 𝑇0 . 
Distributes identically to Hyb2 .
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Proof sketch:
Conclude with the following observations.
• The dual check is projective. Until now we can assume access to 

𝑆, 𝑆⊥, and we project on |𝑆⟩ after a successful forgery.
• This means that at the end of Hyb3, the adversary clones |𝑆⟩ with 

a non-negligible probability.
• We can fix, by an averaging argument the subspaces 𝑇0, 𝑇1 and 

not 𝑆. 

• The subspace 𝑆 is a random subspace of dimension 
𝑛

2
, conditioned 

on 𝑇1 ⊆ 𝑆 ⊆ 𝑇0. According to the hardness of reduced-entropy 
cloning, it is impossible to clone |𝑆⟩ .

∎



PKQM in the Standard Model

Construction [Aaronson-Christiano-2012] + [Zhandry-2018]:

• 𝑝𝑘, 𝜓 𝑝𝑘 ← Gen(1𝑛).

• 𝜓 𝑝𝑘 = |𝑆⟩, for a random subspace 𝑆 ⊆ 0,1 𝑛, 𝑆 = 2
𝑛

2.

•  𝑝𝑘 = Obf𝑆, Obf𝑆⊥  (Obfuscated using iO).

•  Ver 𝑝𝑘, |𝜙⟩ :
➢First, check that the rightmost qubit of 𝑈𝑆 𝜙 |0⟩  is 1.

➢Now the state is 𝜙′ ≔ σ𝑥∈𝑆 𝛼𝑥
′ ⋅ 𝑥 . Apply 𝐻⊗𝑛 ⋅ 𝜙′ = |𝜙′′⟩.

➢Finally, check that the rightmost qubit of 𝑈𝑆⊥ 𝜙′′ |0⟩  is 1.


	Slide 1
	Slide 2: Quantum Operations Recap
	Slide 3: Quantum Operations Recap
	Slide 4: The No-Cloning Theorem
	Slide 5: The No-Cloning Theorem
	Slide 6: The No-Cloning Theorem
	Slide 7: Quantum Money – the vision
	Slide 8: Quantum Money – the vision
	Slide 9: Talk Plan – 1st Part
	Slide 10: Quantum Money
	Slide 11: Quantum Money
	Slide 12: Quantum Money
	Slide 13: Quantum Money
	Slide 14: Quantum Money
	Slide 15: Quantum Money
	Slide 16: Quantum Money
	Slide 17: Quantum Money
	Slide 18: Quantum Money
	Slide 19: Constructing Private-key Quantum Money
	Slide 20: Constructing Quantum Money
	Slide 21: Constructing Quantum Money
	Slide 22: Constructing Quantum Money
	Slide 23: Constructing Quantum Money
	Slide 24: Constructing Quantum Money
	Slide 25: Constructing Quantum Money
	Slide 26: Constructing Quantum Money
	Slide 27: Constructing Quantum Money
	Slide 28: Constructing Quantum Money
	Slide 29: Constructing Quantum Money
	Slide 30: Constructing Quantum Money
	Slide 31: The Public Verification Problem
	Slide 32: The Public Verification Problem
	Slide 33: The Public Verification Problem
	Slide 34: The Public Verification Problem
	Slide 35: The Public Verification Problem
	Slide 36: The Public Verification Problem
	Slide 37: The Public Verification Problem
	Slide 38: Public-key Quantum Money
	Slide 39: Public-key Quantum Money
	Slide 40: Public-key Quantum Money
	Slide 41: Public-key Quantum Money
	Slide 42: Public-key Quantum Money
	Slide 43: Public-key Quantum Money
	Slide 44: Public-key Quantum Money
	Slide 45: Constructing Public-key Quantum Money
	Slide 46: Constructing Public-key Quantum Money
	Slide 47: Constructing Public-key Quantum Money
	Slide 48: Constructing Public-key Quantum Money
	Slide 49: Constructing Public-key Quantum Money
	Slide 50: Constructing Public-key Quantum Money
	Slide 51: Constructing Public-key Quantum Money
	Slide 52: Constructing Public-key Quantum Money
	Slide 53: Constructing Public-key Quantum Money
	Slide 54: Constructing Public-key Quantum Money
	Slide 55: Public-key Quantum Money - Intuition
	Slide 56: Public-key Quantum Money - Intuition
	Slide 57: Constructing Public-key Quantum Money
	Slide 58: Constructing Public-key Quantum Money
	Slide 59: Constructing Public-key Quantum Money
	Slide 60: Constructing Public-key Quantum Money
	Slide 61: Constructing Public-key Quantum Money
	Slide 62: Constructing Public-key Quantum Money
	Slide 63: Constructing Public-key Quantum Money
	Slide 64: Constructing Public-key Quantum Money
	Slide 65: Constructing Public-key Quantum Money
	Slide 66: Public-key Quantum Money - Intuition
	Slide 67: Public-key Quantum Money - Intuition
	Slide 68: Public-key Quantum Money - Intuition
	Slide 69: Public-key Quantum Money - Intuition
	Slide 70: Public-key Quantum Money - Intuition
	Slide 71: Constructing Public-key Quantum Money
	Slide 72: Constructing Public-key Quantum Money
	Slide 73: Constructing Public-key Quantum Money
	Slide 74: Constructing Public-key Quantum Money
	Slide 75: Constructing Public-key Quantum Money
	Slide 76: Constructing Public-key Quantum Money
	Slide 77: Constructing Public-key Quantum Money
	Slide 78: Constructing Public-key Quantum Money
	Slide 79: Constructing Public-key Quantum Money
	Slide 80: Constructing Public-key Quantum Money
	Slide 81: Constructing Public-key Quantum Money
	Slide 82: Constructing Public-key Quantum Money
	Slide 83: Public-key Quantum Money - Construction
	Slide 84: PKQM in the Standard Model
	Slide 85: PKQM in the Standard Model
	Slide 86: PKQM in the Standard Model
	Slide 87: PKQM in the Standard Model
	Slide 88: PKQM in the Standard Model
	Slide 89: PKQM in the Standard Model
	Slide 90: PKQM in the Standard Model
	Slide 91: PKQM in the Standard Model
	Slide 92: PKQM in the Standard Model
	Slide 93: PKQM in the Standard Model

