

Quantum Money

(and what it really captures)

Part I

Omri Shmueli

Warsaw IACR Summer School on Post-quantum Cryptography 2024

Quantum Operations Recap

The quantum gates we are using in this talk:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

$$X|0\rangle = |1\rangle, \quad X|1\rangle = |0\rangle,$$

$$H|0\rangle = |+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle),$$

$$H|1\rangle = |-\rangle := \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$$

Quantum Operations Recap

A pure quantum state: A quantum state $|\psi\rangle$ consisting of $n \in \mathbb{N}$ qubits:

$$|\psi\rangle := \sum_{x \in \{0,1\}^n} \alpha_x \cdot |x\rangle ,$$

$$\forall x \in \{0,1\}^n : \alpha_x \in \mathbb{C} ,$$

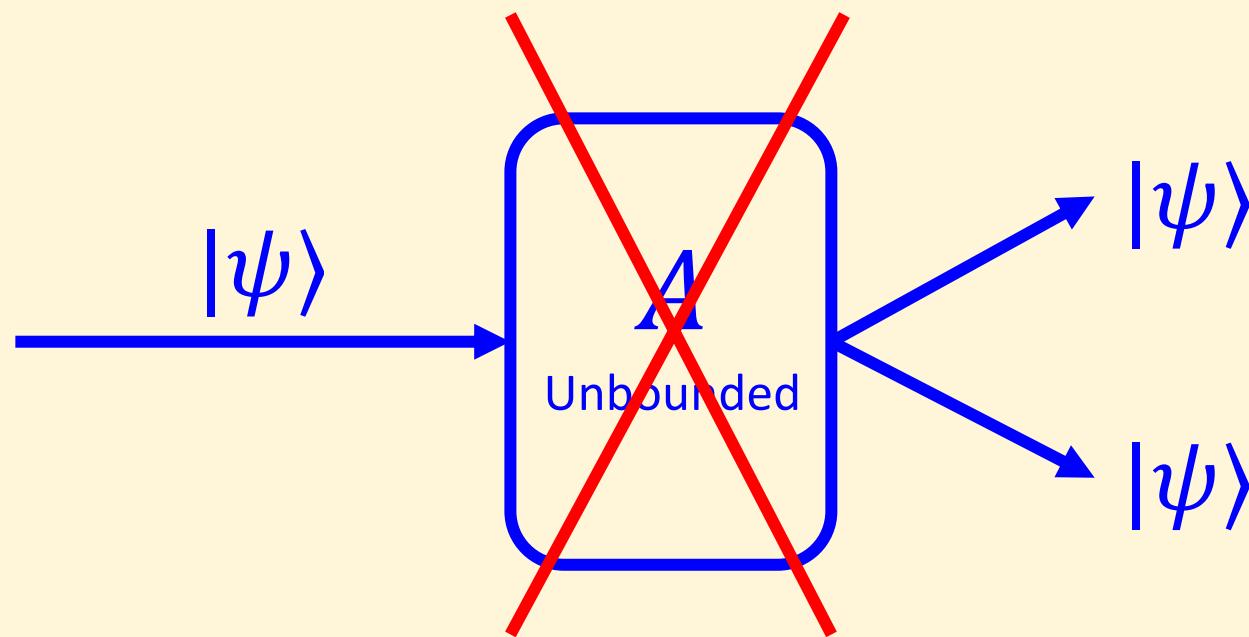
$$\sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1 .$$

A mixed quantum state: Is just a (classical) distribution over quantum states: $|\psi\rangle \leftarrow D$, $D = \{(\textcolor{orange}{p}_i, |\psi_i\rangle)\}_{i \in M}$.

The No-Cloning Theorem

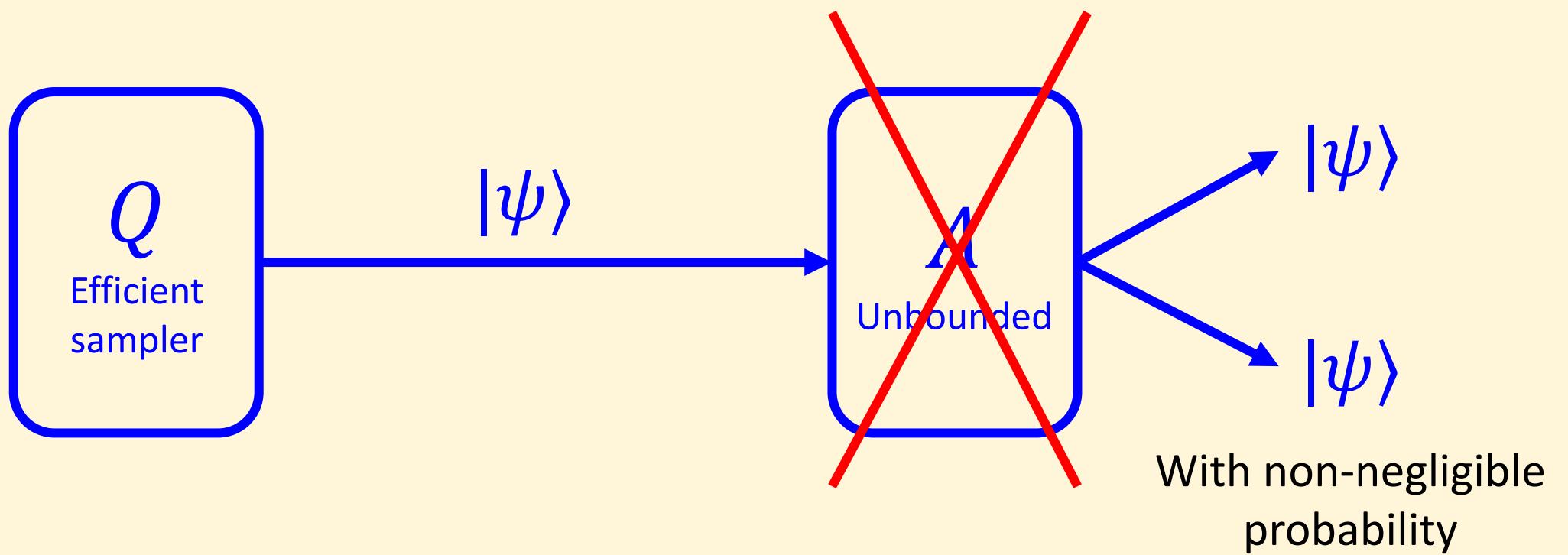
No-Cloning Theorem (informal):

“There is no quantum operation that can copy arbitrary quantum states.”



The No-Cloning Theorem

Theorem [No-cloning, cryptographic version]:



The No-Cloning Theorem

Theorem [No-cloning, cryptographic version]:

\exists a quantum polynomial time algorithm Q ,

- For input $n \in \mathbb{N}$, $Q(1^n)$ samples an n -qubit state $|\psi\rangle$.
- For every (possibly unbounded) quantum algorithm A ,

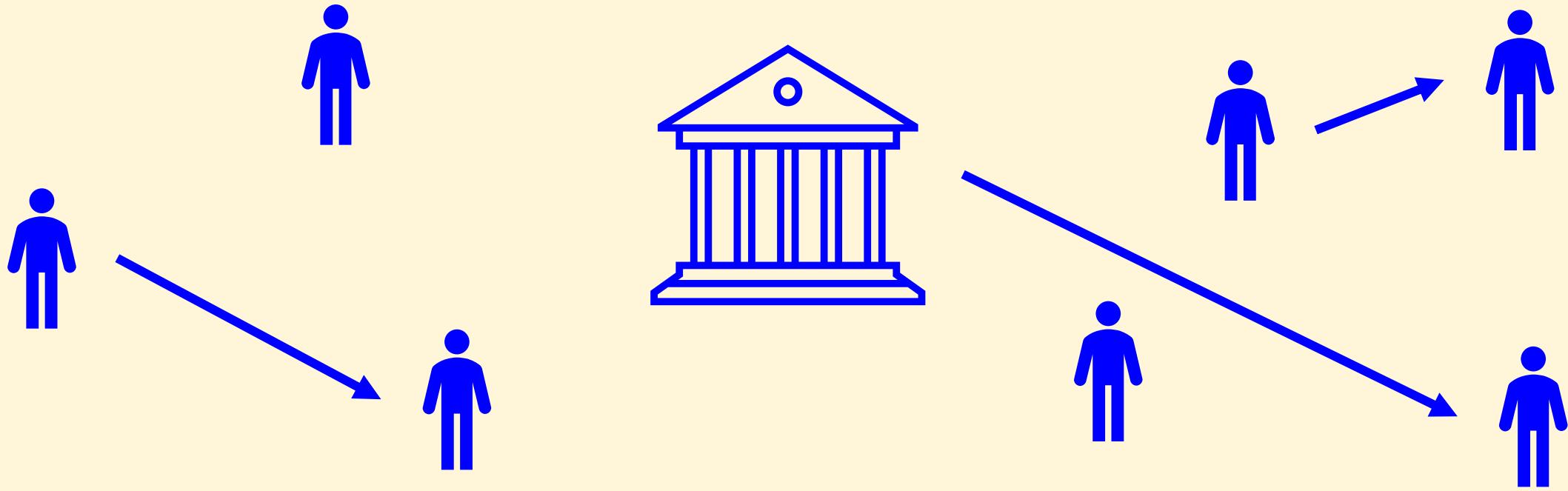
$$\Pr_{|\psi\rangle \leftarrow Q(1^n)}[A(|\psi\rangle) = |\psi\rangle|\psi\rangle] \leq 2^{-\Omega(n)}.$$

Actually: Many different algorithms for Q !

Quantum Money – the vision

- A quantum system can hold an unclonable quantum state $|\psi\rangle$
⇒ Quantum systems can be rare physical objects.
- States take tiny physical space.
- Transferred through communication channels, immediately over large distances.

Quantum Money – the vision



Idealized digital cash:

1. Takes negligible physical space, 2. Locally algorithmically verifiable,
3. Provably unforgeable, 4. Can be sent instantaneously.

Talk Plan – 1st Part

- Quantum money – Definition.
- Quantum money – Why it is about quantum cryptography, and not about money.
- Private-key quantum money.
 - Basic techniques for sampling unclonable states.
- Public-key quantum money.
 - Construction paradigm: Range and quantumness checks.
 - Subspace states and quantum Fourier transform.
- PKQM in the standard model.
 - Subspace-hiding obfuscation.

Quantum Money

Definition [Secret-Key Quantum Money, Wiesner-1969]:

Given by two polynomial-time quantum algorithms,

- $(sk, |\psi\rangle_{sk}) \leftarrow \text{Gen}(1^n)$.
- $(b \in \{0,1\}, |\phi'\rangle) \leftarrow \text{Ver}(sk, |\phi\rangle)$.

Quantum Money

- **Correctness:**

$$\Pr_{(\mathbf{sk}, |\psi\rangle_{\mathbf{sk}}) \leftarrow \mathbf{Gen}(1^n)} [(\quad) \leftarrow \mathbf{Ver}(\mathbf{sk}, |\psi\rangle_{\mathbf{sk}})]$$

Quantum Money

- **Correctness:**

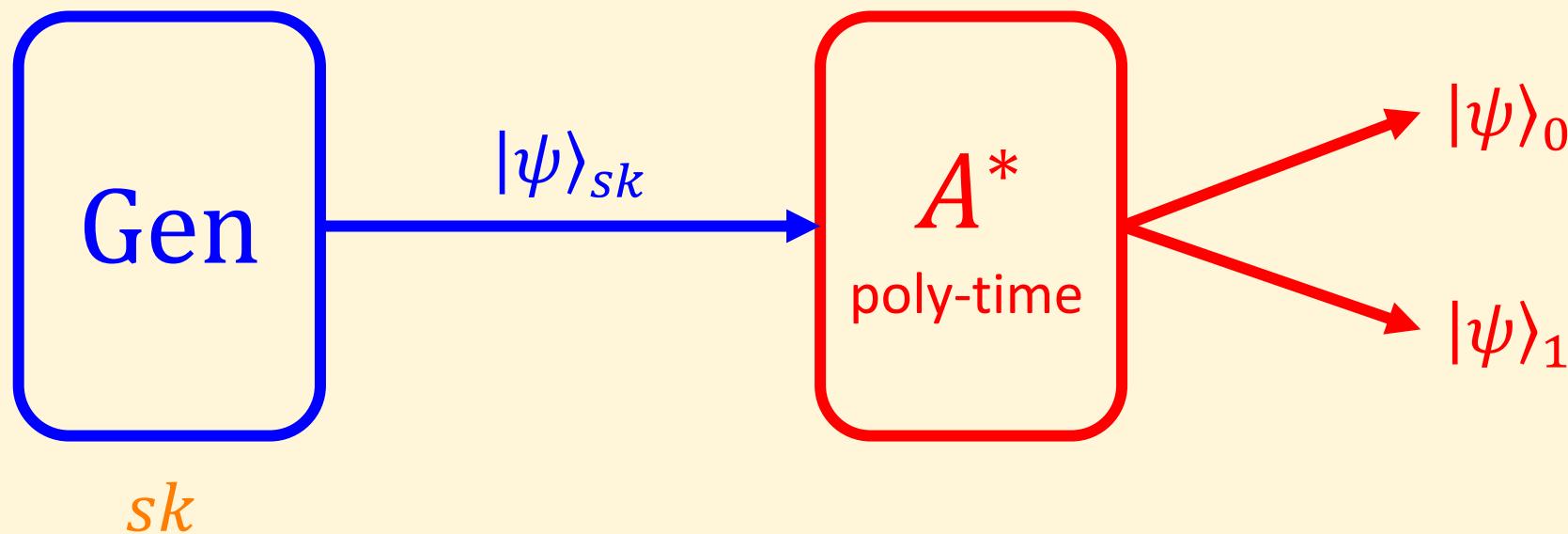
$$\Pr_{(sk, |\psi\rangle_{sk}) \leftarrow \text{Gen}(1^n)} [(\textcolor{blue}{1}, |\psi\rangle_{sk}) \leftarrow \text{Ver}(sk, |\psi\rangle_{sk})] = 1 .$$

- **Security:**

?

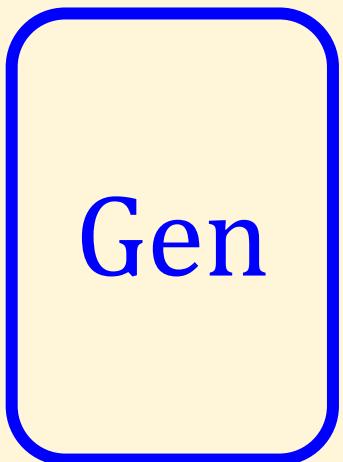
Quantum Money

- **Security:**

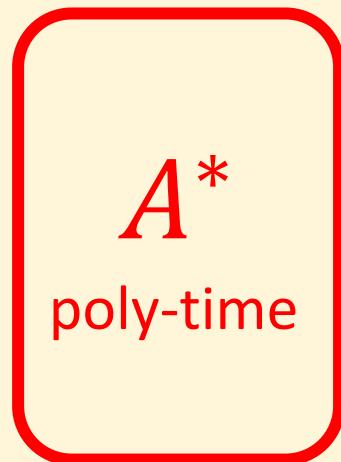
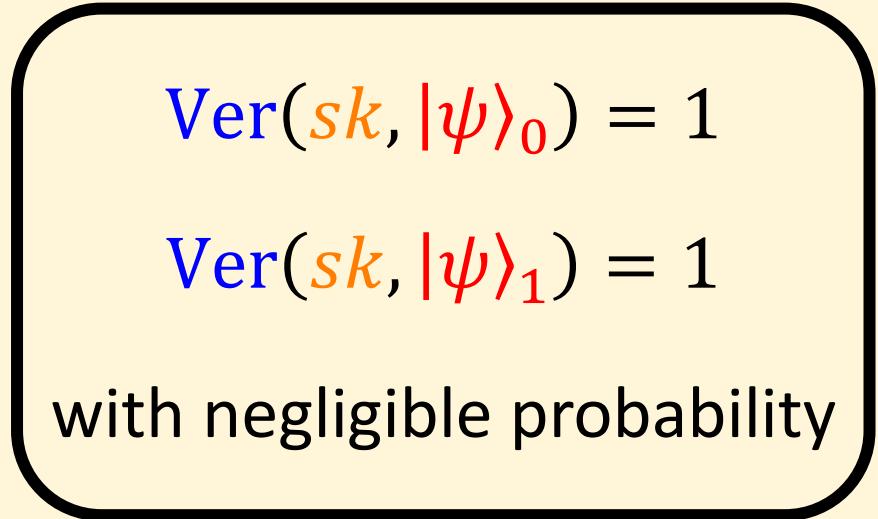


Quantum Money

- **Security:**



sk



Quantum Money

- **Correctness:**

$$\Pr_{(\mathbf{sk}, |\psi\rangle_{sk}) \leftarrow \mathbf{Gen}(\mathbf{1}^n)} [(\mathbf{1}, |\psi\rangle_{sk}) \leftarrow \mathbf{Ver}(\mathbf{sk}, |\psi\rangle_{sk})] = 1 .$$

- **Security:**

$$\forall \text{poly-time } A^*: \Pr_{(\mathbf{sk}, |\psi\rangle_{sk}) \leftarrow \mathbf{Gen}(\mathbf{1}^n)} \left[\begin{array}{l} A^*(|\psi\rangle_{sk}) = |\psi\rangle_0 |\psi\rangle_1, \\ \mathbf{Ver}(\mathbf{sk}, |\psi\rangle_0) = 1, \\ \mathbf{Ver}(\mathbf{sk}, |\psi\rangle_1) = 1 \end{array} \right] \leq \text{negl}(n) .$$

Quantum Money

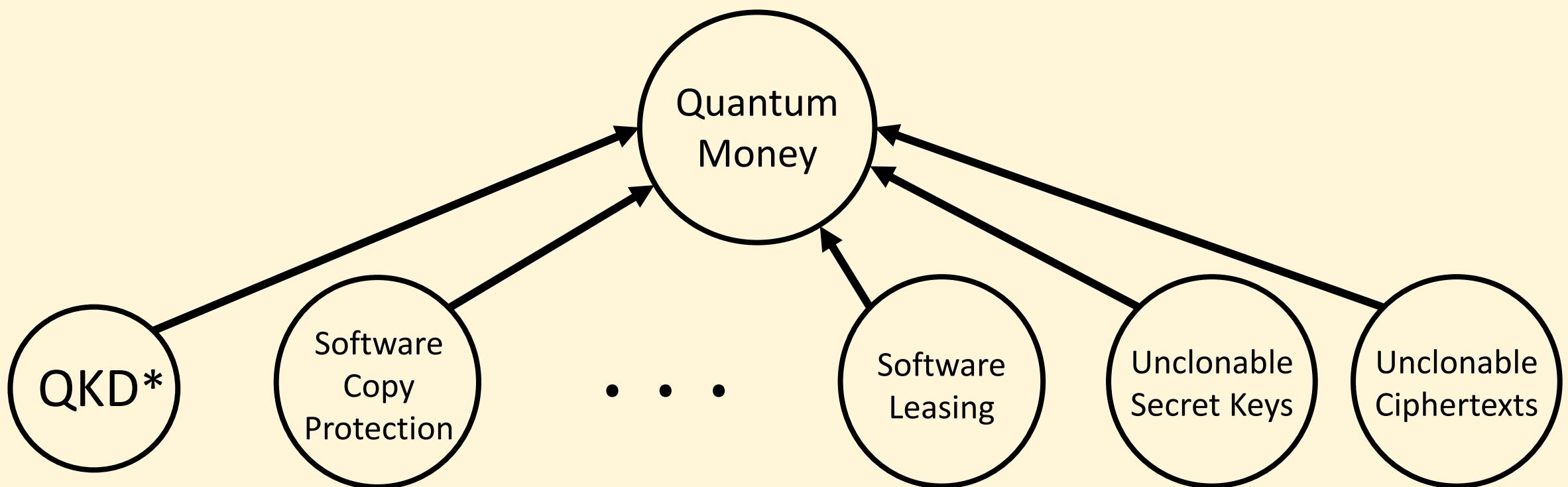
What it really is:

An efficiently samplable distribution over quantum states that is,

(1) Verifiable given a key, (2) Unclonable.

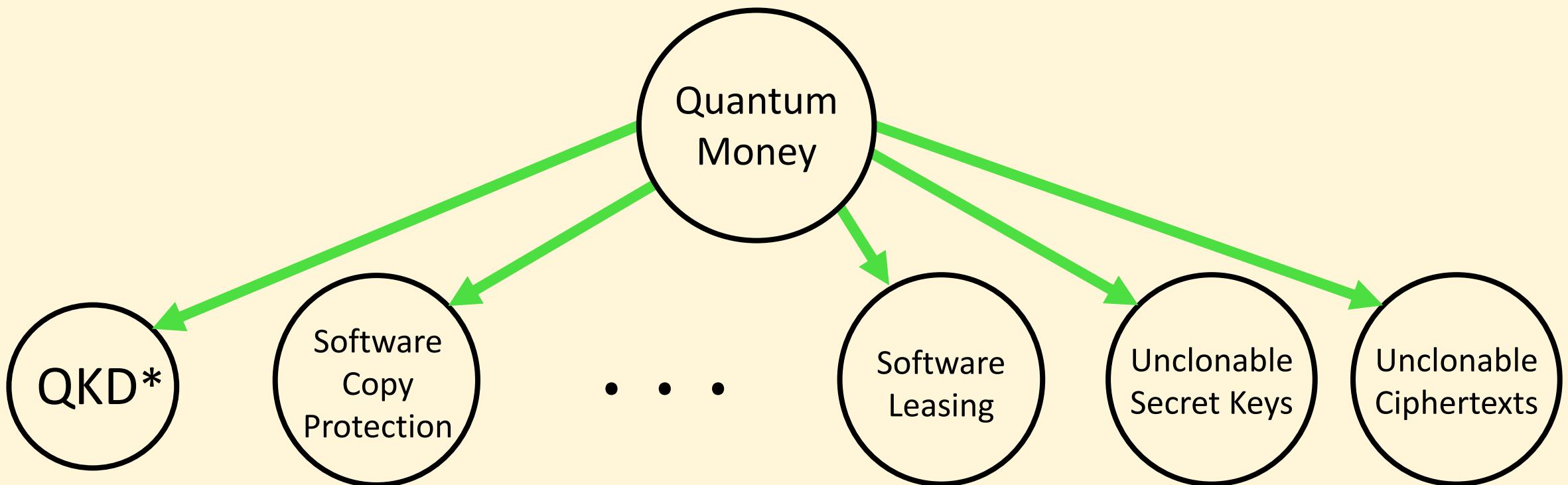
Quantum Money

Quantum Money can be viewed as a pre-condition for quantum cryptography.



Quantum Money

Breakthroughs in quantum money techniques
⇒ breakthroughs for a lot of quantum cryptography.



Constructing Private-key Quantum Money

Constructing Quantum Money

Q:

How do we efficiently sample a distribution over quantum states that's both,
(1) verifiable and (2) unclonable?

Constructing Quantum Money

Claim [single-qubit no-cloning, unitary]: Consider the following set of quantum states,

$$S := \left\{ \begin{array}{l} |0\rangle, \\ |1\rangle, \\ |+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \\ |-\rangle := \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \end{array} \right\}.$$

Then, there is no unitary transformation U on 2 qubits such that:

$$\begin{array}{ll} U(|0\rangle|0\rangle) = |0\rangle|0\rangle, & U(|1\rangle|0\rangle) = |1\rangle|1\rangle, \\ U(|+\rangle|0\rangle) = |+\rangle|+\rangle, & U(|-\rangle|0\rangle) = |-\rangle|-\rangle. \end{array}$$

Constructing Quantum Money

Proof [single-qubit no-cloning, unitary]:

- Assume towards contradiction that there is such cloning $U \in \mathbb{C}^{4 \times 4}$.
- U successfully clones $|+\rangle$, thus:

$$U(|+\rangle|0\rangle) = |+\rangle|+ \rangle = \frac{1}{2}(1,1,1,1)^T.$$

- However, (1) the state $|+\rangle$ is in the span of $|0\rangle$ and $|1\rangle$, and
(2) U successfully clones both $|0\rangle$ and $|1\rangle$. We get:

$$\begin{aligned} U(|+\rangle|0\rangle) &:= U\left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle\right) = \frac{1}{\sqrt{2}}(U(|0\rangle|0\rangle) + U(|1\rangle|0\rangle)) \\ &= \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle) = \frac{1}{\sqrt{2}}(1,0,0,1)^T \neq \frac{1}{2}(1,1,1,1)^T. \quad \blacksquare \end{aligned}$$

Constructing Quantum Money

Lemma [single-qubit **cryptographic no-cloning – no proof]:**

Consider the **uniform distribution** over the same set as before,

$$S := \left\{ \begin{array}{l} |0\rangle, \\ |1\rangle, \\ |+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \\ |-\rangle := \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \end{array} \right\}.$$

Then, there is some constant $c \in \mathbb{N}$ s.t. for every **quantum algorithm** A :

$$\Pr_{|\psi\rangle \leftarrow S} [A(|\psi\rangle) = |\psi\rangle|\psi\rangle] \leq 1/c.$$

Constructing Quantum Money

Construction:

- $(\textcolor{orange}{sk}, |\psi\rangle_{sk}) \leftarrow \text{Gen}(\mathbf{1}^n).$
- $|\psi\rangle_{sk} = ?$
- $sk = ?$

Constructing Quantum Money

Construction:

- $(\textcolor{orange}{sk}, |\psi\rangle_{sk}) \leftarrow \text{Gen}(\mathbf{1}^n)$.
- $|\psi\rangle_{sk} = n$ i.i.d. samples from S .
- sk = the classical descriptions of the n samples.

Constructing Quantum Money

Construction:

- $(\textcolor{orange}{sk}, |\psi\rangle_{\textcolor{blue}{sk}}) \leftarrow \text{Gen}(\textcolor{blue}{1}^n).$
- $|\psi\rangle_{\textcolor{blue}{sk}} = (H^{b_1}X^{a_1}|0\rangle, \dots, H^{b_n}X^{a_n}|0\rangle)$
- $\textcolor{orange}{sk} = (a \in \{0,1\}^n, b \in \{0,1\}^n).$

Constructing Quantum Money

Construction:

- $(\textcolor{brown}{sk}, |\psi\rangle_{\textcolor{blue}{sk}}) \leftarrow \text{Gen}(\mathbf{1}^n).$
- $|\psi\rangle_{\textcolor{blue}{sk}} = (H^{b_1}X^{a_1}|0\rangle, \dots, H^{b_n}X^{a_n}|0\rangle) := H^{\otimes b}X^{\otimes a}|0^n\rangle.$
- $\textcolor{brown}{sk} = (a \in \{0,1\}^n, b \in \{0,1\}^n).$
- $\text{Ver}(\textcolor{brown}{sk}, |\phi\rangle)$: ?

Constructing Quantum Money

Construction:

- $(\textcolor{brown}{sk}, |\psi\rangle_{\textcolor{blue}{sk}}) \leftarrow \text{Gen}(\textcolor{brown}{1}^n).$
- $|\psi\rangle_{\textcolor{blue}{sk}} = (H^{b_1}X^{a_1}|0\rangle, \dots, H^{b_n}X^{a_n}|0\rangle) := H^{\otimes b}X^{\otimes a}|0^n\rangle.$
- $\textcolor{brown}{sk} = (a \in \{0,1\}^n, b \in \{0,1\}^n).$
- $\text{Ver}(\textcolor{brown}{sk}, |\phi\rangle)$: Accepts iff $|0^n\rangle = (X^{\otimes a})^{-1}(H^{\otimes b})^{-1}|\phi\rangle$.

Constructing Quantum Money

Claim (Security):

$$\forall A^*: \Pr_{(\mathbf{sk}, |\psi\rangle_{\mathbf{sk}}) \leftarrow \mathbf{Gen}(\mathbf{1}^n)} \left[\begin{array}{l} A^*(|\psi\rangle_{\mathbf{sk}}) = |\psi\rangle_0 |\psi\rangle_1, \\ \mathbf{Ver}(\mathbf{sk}, |\psi\rangle_0) = 1, \\ \mathbf{Ver}(\mathbf{sk}, |\psi\rangle_1) = 1 \end{array} \right] \leq 2^{-\Omega(n)}.$$

Security proof sketch:

- The verification is projective: The only state that passes with probability 1 is $|\psi\rangle_{\mathbf{sk}}$.
- To break security w.p. p , the adversary really needs to clone w.p. p .

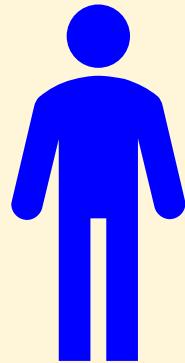
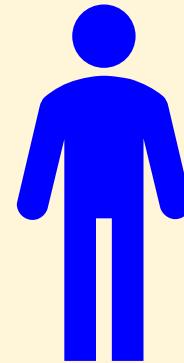
Constructing Quantum Money

Security proof sketch:

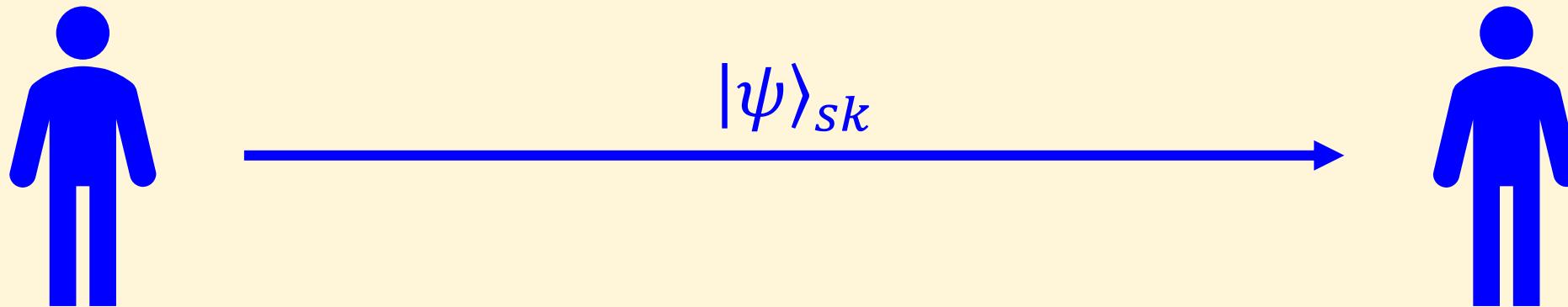
- For the adversary to clone, it needs to clone all n qubits.
- 1-qubit cryptographic no-cloning \Rightarrow each qubit can be cloned with probability bounded by constant $\frac{1}{c} = \frac{1}{2^{\log(c)}}$.
- Since all qubits are i.i.d., the probability to succeed cloning all n qubits is $\leq 2^{-n \cdot \log(c)} \leq 2^{-\Omega(n)}$.

The Public Verification Problem

$|\psi\rangle_{sk}$

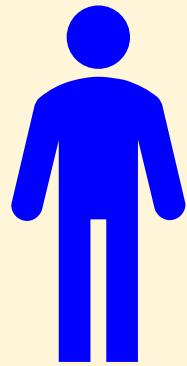


The Public Verification Problem

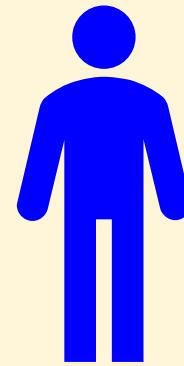


The Public Verification Problem

$|\psi\rangle_{sk}$



???



Q: Can we publicize sk ?

The Public Verification Problem

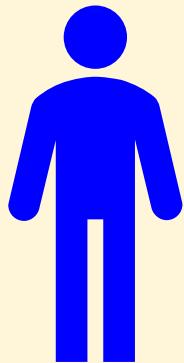
No.

The state $|\psi\rangle_{sk}$ is not only verified, but is generated from the secret key sk :

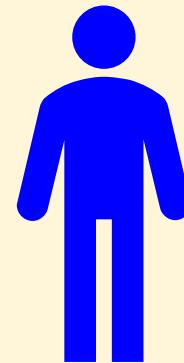
- $|\psi\rangle_{sk} = (H^{b_1}X^{a_1}|0\rangle, \dots, H^{b_n}X^{a_n}|0\rangle) := H^{\otimes b}X^{\otimes a}|0^n\rangle$.
- $sk = (a \in \{0,1\}^n, b \in \{0,1\}^n)$.

⇒ If you have the key, you can clone.

The Public Verification Problem

$$|\psi\rangle_{sk}$$


???



Q: Ok, cannot publicize sk . Maybe we can verify without sk ?

The Public Verification Problem

No.

Without the key, random quantum information can be indistinguishable from random classical information.

Claim:

$$\{S_1, S_2, \dots, S_n\} \equiv \{|s\rangle \mid s \leftarrow \{0,1\}^n\}.$$

Proof sketch: It is an easy exercise in quantum information theory to prove for a single qubit: $\{S\} \equiv \{|b\rangle \mid b \leftarrow \{0,1\}\}$, that is:

$$\left\{ \left(\frac{1}{4}, |0\rangle \right), \left(\frac{1}{4}, |1\rangle \right), \left(\frac{1}{4}, |+\rangle \right), \left(\frac{1}{4}, |-\rangle \right) \right\} \equiv \left\{ \left(\frac{1}{2}, |0\rangle \right), \left(\frac{1}{2}, |1\rangle \right) \right\}.$$

The Public Verification Problem

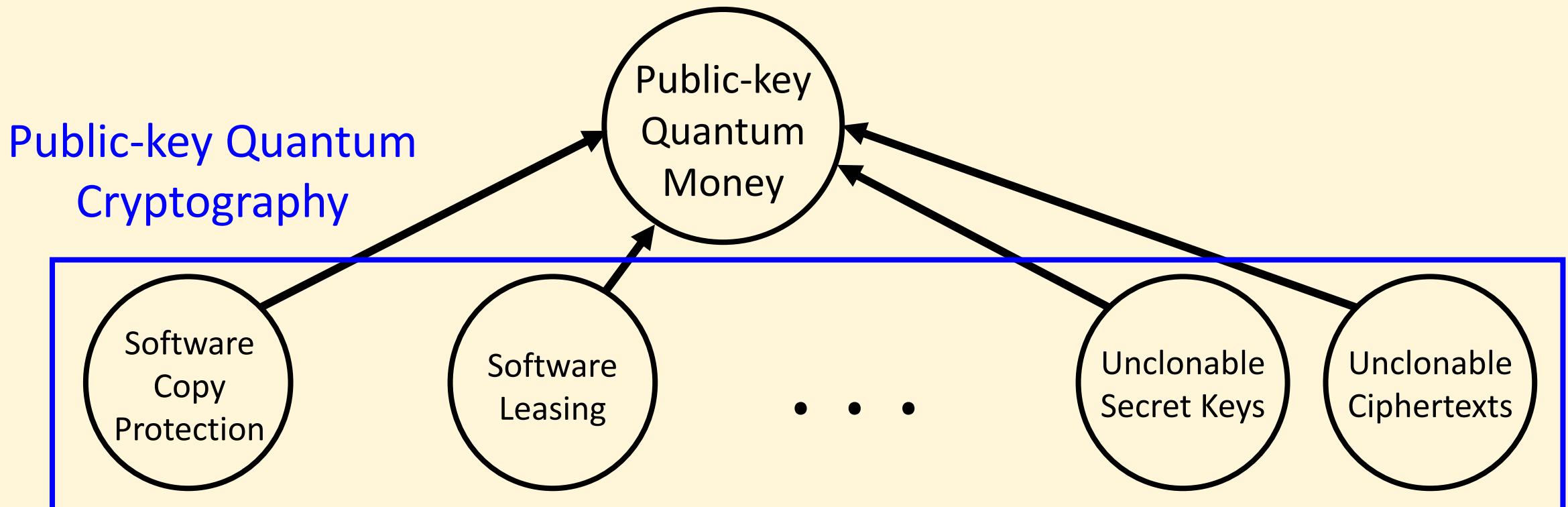
- Since the conception of quantum money by Stephen Wiesner (1969), was open.
- First breakthrough by Scott Aaronson and Paul Christiano in 2012 (solution with respect to an oracle).
- Solution in the standard model by Mark Zhandry in 2018.

Public-key Quantum Money

An efficiently samplable distribution over quantum states that is,
(1) Publicly verifiable, (2) Unclonable.

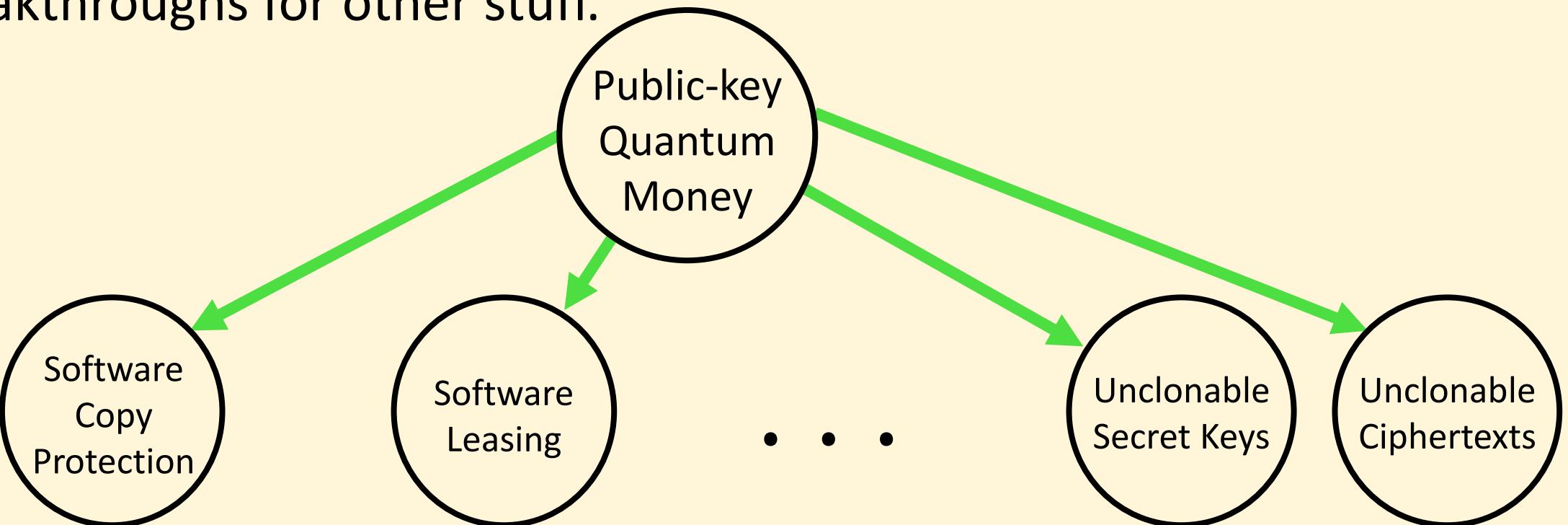
Public-key Quantum Money

A pre-condition for public-key quantum cryptography.



Public-key Quantum Money

As before, technical breakthroughs in PKQM, usually imply breakthroughs for other stuff.



Public-key Quantum Money

Definition:

Given by two polynomial-time quantum algorithms,

- $(pk, |\psi\rangle_{pk}) \leftarrow \text{Gen}(1^n)$.
- $(b \in \{0,1\}, |\phi'\rangle) \leftarrow \text{Ver}(pk, |\phi\rangle)$.

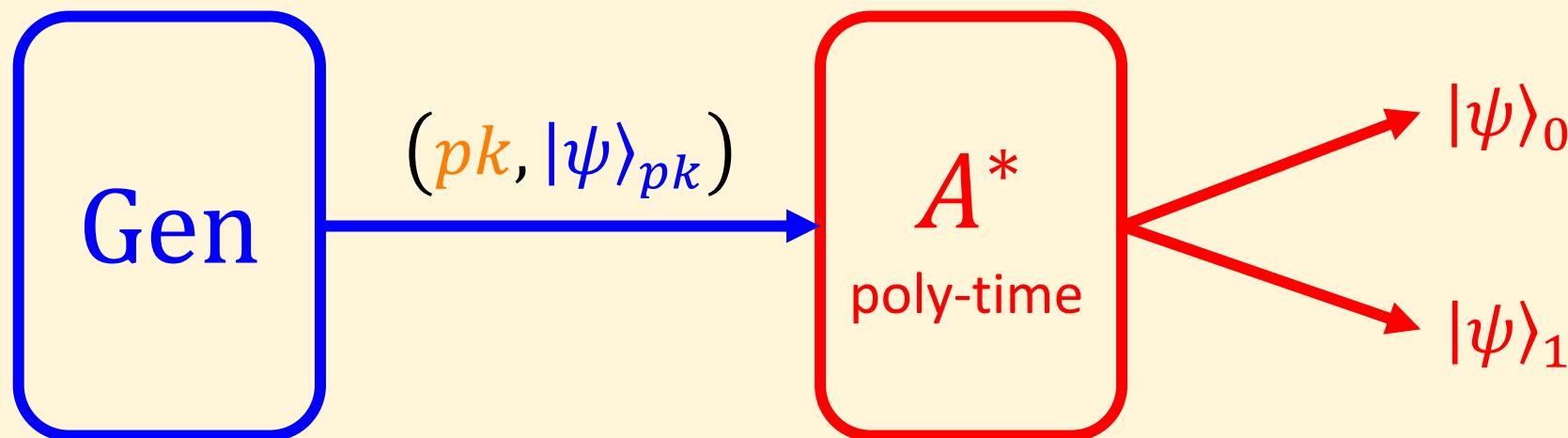
Public-key Quantum Money

- **Correctness:**

$$\Pr_{(pk, |\psi\rangle_{pk}) \leftarrow \text{Gen}(1^n)} [(\textcolor{blue}{1}, |\psi\rangle_{pk}) \leftarrow \text{Ver}(pk, |\psi\rangle_{pk})] = 1 .$$

Public-key Quantum Money

- **Security:**



Public-key Quantum Money

- **Security:**

Gen

A^*
poly-time

$\text{Ver}(pk, |\psi\rangle_0) = 1$
 $\text{Ver}(pk, |\psi\rangle_1) = 1$
with negligible probability

Constructing Public-key Quantum Money

- We will next construct, in steps, the [Aaronson-Christiano-2012] Public-key Quantum Money Scheme.
- The scheme is secure with respect to quantum oracle access to a classical function (to be defined).
- After that, we will see the construction in the plain model by [Zhandry-2018].

Constructing Public-key Quantum Money

Goal: Construct a PKQM scheme.

- $(pk, |\psi\rangle_{pk}) \leftarrow \text{Gen}(1^n)$.
- $|\psi\rangle_{pk} = ?$
- $pk = ?$
- $\text{Ver}(pk, |\phi\rangle) : ?$

Constructing Public-key Quantum Money

Definition [Quantum-secure Indistinguishability obfuscation]:

A classical probabilistic polynomial-time algorithm iO ,

- $\text{Obf}_C \leftarrow \text{iO}(1^\lambda, C)$, where C, Obf_C are classical circuits, $\lambda \in \mathbb{N}$.
- **Correctness:** The circuits C and Obf_C have the same functionality.
- **Security:** For $\lambda \in \mathbb{N}$, every poly and a pair of functionally-equivalent circuits C_0, C_1 that are both of size $\leq \text{poly}(\lambda)$:
$$\{\text{Obf}_{C_0} \leftarrow \text{iO}(1^\lambda, C_0)\} \approx_c \{\text{Obf}_{C_1} \leftarrow \text{iO}(1^\lambda, C_1)\}.$$

Constructing Public-key Quantum Money

Quantum-secure iO:

- Hides the inner workings of an algorithm.
- Classically-secure iO is known from well-studied assumptions [Jain-Lin-Sahai-2020].
- Quantum-secure iO is known based on more specific assumptions [Brakerski-Dottling-Garg-Malavolta-2020a + b], [Gay-Pass-2021].
- “Ideal Obfuscation”: Obfuscated circuit Obf_C **sometimes** reveals no more than **oracle** access to C .

Constructing Public-key Quantum Money

Classical Computation in Quantum Superposition:

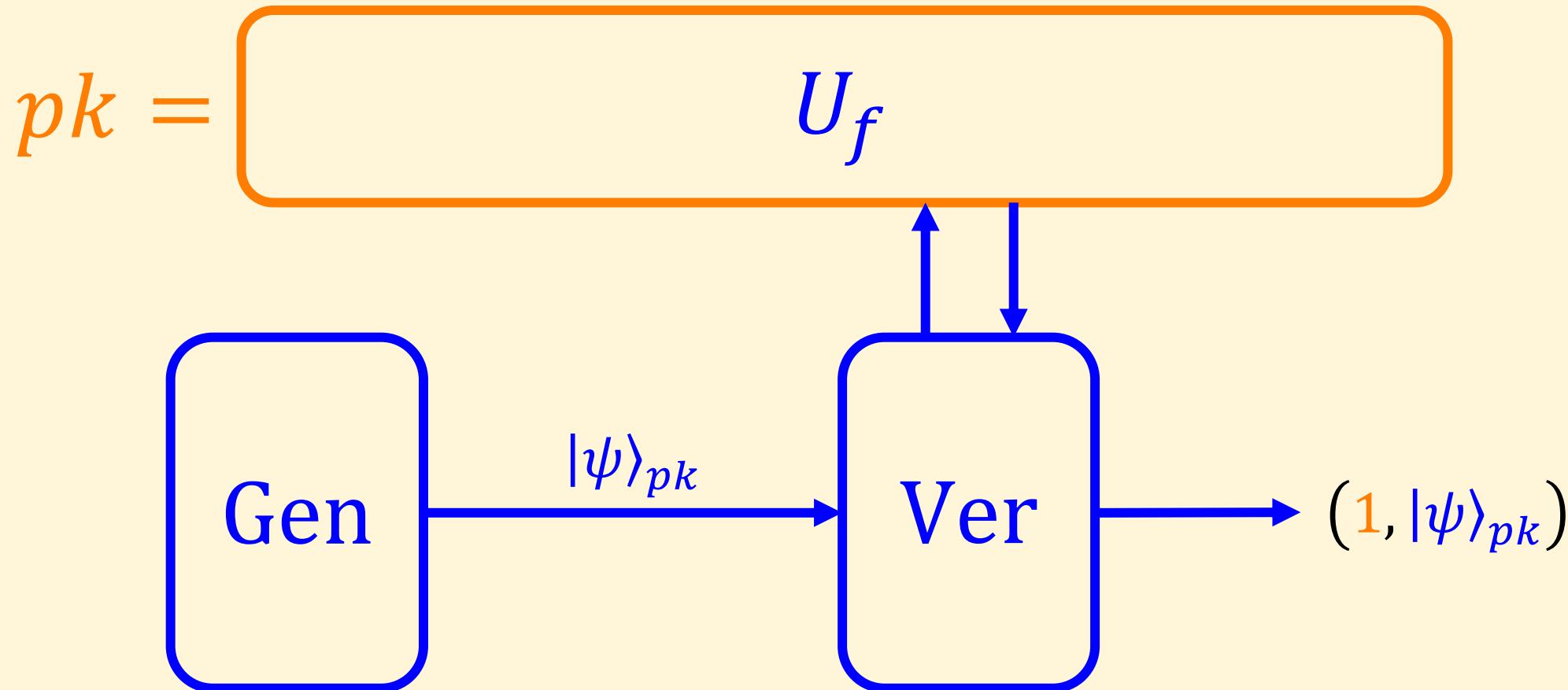
- Let $f: \{0,1\}^n \rightarrow \{0,1\}^m$ a classical function. The unitary version of f is given by the $(n + m)$ -qubit unitary U_f :
$$\forall x \in \{0,1\}^n : U_f |x, 0^m\rangle = |x, f(x)\rangle.$$
- A quantum oracle access to a classical function $f: \{0,1\}^n \rightarrow \{0,1\}^m$, is access to the $(n + m)$ -qubit unitary U_f .
- There is an efficient classical algorithm that given a classical circuit C implementing $f: \{0,1\}^n \rightarrow \{0,1\}^m$, constructs the (classical description of the) unitary circuit for U_f .

Constructing Public-key Quantum Money

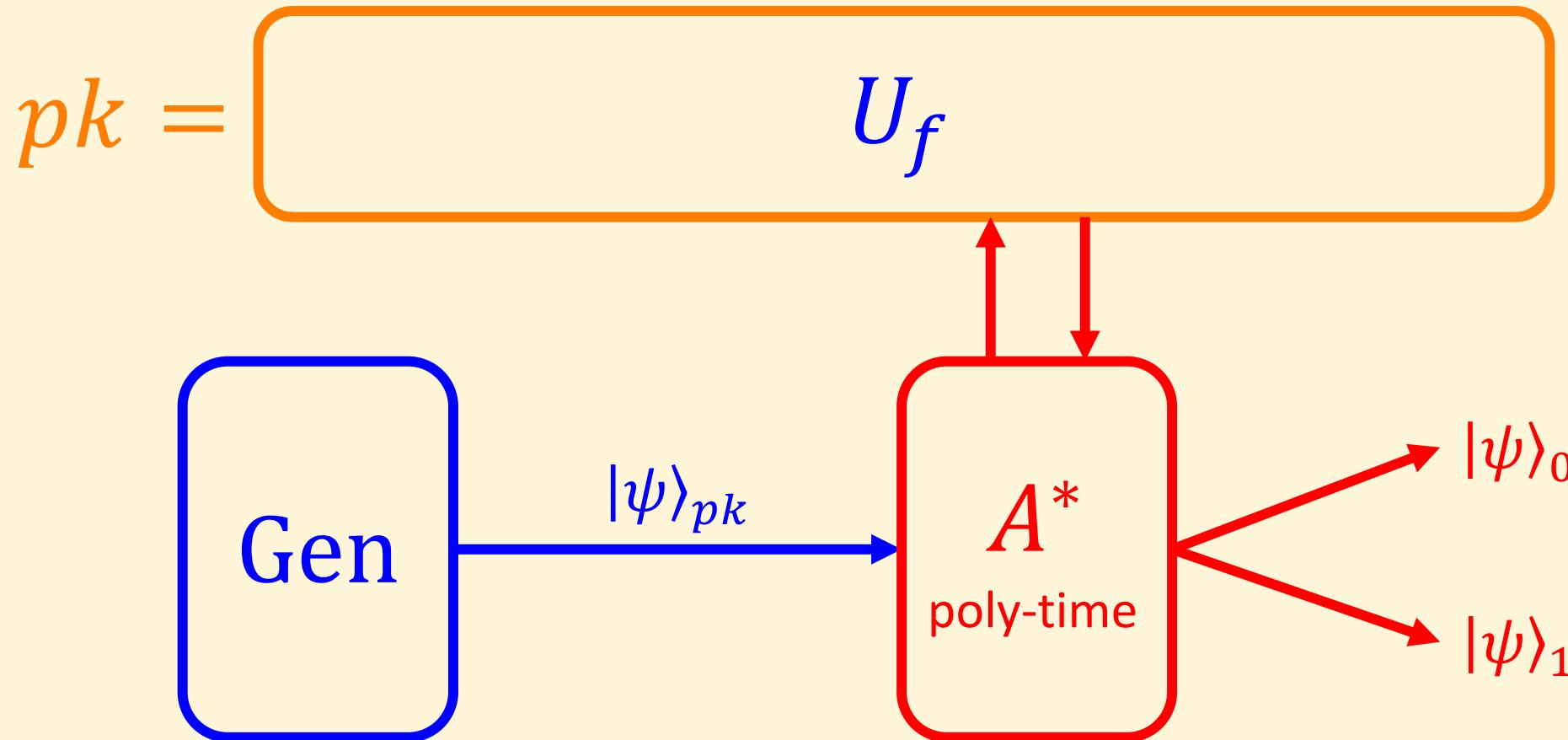
Idea: Think of pk as an ideal obfuscation of some classical $f: \{0,1\}^n \rightarrow \{0,1\}^m$.

- We know that Obf_f implies (oracle only) access to U_f .
- $|\psi\rangle_{pk}$ should be verifiable given access to U_f .
- $|\psi\rangle_{pk}$ should remain unclonable given access to U_f .

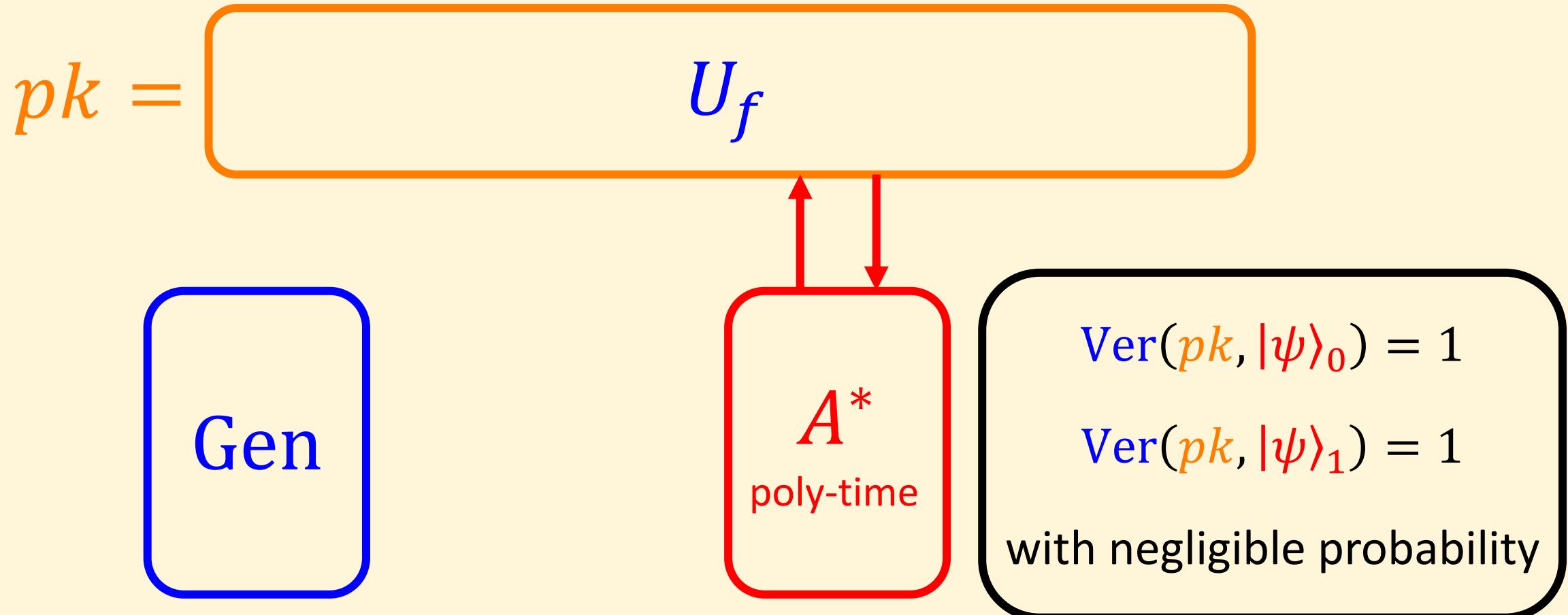
Constructing Public-key Quantum Money



Constructing Public-key Quantum Money



Constructing Public-key Quantum Money



Constructing Public-key Quantum Money

Construction:

- $(pk, |\psi\rangle_{pk}) \leftarrow \text{Gen}(1^n)$.
- $|\psi\rangle_{pk}$ = Unclonable, even given access to U_f .
- $pk = \text{Obf}_f$ (for now, think of as ideal obfuscation).
- $\text{Ver}(pk, |\phi\rangle)$: $|\psi\rangle_{pk}$ is verifiable given U_f .

Public-key Quantum Money - Intuition

Q: Find $f: \{0,1\}^n \rightarrow \{0,1\}$ and $|\psi\rangle_{pk}$ such that: (1) $|\psi\rangle_{pk}$ is verifiable given access to U_f , (2) $|\psi\rangle_{pk}$ stays unclonable given access to U_f .

- Clearly, $|\psi\rangle_{pk}$ cannot be classical (i.e., $|\psi\rangle_{pk} = |x\rangle$ for some specific $x \in \{0,1\}^n$).
- What about very large superpositions?
- Does not necessarily work. For example, Hadamard states $H^{\otimes n} |x\rangle$, have the largest superposition, but are easily clonable.
- It turns out that if the span of the superposition is both, random and intermediate size, we get an unclonable state.

Public-key Quantum Money - Intuition

Q: Find $f: \{0,1\}^n \rightarrow \{0,1\}$ and $|\psi\rangle_{pk}$ such that: (1) $|\psi\rangle_{pk}$ is verifiable given access to U_f , (2) $|\psi\rangle_{pk}$ stays unclonable given access to U_f .

- Pick a random subset $S \subseteq \{0,1\}^n$ of size $2^{\frac{n}{2}}$. Output:

$$|S\rangle := \frac{1}{\sqrt{|S|}} \sum_{x \in S} |x\rangle.$$

- $|S\rangle$ is unclonable.
- Importantly: $|S\rangle$ stays unclonable even given quantum access to membership check in S .

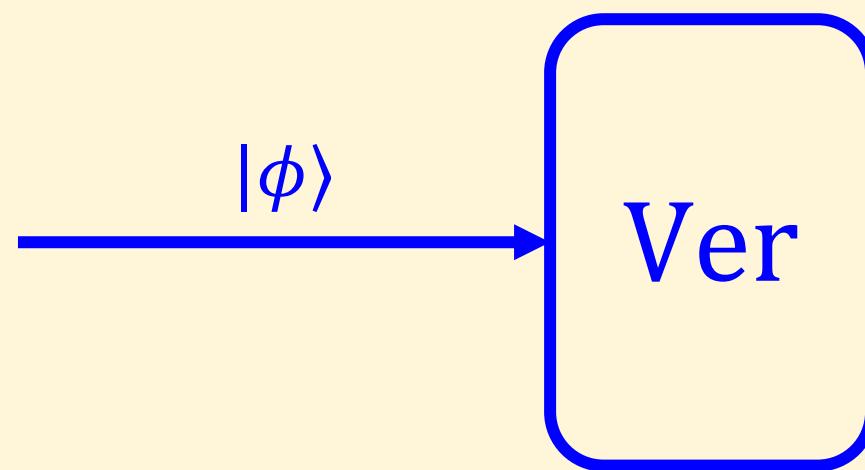
Constructing Public-key Quantum Money

Construction:

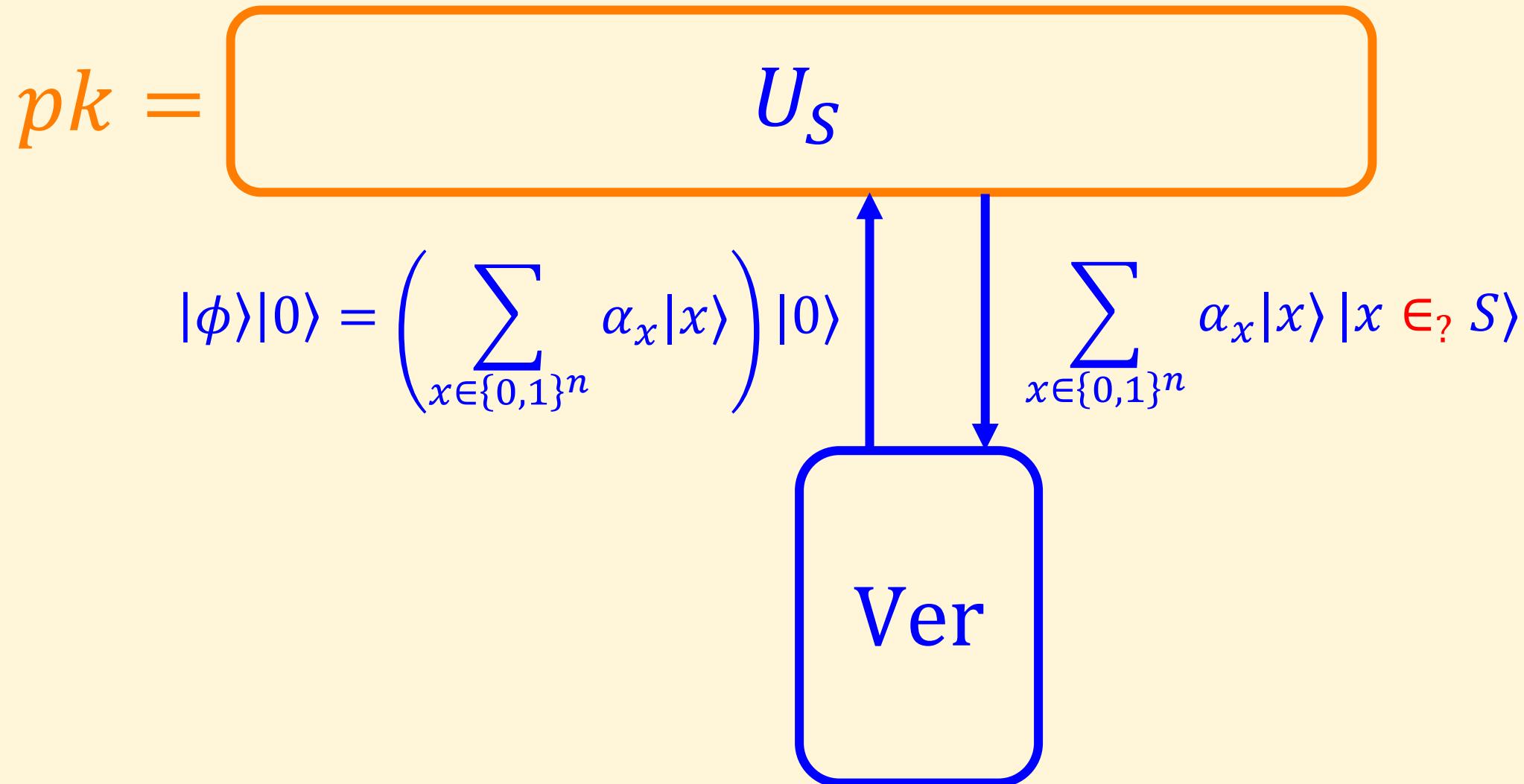
- $(pk, |\psi\rangle_{pk}) \leftarrow \text{Gen}(1^n)$.
- $|\psi\rangle_{pk} = |S\rangle$, for a random $S \subseteq \{0,1\}^n$, $|S| = 2^{\frac{n}{2}}$.
- $pk = \text{Obf}_S$ (ideal obfuscation for membership check in S).
- $\text{Ver}(pk, |\phi\rangle)$: ?

Constructing Public-key Quantum Money

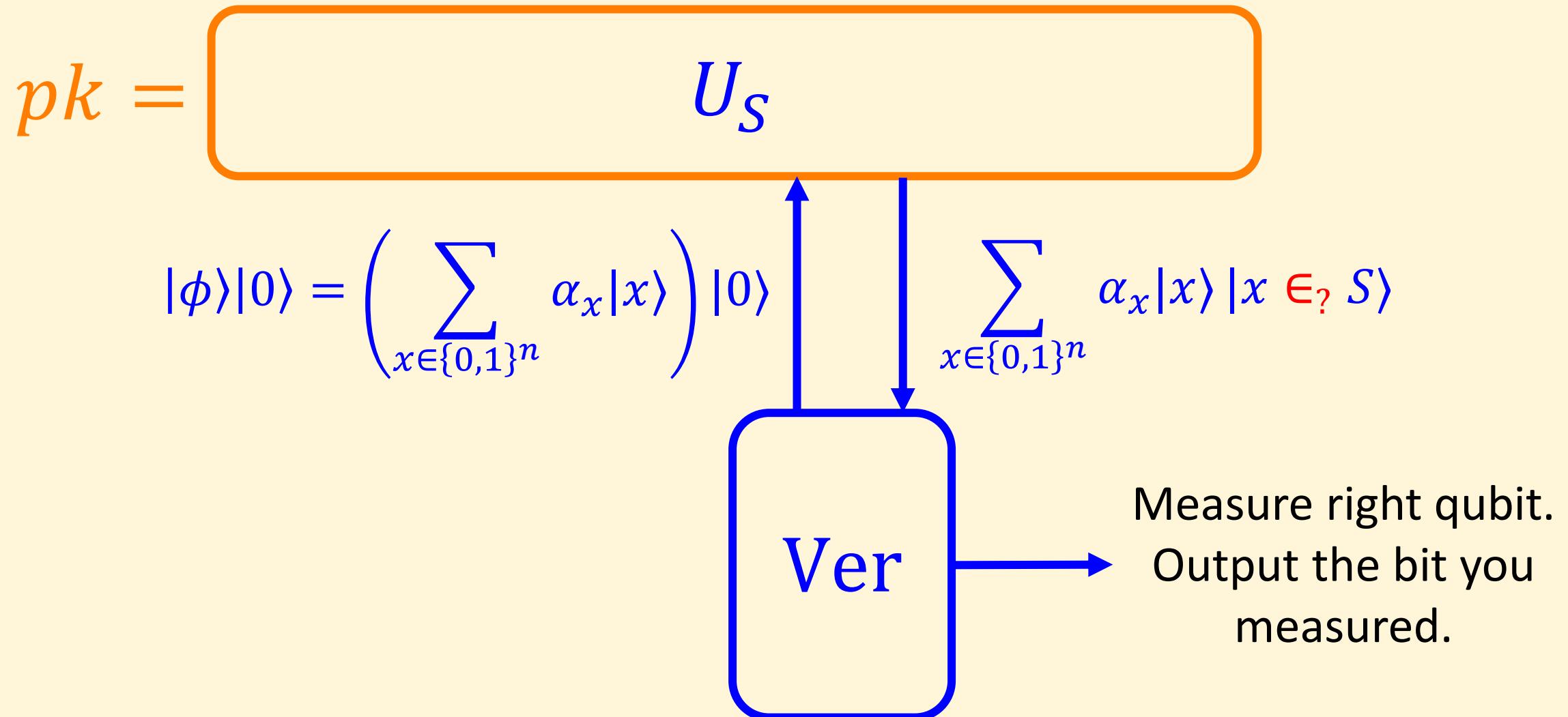
$pk =$ U_S



Constructing Public-key Quantum Money

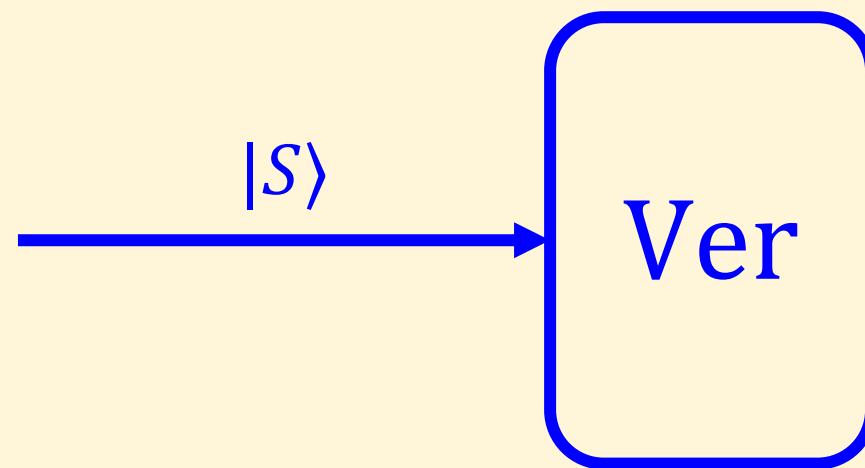


Constructing Public-key Quantum Money

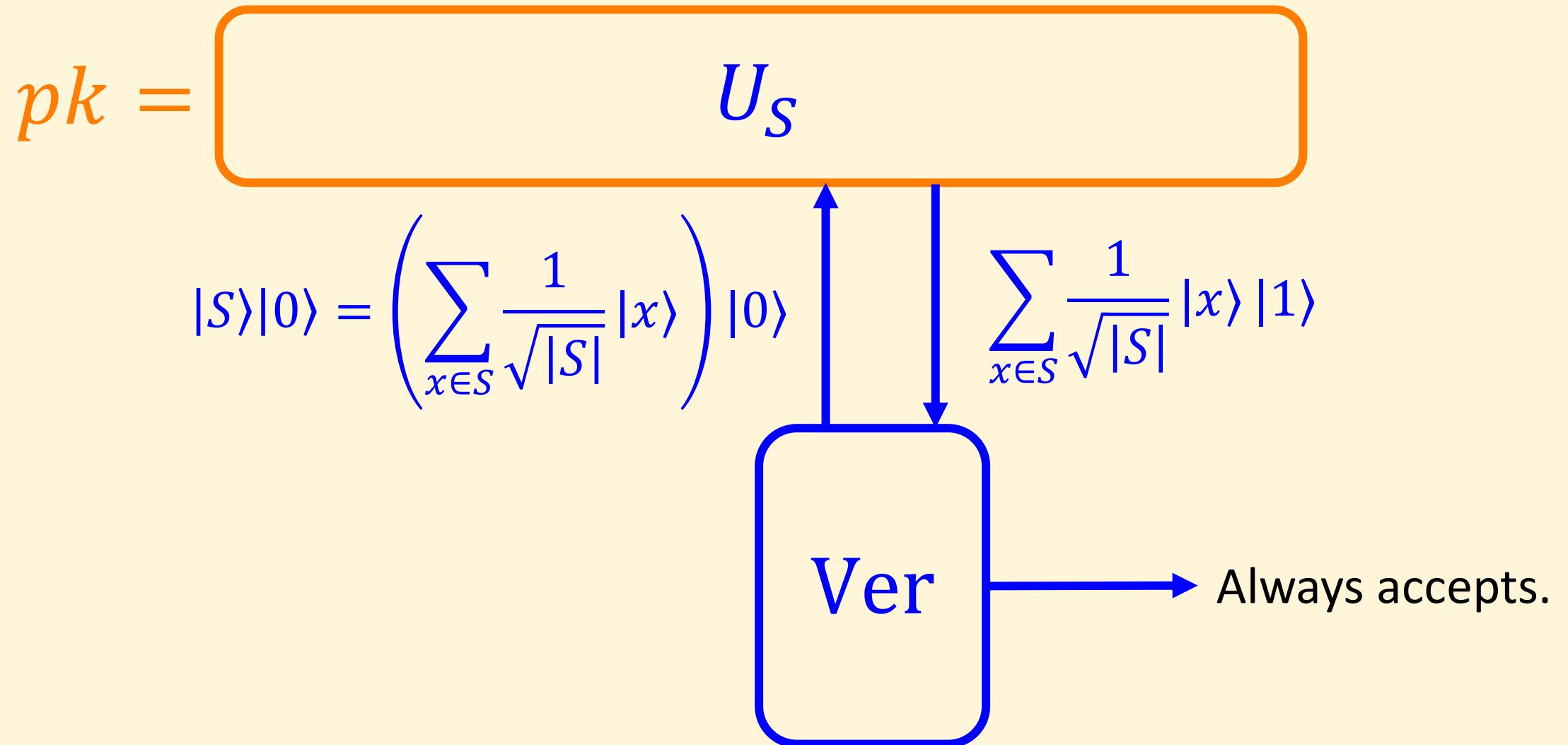


Constructing Public-key Quantum Money

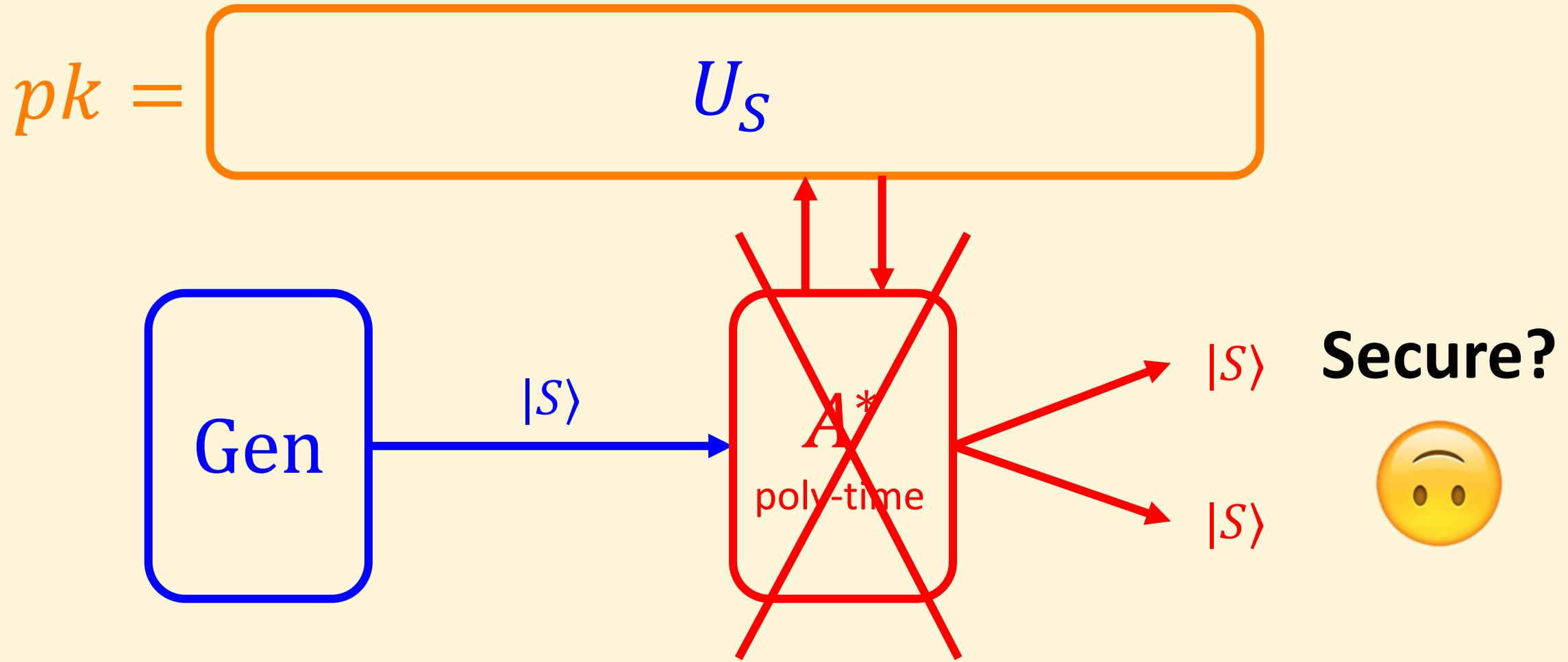
$pk =$ U_S



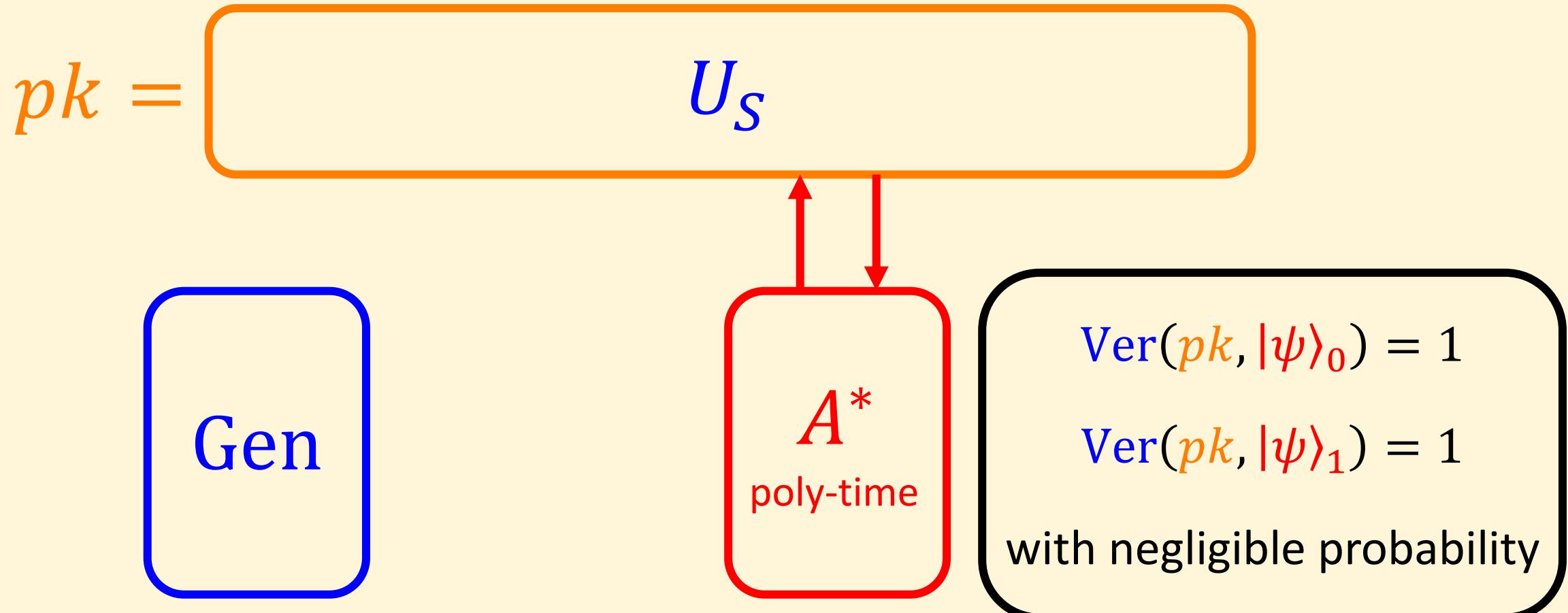
Constructing Public-key Quantum Money



Constructing Public-key Quantum Money

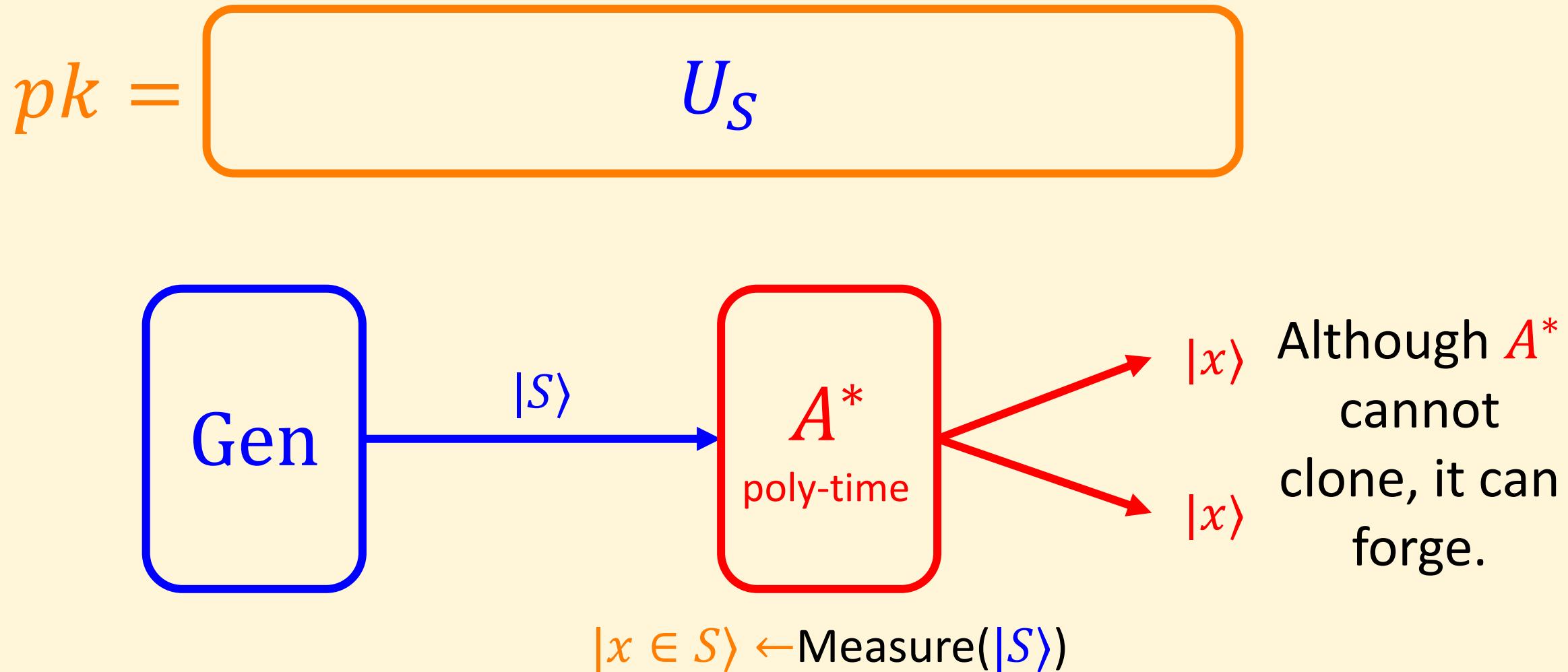


Constructing Public-key Quantum Money



Forging is easier than Cloning!

Constructing Public-key Quantum Money

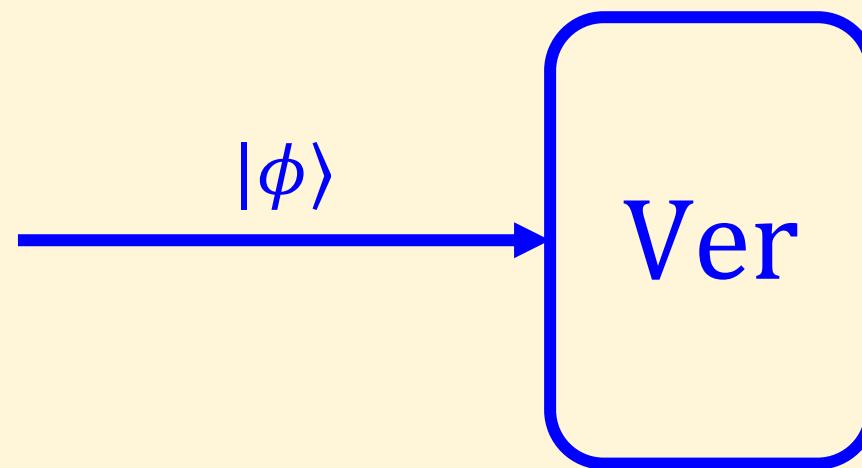


Public-key Quantum Money - Intuition

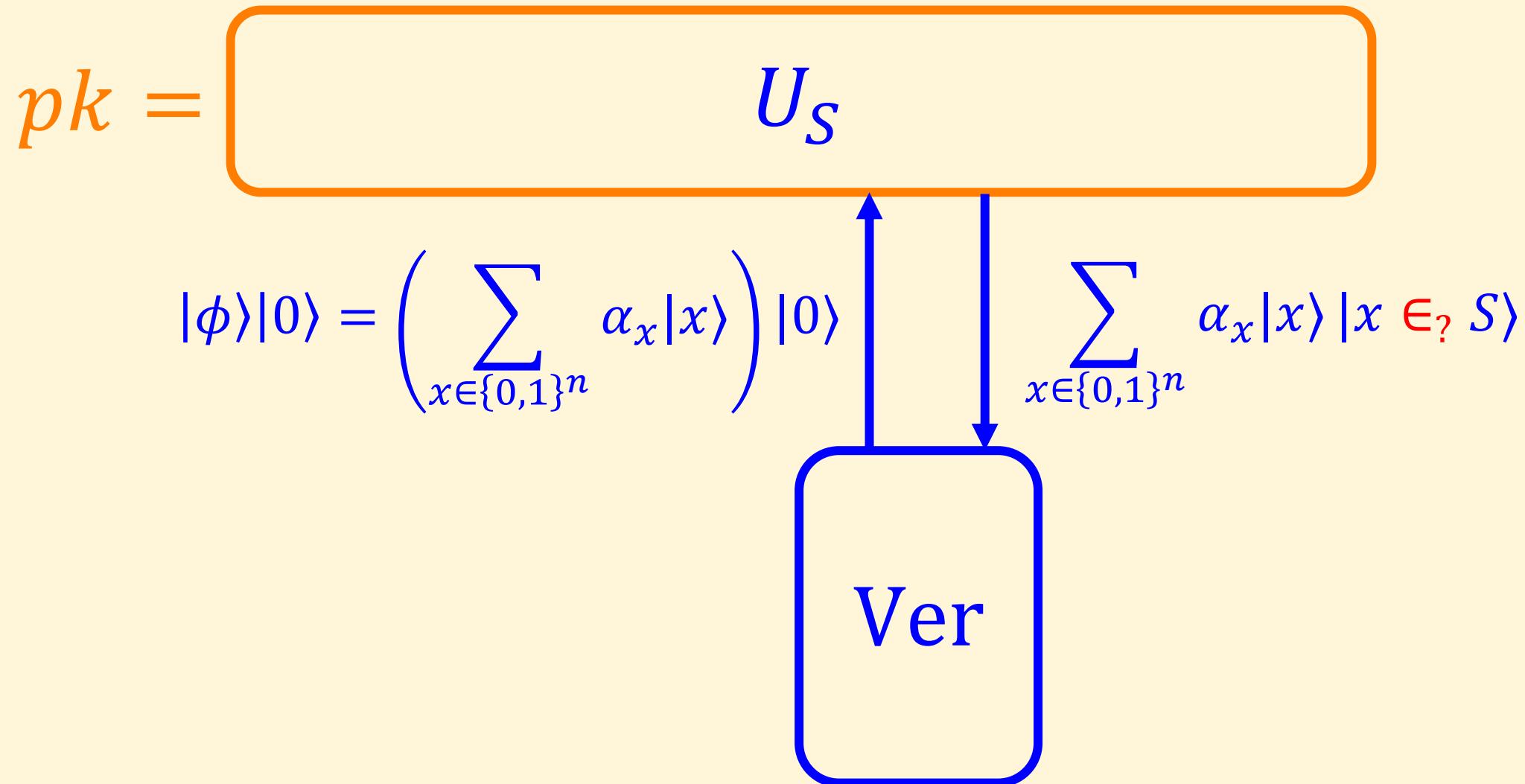
- Although $|\psi\rangle_{pk} = |S\rangle$ was unclonable, the verification could be cheated. Let's focus on improving verification.
- **Q:** What exactly was lacking in Ver ?
- **A:** Classical states pass verification. Ver needs to check not only for containment in S , but check for **quantumness**!
- More concretely, Ver needs to check two things:
 - **Range check:** The superposition $|\phi\rangle$ contains only elements in S .
 - **Quantumness check:** The superposition $|\phi\rangle$ contains many elements in S .
- In the previous scheme, Ver only checked the range.

Public-key Quantum Money - Intuition

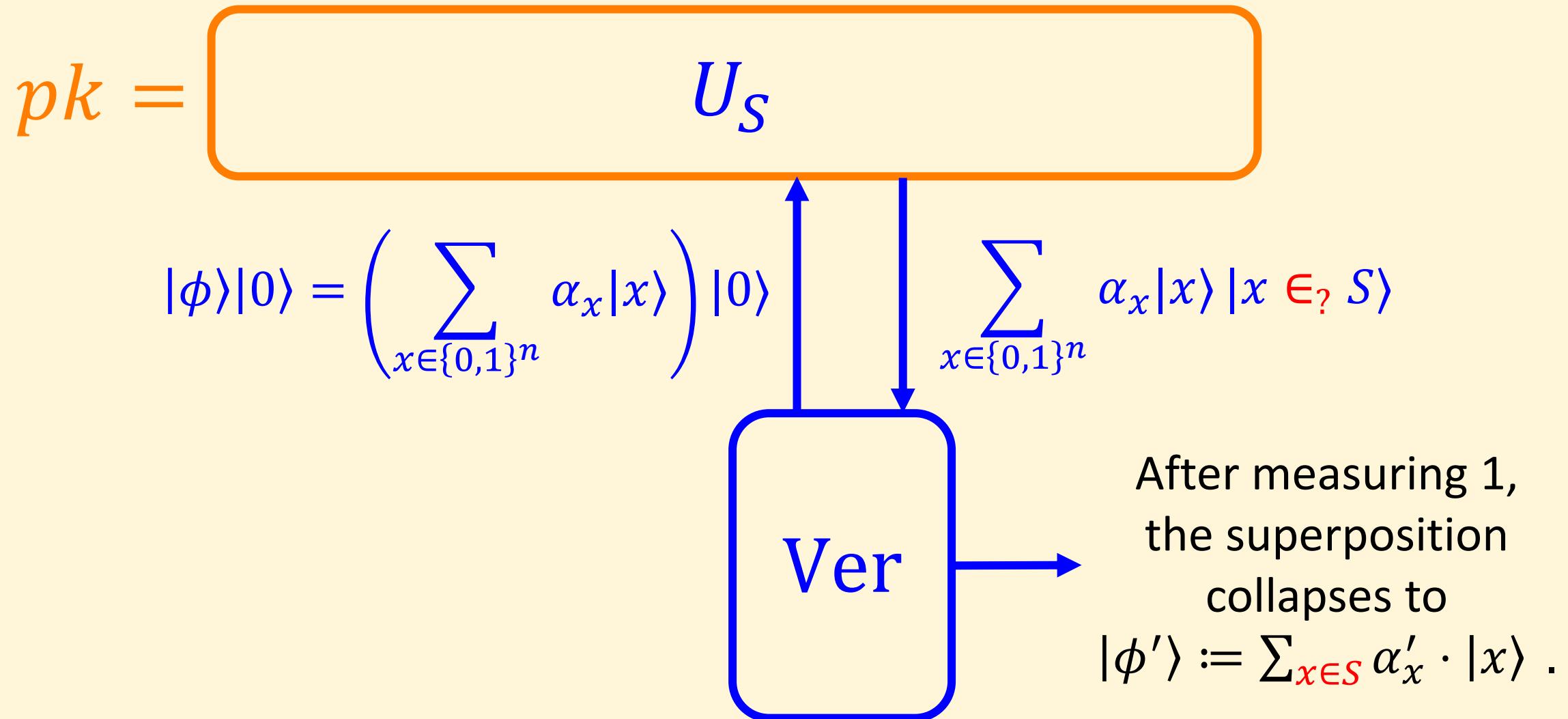
$pk =$ U_S



Public-key Quantum Money - Intuition



Public-key Quantum Money - Intuition



Public-key Quantum Money - Intuition

Q:

Assume you are given a state of the form

$|\phi\rangle := \sum_{x \in S} \alpha_x \cdot |x\rangle$, for some $S \subseteq \{0,1\}^n$.

Can you check, in quantum polynomial-time, that the state is non-classical? (i.e., that it is not the case that $\alpha_x = 1$ for some $x \in S$).

A:

If S is a subspace, then yes!

Constructing Public-key Quantum Money

Definition [Subspace State]:

Let $n \in \mathbb{N}$ and let $S \subseteq \{0,1\}^n$ a subspace of $\{0,1\}^n$. The subspace state of S is defined as

$$|S\rangle := \frac{1}{\sqrt{|S|}} \sum_{x \in S} |x\rangle .$$

Constructing Public-key Quantum Money

Definition [Dual Subspace]:

Let $n \in \mathbb{N}$ and let $S \subseteq \{0,1\}^n$ a subspace of $\{0,1\}^n$. The dual subspace of S , denoted S^\perp , is defined as the subspace of $\{0,1\}^n$ such that

$$S^\perp := \{x \in \{0,1\}^n \mid \forall y \in S : \langle x, y \rangle = 0\}.$$

Constructing Public-key Quantum Money

Lemma [Quantum Fourier Transform of a Subspace State]:

Let $n \in \mathbb{N}$ and let $S \subseteq \{0,1\}^n$ a subspace of $\{0,1\}^n$. Then,

$$H^{\otimes n} |S\rangle = |S^\perp\rangle.$$

Proof: By Calculation.

Constructing Public-key Quantum Money

Lemma [Quantum Fourier Transform of a Subspace State]:

Let $n \in \mathbb{N}$ and let $S \subseteq \{0,1\}^n$ a subspace of $\{0,1\}^n$. Then,

$$H^{\otimes n}|S\rangle = |S^\perp\rangle.$$

Q: Consider two scenarios, D_0 and D_1 . Assume you know S .

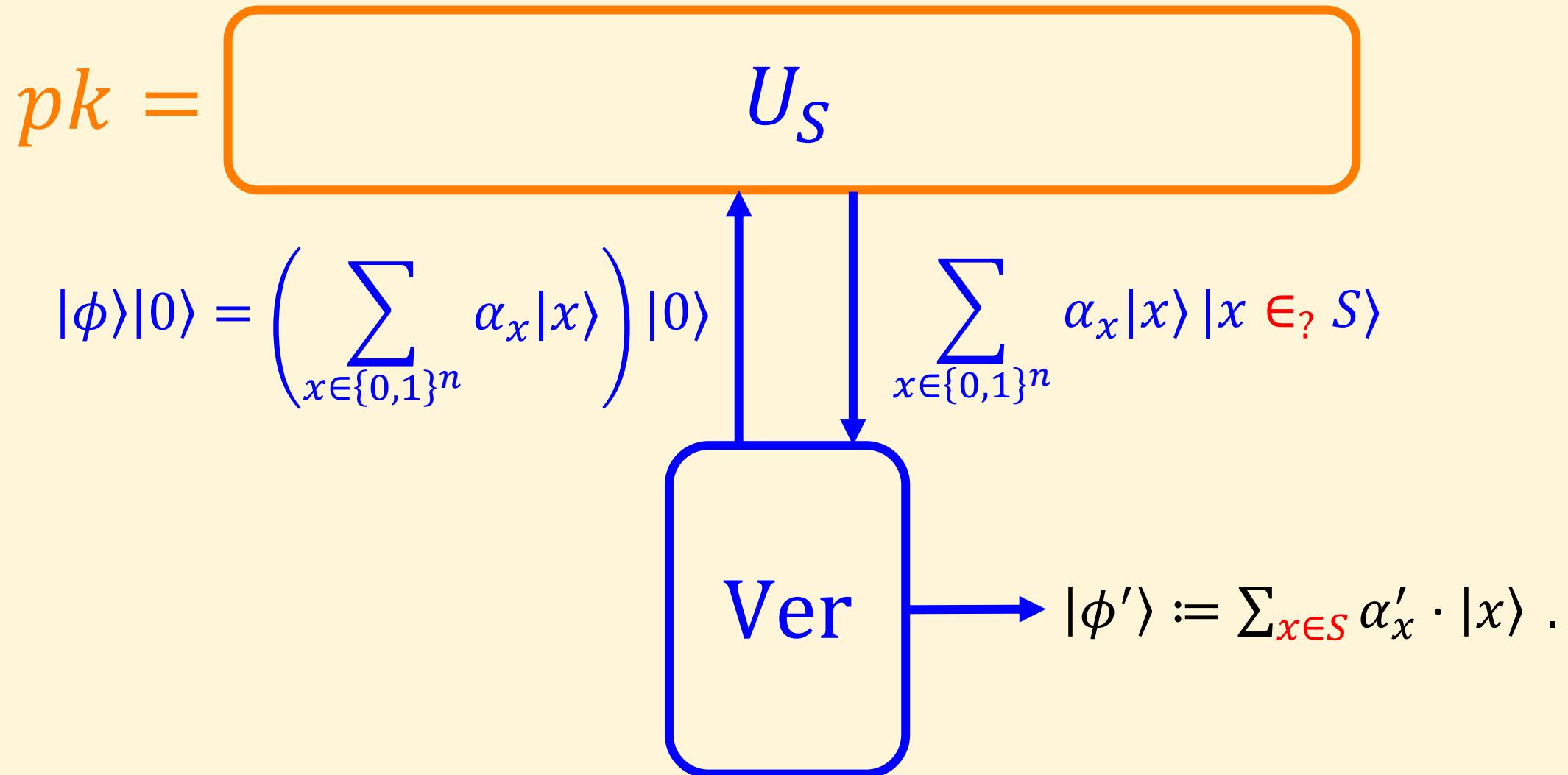
D_0 : You are given a $|x\rangle$ for $x \in S$.

D_1 : You are given $|S\rangle$.

Distinguish between D_0 and D_1 . **Hint 1:** What happens after $H^{\otimes n}$?

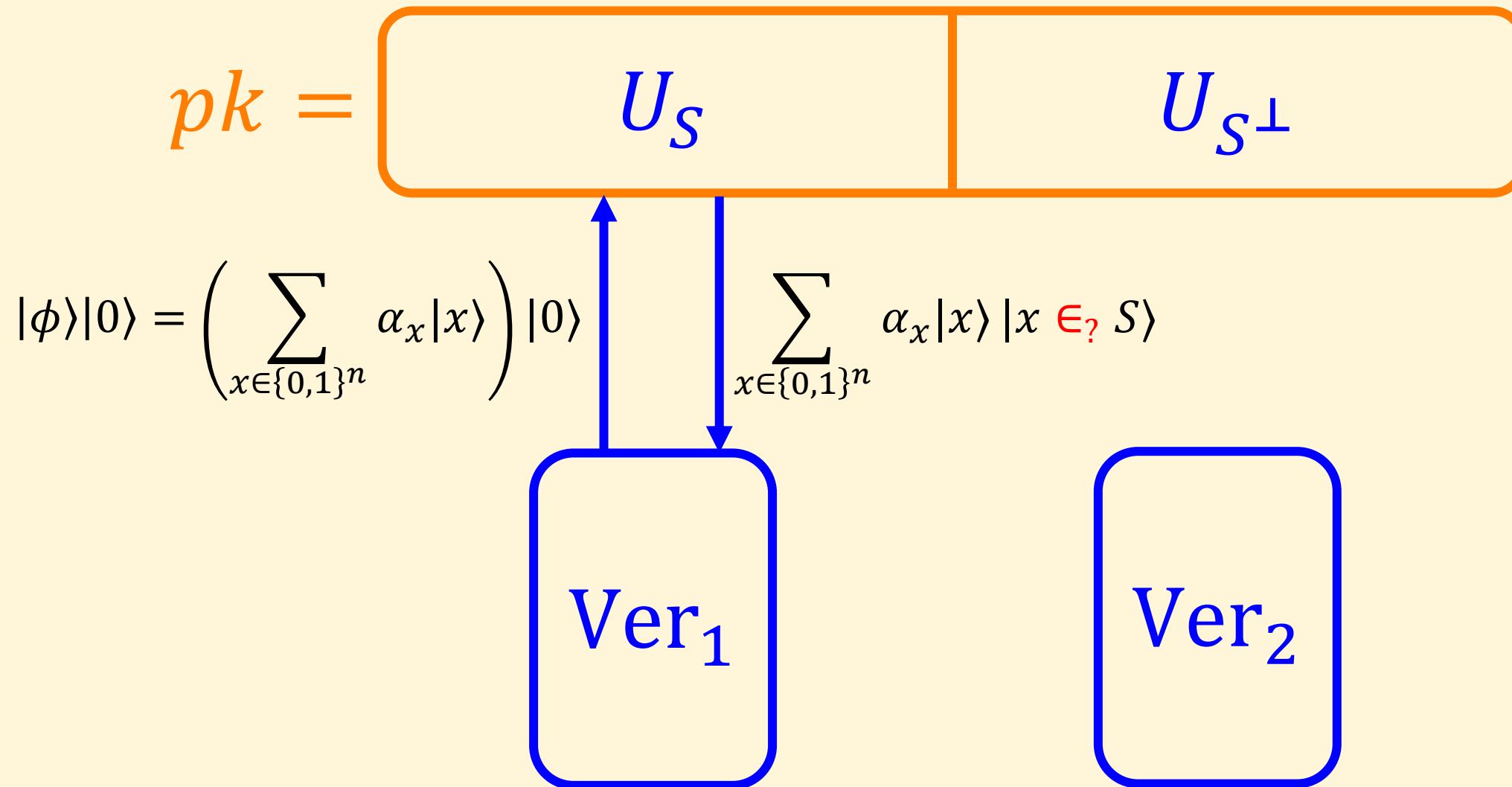
Hint 2: $H^{\otimes n}|x\rangle$ is a uniform superposition, and from the above we have $H^{\otimes n}|S\rangle = |S^\perp\rangle$. Inside a subspace, the wider the superposition, the narrower its $H^{\otimes n}$ transform will be.

Constructing Public-key Quantum Money

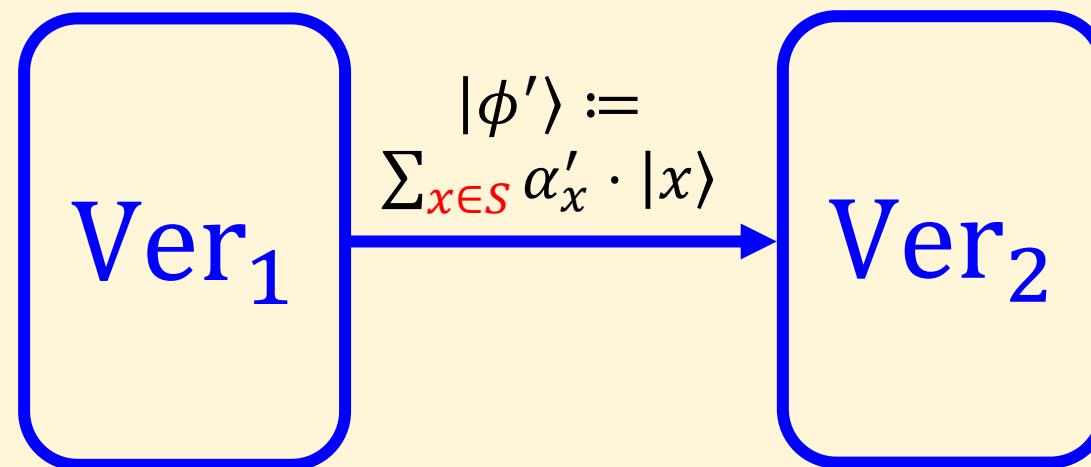


Constructing Public-key Quantum Money

Constructing Public-key Quantum Money



Constructing Public-key Quantum Money

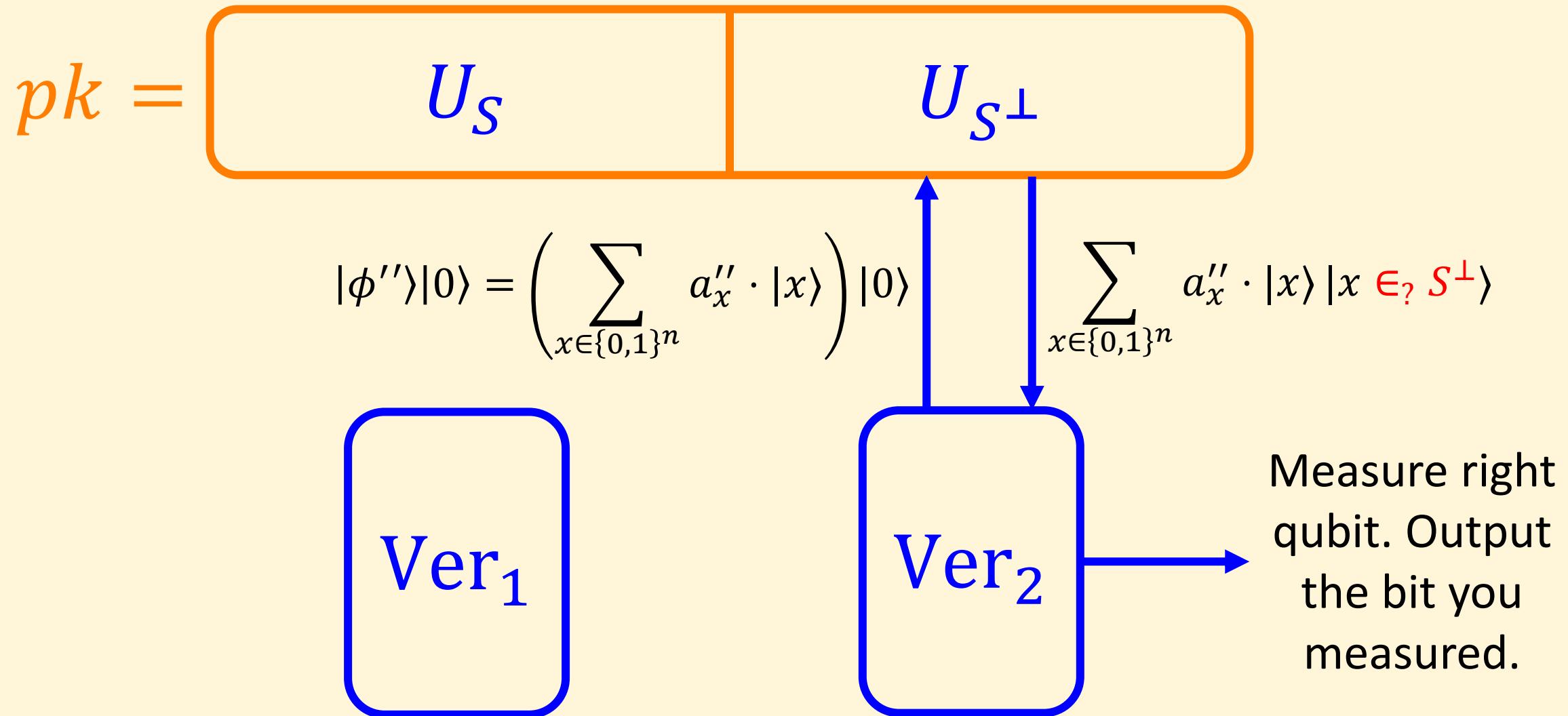


Constructing Public-key Quantum Money

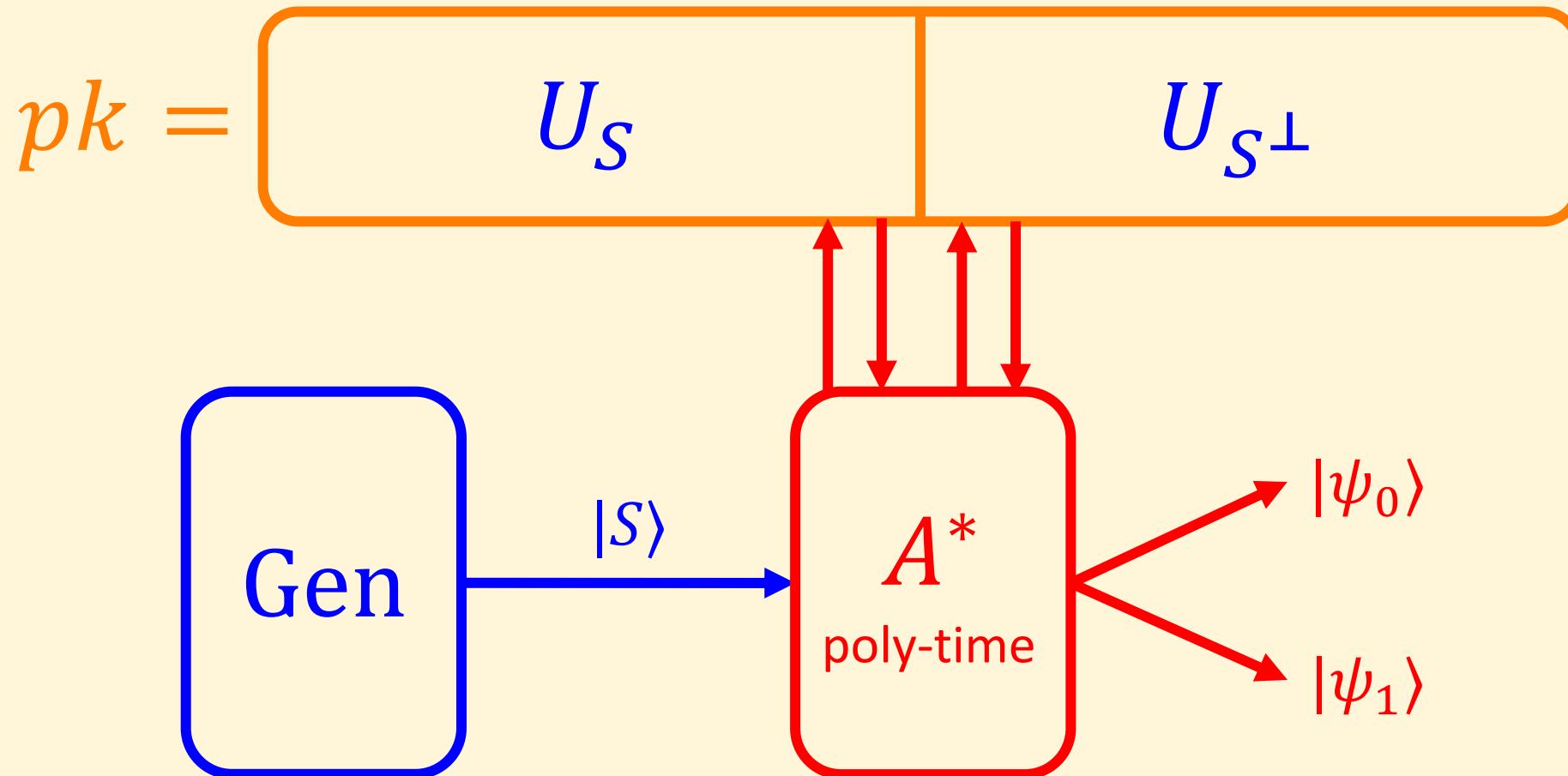
Compute:

$$H^{\otimes n}|\phi'\rangle = |\phi''\rangle$$

Constructing Public-key Quantum Money

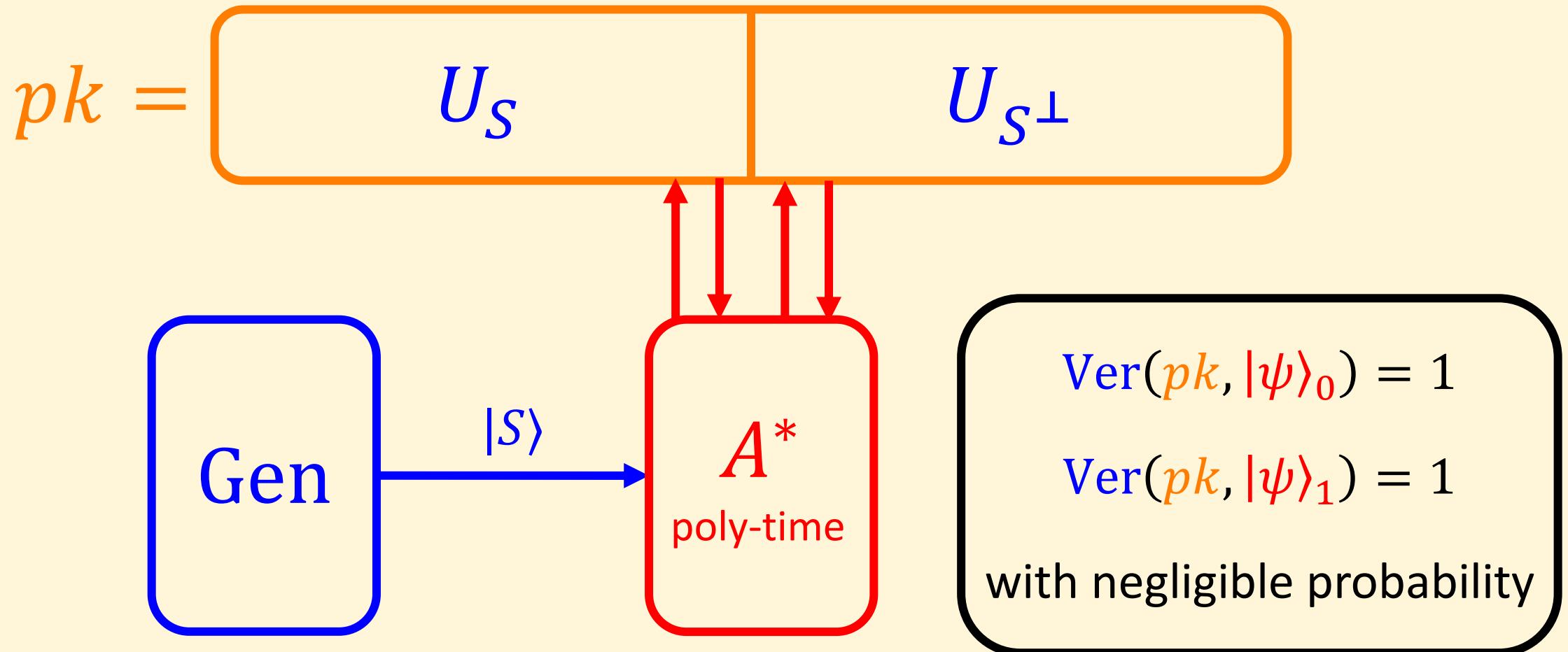


Constructing Public-key Quantum Money



Theorem (Aaronson-Christiano-2012, Theorem 25):

Constructing Public-key Quantum Money



Theorem (Aaronson-Christiano-2012, Theorem 25):

Public-key Quantum Money - Construction

Construction [Aaronson-Christiano-2012]:

- $(pk, |\psi\rangle_{pk}) \leftarrow \text{Gen}(1^n)$.
- $|\psi\rangle_{pk} = |S\rangle$, for a random subspace $S \subseteq \{0,1\}^n$, $|S| = 2^{\frac{n}{2}}$.
- $pk = (\text{Obf}_S, \text{Obf}_{S^\perp})$ (Idealized obfuscation).
- $\text{Ver}(pk, |\phi\rangle)$:
 - First, check that the rightmost qubit of $U_S(|\phi\rangle|0\rangle)$ is 1.
 - Now the state is $|\phi'\rangle := \sum_{x \in S} \alpha'_x \cdot |x\rangle$. Apply $H^{\otimes n} \cdot |\phi'\rangle = |\phi''\rangle$.
 - Finally, check that the rightmost qubit of $U_{S^\perp}(|\phi''\rangle|0\rangle)$ is 1.

PKQM in the Standard Model

- The [A-C-2012] construction is secure only with respect to an oracle.
- We want a construction in the plain model, under computational assumptions.
- It was shown by [Zhandry-2018] that the scheme can stay as is, and it is secure in the standard model. Formally:

PKQM in the Standard Model

Construction [Aaronson-Christiano-2012] + [Zhandry-2018]:

- $(pk, |\psi\rangle_{pk}) \leftarrow \text{Gen}(1^n)$.
- $|\psi\rangle_{pk} = |S\rangle$, for a random subspace $S \subseteq \{0,1\}^n$, $|S| = 2^{\frac{n}{2}}$.
- $pk = (\text{Obf}_S, \text{Obf}_{S^\perp})$ (Can we obfuscate using iO?).
- $\text{Ver}(pk, |\phi\rangle)$:
 - First, check that the rightmost qubit of $U_S(|\phi\rangle|0\rangle)$ is 1.
 - Now the state is $|\phi'\rangle := \sum_{x \in S} \alpha'_x \cdot |x\rangle$. Apply $H^{\otimes n} \cdot |\phi'\rangle = |\phi''\rangle$.
 - Finally, check that the rightmost qubit of $U_{S^\perp}(|\phi''\rangle|0\rangle)$ is 1.

PKQM in the Standard Model

Theorem (Subspace-hiding Obfuscation) [Zhandry-2018, Theorem 6.3]:

Assume,

- Quantum-secure iO exists (for classical circuits), and
- Quantum-secure injective OWFs exist.

Then, for every subspace $S \subseteq \{0,1\}^n$ with $\dim(S) = \frac{n}{2}$,

the following distributions are indistinguishable:

$$\left\{ \begin{array}{l} \{0_S \mid 0_S \leftarrow \text{iO}(\mathcal{C}_S)\} , \\ \{0_T \mid T \leftarrow \left(S \subseteq T, \dim(T) = \frac{3n}{4} \right) , 0_T \leftarrow \text{iO}(\mathcal{C}_T) \} . \end{array} \right.$$

PKQM in the Standard Model

**Lemma (Hardness of Cloning Reduced-Entropy Subspace States)
[Zhandry-2018, Section 6.2]:**

Let $T_0, T_1 \subseteq \{0,1\}^n$ subspaces with $\dim(T_0) = \frac{3n}{4}$, $\dim(T_1) = \frac{n}{4}$, and $T_1 \subseteq T_0$.

Let $T_1 \subseteq S \subseteq T_0$ a uniformly random subspace with $\dim(S) = \frac{n}{2}$.

$$\forall A^*: \Pr_{(|S\rangle) \leftarrow \text{Gen}(1^n)} [A^*(|S\rangle) = |S\rangle|S\rangle] \leq 2^{-\Omega(n)}.$$

PKQM in the Standard Model

Lemma (Dual Check is Projective) [A-C-2012, Lemma 21]:

After a successful state verification in the [A-C-2012] PKQM, the state collapses to the money state $|\psi\rangle_{pk} = |S\rangle$.

PKQM in the Standard Model

Theorem (Security of the [A-C-2012] construction in the standard model) [Zhandry-2018, Corollary 6.6]:

Assume,

- Quantum-secure iO exists (for classical circuits), and
- Quantum-secure injective OWFs exist.

Then, quantum-secure iO can be used to obfuscate the circuits C_S, C_{S^\perp} from the [A-C-2012], and the scheme is secure in the standard model.

PKQM in the Standard Model

Proof sketch:

In each of the following hybrids except the last, we can assume to have S, S^\perp , so we check at the end whether state passed verification.

- Hyb_0 : The standard security game, the adversary A gets 0_S , 0_{S^\perp} and $|S\rangle$ and succeeds in forging with noticeable probability.
- Hyb_1 : Use subspace-hiding to move from 0_S to 0_{T_0} for a random T_0 with dimension $\frac{3n}{4}$.

PKQM in the Standard Model

Proof sketch:

- Hyb_2 : Use subspace-hiding to move from 0_{S^\perp} to $0_{T_1^\perp}$ for a random T_1^\perp with dimension $\frac{3n}{4}$.
- Note: $T_1 \subseteq S \subseteq T_0$, and $\dim(T_0) = \frac{3n}{4}$, $\dim(T_1) = \dim\left(\left(T_1^\perp\right)^\perp\right) = \frac{n}{4}$.
- Hyb_3 : Swap the order of sampling T_1, S, T_0 . First sample T_1, T_0 , and then sample S conditioned on $T_1 \subseteq S \subseteq T_0$. Distributes identically to Hyb_2 .

PKQM in the Standard Model

Proof sketch:

Conclude with the following observations.

- The dual check is projective. Until now we can assume access to S, S^\perp , and we project on $|S\rangle$ after a successful forgery.
- This means that at the end of Hyb_3 , the adversary clones $|S\rangle$ with a non-negligible probability.
- We can fix, by an averaging argument the subspaces T_0, T_1 and not S .
- The subspace S is a random subspace of dimension $\frac{n}{2}$, conditioned on $T_1 \subseteq S \subseteq T_0$. According to the hardness of reduced-entropy cloning, it is impossible to clone $|S\rangle$.

PKQM in the Standard Model

Construction [Aaronson-Christiano-2012] + [Zhandry-2018]:

- $(pk, |\psi\rangle_{pk}) \leftarrow \text{Gen}(1^n)$.
- $|\psi\rangle_{pk} = |S\rangle$, for a random subspace $S \subseteq \{0,1\}^n$, $|S| = 2^{\frac{n}{2}}$.
- $pk = (\text{Obf}_S, \text{Obf}_{S^\perp})$ (Obfuscated using iO).
- $\text{Ver}(pk, |\phi\rangle)$:
 - First, check that the rightmost qubit of $U_S(|\phi\rangle|0\rangle)$ is 1.
 - Now the state is $|\phi'\rangle := \sum_{x \in S} \alpha'_x \cdot |x\rangle$. Apply $H^{\otimes n} \cdot |\phi'\rangle = |\phi''\rangle$.
 - Finally, check that the rightmost qubit of $U_{S^\perp}(|\phi''\rangle|0\rangle)$ is 1.