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Quantum Operations Recap

The guantum gates we are using in this talk:

() -3l L)
X[0)y=11), X|1) =10},

H10) = |+) ==%<|o>+ )

HI1) = |-) ==%(|o>— 1))




Quantum Operations Recap

A pure quantum state: A quantum state |) consisting of n €

N qubits:
Py= ) a0,

x€{0,1}"
vx €{0,1}" : a, € C,

z |ax|2 =1.

x€{0,1}M
A mixed quantum state: Is just a((classicalg distribution over
quantum states: ) « D, D = {(p;, [¥;)) }iem -



The No-Cloning Theorem

No-Cloning Theorem (informal):

“There is no quantum operation that can copy arbitrary
quantum states.”

) D)

)



The No-Cloning Theorem

Theorem [No-cloning, cryptographic version]:

0 D)

Efficient
sampler

b}

With non-negligible
probability



The No-Cloning Theorem

Theorem [No-cloning, cryptographic version]:
31 a quantum polynomial time algorithm 0,

*Forinputn € N, Q(1™) samples an n-qubit state |1)).
* For every (possibly unbounded) quantum algorithm A4,

— —Q(n)
P TAGY) = [9)lp)] < 2700

Actually: Many different algorithms for Q!



Quantum Money — the vision

* A guantum system can hold an unclonable quantum state

)

= Quantum systems can be rare physical objects.
e States take tiny physical space.

* Transferred through communication channels,
immediately over large distances.



Quantum Money — the vision

ldealized digital cash:
1. Takes negligible physical space, 2. Locally algorithmically verifiable,
3. Provably unforgeable, 4. Can be sent instantaneously.



Talk Plan — 15t Part

* Quantum money — Definition.

* Quantum money — Why it is about quantum cryptography,
and not about money.

* Private-key quantum money.
» Basic techniques for sampling unclonable states.

* Public-key quantum money.
» Construction paradigm: Range and quantumness checks.
»Subspace states and quantum Fourier transform.

* PKOM in the standard model.
»Subspace-hiding obfuscation.



Quantum Money

Definition [Secret-Key Quantum Money, Wiesner-
1969]:

Given by two polynomial-time quantum algorithmes,

* (5k, |P)sk) « Gen(17).
* ( 1@")) « Ver(sk, [¢)) .



Quantum Money

* Correctness:

( ,|1P>skl)3£Gen( )[( ) < Ver(sk, [)s)]



Quantum Money

* Correctness:

ety B Genim L [Whsic) < Ver(sh, [)ge )l = 1.

* Security:



Quantum Money

* Security:

Vo

A*

poly-time

)



Quantum Money

* Security:

Ver( ) |lp>0) — 1

Gen A Ver(sk, |Y);) =1

poly-time

with negligible probability



Quantum Money

* Correctness:

o B enc o [ 9D = Ver(sk, [9)g0)] = 1.

* Security:

A" (1P)si) = [Pdolh)1,

Vpoly — time A*: Pr Ver(sk, |Y)o) =1, | < negl(n).
(sk,|P)si)<Gen( )_ Ver( ;|1/J>1) -1




Quantum Money

What it really is:

An efficiently samplable distribution over quantum
states that is,

(1) Verifiable given a key, (2) Unclonable.



Quantum Money

Quantum Money can be viewed as a pre-condition
for quantum cryptography.

Quantum
Money

Soé’;v;?/re Software Unclonable Unclonable
[ ) (] [ ) .
' Secret Keys Ciphertexts
Protection Leasing v .




Quantum Money

Breakthroughs in quantum money techniques
= breakthroughs for a lot of quantum cryptography.

Quantum
Money

Software

Copy
Protection

Software Unclonable Unclonable

Leasing Secret Keys Ciphertexts




Constructing Private-key
Quantum Money



Constructing Quantum Money

Q:
How do we efficiently sample a distribution over
guantum states that’s both,

(1) verifiable and (2) unclonable?



Constructing Quantum Money

Claim [single-qubit no-cloning, unitary]: Consider the following set of
guantum states,

/ |0}, )
1),
§ = { 14) = —=(10) + 1)
= < = ) > .
V2
1
—)=—=(0)—|1
&l ) ﬁ(l ) — | ))J
Then, there is no unitary transformation U on 2 qubits such that:

U(10)10)) = [0)[0),  U(|1)|0)) = |1)[1),
U(l0)10) = [H+),  U(=)0) = [=)=).



Constructing Quantum Money

Proof [single-qubit no-cloning, unitary]:
e Assume towards contradiction that there is such cloning U € C**4.
U successfully clones |+), thus:

1
U([+)10)) = |+H)+) = 5(1,1,1,1)T-

* However, (1) the state |+) is in the span of |0) and |1), and
(2) U successfully clones both |0) and |1). We get:

1 1
U(l+0) =U (\/_E(l()) + |1))|0)> = \/—E(U(IO)IO)) +U(1)]0)))

_ L _ L r 1 r
= ﬁ(|0)|0) + |1)|1)) = ﬁ(l,0,0,l) + > (LL,LD". g



Constructing Quantum Money

Lemma [single-qubit cryptographic no-cloning — no proof]:
Consider the uniform distribution over the same set as before,

/ |0), X
1),
1
Si=11+)= E(IO) +11), ¢ .
1
&|_> = \/_E(l()) - |1))J

Then, there is some constant ¢ € N s.t. for every quantum algorithm A:

Pr LA = [ < 1/c



Constructing Quantum Money

Construction:

* ( ) h:b)Sk) S Gen( )
* [P)si =7

o =?



Constructing Quantum Money

Construction:

y ( ) h:b)Sk) S Gen( )

* [Y)s = ni.i.d. samples from S.
. = the classical descriptions of the n samples.



Constructing Quantum Money

Construction:

* (sk, [Y)sk) « Gen(1").

s [W)ge = (HP1X[0), -+, HPnX%n|0))
e sk =(a €{0,1}*, b € {0,1}").



Constructing Quantum Money

Construction:

* (sk, |Y)sk) < Gen(1™).

o |Y)or = (Hblxal‘()),...,anXan‘())) .= H®b x®a|gny,
e sk =(a €{0,1}*, b € {0,1}").

* Ver(sk, |¢)): ?



Constructing Quantum Money

Construction:

° ( ) h:b)Sk) S Gen( )
o | = (Hblxal‘()),...,anXan‘())) = H®bx®a|on),
= (a € {0,1}"",b € {0,1}").

e Ver(sk,|@)): Accepts iff [0") = (X®“)_1(H®b)_1\gb) .



Constructing Quantum Money

Claim (Security): _ _
A ([Y)sk) = [P)ol),
Ver(sk, |[Y)y) =1, | < 2~Qm)

i Ver( ) |l/)>1) =1 .

VA*: Pr
(sk,|P)sk)<Gen (1)

Security proof sketch:

* The verification is projective: The only state that passes
with probability 1 is |1) .

* To break security w.p. p, the adversary really needs to
clone w.p. p.



Constructing Quantum Money

Security proof sketch:
* For the adversary to clone, it needs to clone all n qubits.

* 1-qubit cryptographic no-cloning = each qubit can be
cloned with probability bounded by constant % = 210;(6).
*Since all qubits are i.i.d., the probability to succeed

cloning all n qubits is < 2-™108(c) < 2-0(n)




The Public Verification Problem

hb)sk
O

)



The Public Verification Problem

|1/)>sk

) )



The Public Verification Problem

|¢>sk
O

)

277 w

Q: Can we publicize s/?



The Public Verification Problem

No.

The state ) is not only verified, but is generated from
the secret key

o |U)o = (Hb1Xa1‘())’ ...’anXan‘())) = H®bx®a|gn)
e sk =(a €{0,1}*, b € {0,1}").
= If you have the key, you can clone.




The Public Verification Problem

|¢>sk
O

)

Q: Ok, cannot publicize s/. Maybe we can verify without s/?

277 w



The Public Verification Problem

No.

Without the key, random quantum information can be
indistinguishable from random classical information.

Claim:

{51,52, "',Sn} = {|S> | S & {OJl}n} :
Proof sketch: It is an easy exercise in quantum information theory to
prove for a single qubit: {S} = {|b) | b < {0,1}}, that is:

(&0) Gm) o) G o) = w) Gm))



The Public Verification Problem

* Since the conception of quantum money by Stephen
Wiesner (1969), was open.

* First breakthrough by Scott Aaronson and Paul Christiano
in 2012 (solution with respect to an oracle).

* Solution in the standard model by Mark Zhandry in 2018.



Public-key Quantum Money

An efficiently samplable distribution over quantum
states that is,

(1) Publicly verifiable, (2) Unclonable.




Public-key Quantum Money

A pre-condition for public-key quantum cryptography.

Public-key
Quantum
Money

Public-key Quantum
Cryptography

Software

Copy
Protection

Unclonable
Ciphertexts

Unclonable
Secret Keys

Software
Leasing




Public-key Quantum Money

As before, technical breakthroughs in PKQM, usually imply
breakthroughs for other stuff.

Public-key
Quantum
Money

Software

Copy
Protection

Unclonable

Unclonable

Software
Leasing © o o Secret Keys

Ciphertexts




Public-key Quantum Money

Definition:
Given by two polynomial-time quantum algorithms,

+ ()IP)pi) « Gen(1").
. ( 16" < Ver(OK)|¢)) -



Public-key Quantum Money

* Correctness:

( |1/J)pk) Gen( )[( ‘lp)l’k) < Ver( , hp)pk)] =1.



Public-key Quantum Money

* Security:

Vo

A*

poly-time

)




Public-key Quantum Money

* Security:

Ver(pk, [$)o) = 1

Gen A Ver(pk, |Y);) =1

poly-time

with negligible probability




Constructing Public-key Quantum Money

* We will next construct, in steps, the [Aaronson-

C
T

access to a classical function (to be defined).

nristiano-2012] Public-key Quantum Money Scheme.

ne scheme is secure with respect to quantum oracle

* After that, we will see the construction in the plain
model by [Zhandry-2018].



Constructing Public-key Quantum Money

Goal: Construct a PKQM scheme.

° ( ) |l/)>pk) < Gen(1").
° |l/)>pk =7

o —

* Ver(pk, |[¢)):?



Constructing Public-key Quantum Money

Definition [Quantum-secure Indistinguishability obfuscation]:
A classical probabilistic polynomial-time algorithm 10,

Obf, « iO(lA, C), where C, Obf, are classical circuits, 4 € N.
Correctness: The circuits C and Obf,. have the same
functionality.

Security: For A € N, every poly and a pair of functionally-
equivalent circuits C,, C; that are both of size < poly(A):

{Obfe, < i0(14,Cy)} =, {Obf, «i0(1%, Cy)}.



Constructing Public-key Quantum Money

Quantum-secure i0:

* Hides the inner workings of an algorithm.

e C(Classically-secure iO is known from well-studied assumptions
[Jain-Lin-Sahai-2020].

* Quantum-secure iO is known based on more specific
assumptions [Brakerski-Dottling-Garg-Malavolta-2020a + b],
[Gay-Pass-2021].

* “ldeal Obfuscation”: Obfuscated circuit Obf. sometimes
reveals no more than oracle access to C.




Constructing Public-key Quantum Money

Classical Computation in Quantum Superposition:
* Let f:{0,1}" — {0,1}™ a classical function. The unitary

version of f is given by the (n + m)-qubit unitary U:
Vx € {0,1}" : Ue[x, 0™) = |x, f(x)) .
* A quantum oracle access to a classical function f: {0,1}" —
10,1}, is access to the (n + m)-qubit unitary Us.
 There is an efficient classical algorithm that given a classical
circuit C implementing f:{0,1}* — {0,1}", constructs the
(classical description of the) unitary circuit for Uy.



Constructing Public-key Quantum Money

Idea: Think of as an ideal obfuscation of some
classical f:{0,1}" — {0,1}™.

* We know that Obfr implies (oracle only) access to Uy.
* |Y),k should be verifiable given access to Ur.

* |Y),k should remain unclonable given access to Us.



Constructing Public-key Quantum Money

Uy

|l/)>pk

Gen Ver (1, 1) k)



Constructing Public-key Quantum Money

Uy

Vo

A*

poly-time

)



Constructing Public-key Quantum Money

Uy

Ver(pk, [$)o) =1

A*

poly-time

Ver( ) l,b>1) — 1
with negligible probability

Gen




Constructing Public-key Quantum Money

Construction:
. ( , |1/J>pk) « Gen(1™).
* |Y),x = Unclonable, even given access to Us.

. = Obf; (for now, think of as ideal obfuscation).
 Ver(pk, |¢)): [), is verifiable given Us.



Public-key Quantum Money - Intuition

Q: Find f:{0,1}" — {0,1} and [y),x such that: (1) [}), is verifiable
given access to Uy, (2) Ilp)pk stays unclonable given access to Uy.

* Clearly, |¢),x cannot be classical (i.e., [{),x = |x) for some specific
x € {0,1}).

* What about very large superpositions?

* Does not necessarily work. For example, Hadamard states H®™ .
x), have the largest superposition, but are easily clonable.

* |t turns out that if the span of the superposition is both, random
and intermediate size, we get an unclonable state.




Public-key Quantum Money - Intuition

Q: Find f:{0,1}" — {0,1} and [y),x such that: (1) [}), is verifiable
given access to Uy, (2) [Y)»k stays unclonable given access to Ur.

* Pick a random subset S C {O,l}’f of size 22. Output:

S) = — .
5= =),

* |S) is unclonable.

* Importantly: |S) stays unclonable even given quantum access to
membership check in S.



Constructing Public-key Quantum Money

Construction:
* ( ) |l/)>pk) « Gen(1").
* [Y),x = |S), forarandom S € {0,1}", |S| = 2.

. = Obfs (ideal obfuscation for membership check in S).

* Ver(pk, |¢)): ?



Constructing Public-key Quantum Money

Us

|P)
Ver



Constructing Public-key Quantum Money

|¢>|o>=< D ax|x>)|0> D @l lxes)

x€{0,1}" x€{0,1}"



Constructing Public-key Quantum Money

x|X) X €7 5)

Measure right qubit.
Output the bit you
measured.



Constructing Public-key Quantum Money

Us

|S)

Ver



Constructing Public-key Quantum Money

Always accepts.




Constructing Public-key Quantum Money

Sy Secure?

|S)




Constructing Public-key Quantum Money

Us

Ver(pk, [$)o) =1

A*

poly-time

Gen

Ver(pk, |Y),) =1
with negligible probability

Forging is easier than Cloning!



Constructing Public-key Quantum Money

Us

) Although A

A* cannot
poly-time x) clone, it can
forge.

Measure(|S))



Public-key Quantum Money - Intuition

* Although |Y),,,, = |S) was unclonable, the verification could be
cheated. Let’s focus on improving verification.

* Q: What exactly was lacking in Ver?

* A: Classical states pass verification. Ver needs to check not only for
containment in S, but check for quantumness!

* More concretely, Ver needs to check two things:
»Range check: The superposition |¢) contains only elements in S.
»Quantumness check: The superposition |¢) contains many elementsin S.

* In the previous scheme, Ver only checked the range.




Public-key Quantum Money - Intuition

Us

|P)
Ver



Public-key Quantum Money - Intuition

|¢>|o>=< D ax|x>)|0> D @l lxes)

x€{0,1}" x€{0,1}"



Public-key Quantum Money - Intuition

x|X) X €7 5)

After measuring 1,
the superposition
collapses to

[@7) = Xxes ax - |x) .




Public-key Quantum Money - Intuition

Q:
Assume you are given a state of the form
|p) = Dyes @y - |x) , forsome S < {0,1}".

Can you check, in quantum polynomial-time, that the
state is non-classical? (i.e., that it is not the case that
a, = 1 forsome x € 5).

A:
If S is a subspace, then yes!



Constructing Public-key Quantum Money

Definition [Subspace State]:
Letn € Nand letS € {0,1}" a subspace of {0,1}"*. The
subspace state of S is defined as

S) == — .
) mZm

XES




Constructing Public-key Quantum Money

Definition [Dual Subspace]:
Letn € Nand letS € {0,1}" a subspace of {0,1}". The dual
subspace of S, denoted S+, is defined as the subspace of {0,1}"
such that

St={xe{01}"|vy€eS: (x,y)=0}



Constructing Public-key Quantum Money

Lemma [Quantum Fourier Transform of a Subspace State]:
Letn € N and letS € {0,1}" a subspace of {0,1}". Then,

H®™|S) = |S1).

Proof: By Calculation.



Constructing Public-key Quantum Money

Lemma [Quantum Fourier Transform of a Subspace State]:
Letn € N and letS € {0,1}" a subspace of {0,1}". Then,

H®™|S) = |S1).

Q: Consider two scenarios, Dy and D;. Assume you know S§.

D,: You are given a |x) for x € S.

D;: You are given |S).

Distinguish between Dy and D;. Hint 1: What happens after H®n?

Hint 2: H®™|x) is a uniform superposition, and from the above we have
H®™|S) = |S1). Inside a subspace, the wider the superposition, the
narrower its H®" transform will be.




Constructing Public-key Quantum Money

[@7) = Dxes ax - |x) .




Constructing Public-key Quantum Money

US USJ_

Ver, Ver,



Constructing Public-key Quantum Money

|¢>|o>=< > ax|x>>|0> ) wllxes)

x€{0,1}"



Constructing Public-key Quantum Money

US USJ_

Ver,




Constructing Public-key Quantum Money

US USJ_

Compute:

HO"|$") = 19")

Ver, Ver,



Constructing Public-key Quantum Money

US USJ_

|¢">|o>=< > a;;-|x>>|0>

x€{0,1}"

>l lx e sh

x€{0,1}"

Measure right
qubit. Output
the bit you
measured.

Ver,



Constructing Public-key Quantum Money

US USJ_

Vo)

A*
poly-time

1)

Theorem (Aaronson-Christiano-2012, Theorem 25):



Constructing Public-key Quantum Money

US USJ_

Ver( ’ lp)O) =1

A Ver(pl, [p),) = 1

poly-time

with negligible probability

Theorem (Aaronson-Christiano-2012, Theorem 25):



Public-key Quantum Money - Construction

Construction [Aaronson-Christiano-2012]:

* (0F, [P)pk) < Gen(1™).

* [Y)pr = |S), for a random subspace S € {0,1}", [S| = 2%
. = (Obfs, ObeJ_) (Idealized obfuscation).

* Ver(pk,|p)):

> First, check that the rightmost qubit of Us(|¢)[0)) is 1.
>Now the state is |¢p') == X ccak - |x). Apply HO™ - |¢p') = |p"').
> Finally, check that the rightmost qubit of U1 (|¢p"')|0)) is 1.




PKQM in the Standard Model

* The [A-C-2012] construction is secure only with respect to an
oracle.

* We want a construction in the plain model, under
computational assumptions.

* It was shown by [Zhandry-2018] that the scheme can stay as
is, and it is secure in the standard model. Formally:



PKQM in the Standard Model

Construction [Aaronson-Christiano-2012] + [Zhandry-2018]:
* (0/, [P)pk) < Gen(17).

* [Y)pr = |S), for a random subspace S € {0,1}", [S| = 2%
. = (Obfs, ObeJ_) (Can we obfuscate using iO?).

* Ver(pk,|p)):

> First, check that the rightmost qubit of Us(|¢)[0)) is 1.
>Now the state is |¢p') == X, ccak - |x). Apply HO" - |¢p') = |¢"').
> Finally, check that the rightmost qubit of U1 (|¢p"')|0)) is 1.




PKQM in the Standard Model

Theorem (Subspace-hiding Obfuscation) [Zhandry-2018,
Theorem 6.3]:

Assume,
* Quantum-secure iO exists (for classical circuits), and

* Quantum-secure injective OWFs exist.

Then, for every subspace S € {0,1}"" with dim(S) = g,

the following distributions are indistinguishable:
{05[0g < 10(Cs)}

n

{oT ‘ T (5 C T, dim(T) = 37) 0 « iO(CT)} .



PKQM in the Standard Model

Lemma (Hardness of Cloning Reduced-Entropy Subspace States)
[Zhandry-2018, Section 6.2]:

Let Ty, T; € {0,1}" subspaces with dim(7T,) = %n , dim(T;) = %,
and T; € T,.
n

let Ty € S € T, a uniformly random subspace with dim(S) = .

VA*: Pr A*(IS)) = |S)|S)] < 2—9m)
15y tebn( )[ (15)) = |S)IS)]



PKQM in the Standard Model

Lemma (Dual Check is Projective) [A-C-2012, Lemma 21]:

After a successful state verification in the [A-C-2012] PKQM,
the state collapses to the money state [}, = |S).



PKQM in the Standard Model

Theorem (Security of the [A-C-2012] construction in the
standard model) [Zhandry-2018, Corollary 6.6]:

Assume,
* Quantum-secure iO exists (for classical circuits), and
* Quantum-secure injective OWFs exist.

Then, guantum-secure iO can be used to obfuscate the circuits

Cs, Cc1 from the [A-C-2012], and the scheme is secure in the
standard model.



PKQM in the Standard Model

Proof sketch:

In each of the following hybrids except the last, we can assume
to have S, S+, so we check at the end whether state passed
verification.

* Hyb, : The standard security game, the adversary A gets O,
O. and |S) and succeeds in forging with noticeable
probability.

* Hyb, : Use subspace-hiding to move from Og to O, for a

: . . 3n
random Ty with dimension -



PKQM in the Standard Model

Proof sketch:

* Hyb; : Use subspace-hiding to move from Og. to O for a

: : . 3n
random T;- with dimension -

*Note:T; €S S T,,and dim(T,) = %n , dim(Ty) =
. 1L 1 _ E
dim (7)) =2,
* Hyb; : Swap the order of sampling Ty, S, T,y. First sample

Ty, Ty, and then sample S conditionedonT; € S C T, .
Distributes identically to Hyb, .



PKQM in the Standard Model

Proof sketch:
Conclude with the following observations.

* The dual check is projective. Until now we can assume access to
S, S+, and we project on |S) after a successful forgery.

* This means that at the end of Hyb,, the adversary clones |S) with
a non-negligible probability.

* We gan fix, by an averaging argument the subspaces T,, T; and
not S.

* The subspace S is a random subspace of dimension 2, conditioned

onT; €5 € Ty. According to the hardness of reduc%d-entropy
cloning, it is impossible to clone |S) .
|



PKQM in the Standard Model

Construction [Aaronson-Christiano-2012] + [Zhandry-2018]:
* (0/, [P)pk) < Gen(17).

* [Y)pr = |S), for arandom subspace S € {0,1}", [S| = 2%
. = (O’ofs, ObeJ_) (Obfuscated using iO).

* Ver(pk,|p)):

> First, check that the rightmost qubit of Us(|¢)[0)) is 1.
>Now the state is |¢p') == X, ccak - |x). Apply HO" - |¢p') = |¢"').
> Finally, check that the rightmost qubit of U1 (|¢p"')|0)) is 1.
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