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What will you Learn from this Talk?

◼ Classical Random-Oracle Model

◼ Quantum Access

◼ Three Tools

◼ Extensions and Applications



https://app.wooclap.com/QROM

• A RO is a random function 𝑓: 0,1 𝑛 → 0,1 𝑛

• How many such functions are there?  https://app.wooclap.com/QROM 

a) 𝑛!

b) 2𝑛

c) (2𝑛)!

d) 22𝑛

e) 2𝑛⋅2𝑛

• Truth table: 

• Just specifying 𝑓 requires 

exponentially many bits!

Random Oracle (RO)

𝒇(𝟎 … 𝟎𝟎) 0 1 1 … 0

𝒇(𝟎 … 𝟎𝟏) 1 0 1 … 0

𝒇(𝟎 … 𝟏𝟎) 0 0 1 … 1

𝒇(𝟎 … 𝟏𝟏) 0 1 1 … 1

⋮ ⋮

𝑛 columns

2𝑛 rows

https://app.wooclap.com/QROM


SHA-3

• A cryptographic hash function H: 0,1 ∗ → 0,1 𝑛

• Takes arbitrary-length input strings, outputs 𝑛 bits.

Example SHA-3: 𝑛 = 256 bits 
H("The quick brown fox jumps over the lazy dog")=

0xf4202e3c5852f9182a0430fd8144f0a74b95e7417ecae17db0f8cfeed0e3e66e

H("The quick brown fox jumps over the lazy dof")=

0x853f4538be0db9621a6cea659a06c1107b1f83f02b13d18297bd39d7411cf10c

Hash Functions

• An ideal hash function should behave as random oracle

𝐻

https://en.wikipedia.org/wiki/SHA-3


Hash Functions As Random Oracles

• An ideal hash function should behave as random oracle

• Example: Collision-resistance
Theorem: In a random function 𝑓, it is difficult to find two colliding 
inputs. Formally, for any adversary A making 𝑞 queries to 𝑓, we have 

Pr 𝑥 ≠ 𝑦 𝑎𝑛𝑑 𝑓 𝑥 = 𝑓 𝑦  𝑥, 𝑦 ← 𝐴𝑓] ≤ 𝑂
𝑞2

2𝑛

• Proof: Let 𝑥1, 𝑥2, … , 𝑥𝑞  be the list of A’s distinct queries to 𝑓. For a 

random 𝑓, the outputs 𝑓 𝑥𝑖  are independent 𝑛-bit strings. The 

probability that two of them collide is 
1

2𝑛, and there are 𝑞
2

= 𝑂(𝑞2) 

pairs.

𝐻



Digital Signatures

Alice

Evepublic key

secret key

Bob

• Only secret-key holder can sign, but everyone 

can verify signatures using the public-key.



Digital Signatures

Alice

Evepublic key

secret key

Bob

• Only secret-key holder can sign, but everyone 

can verify signatures using the public-key.

• Very widely used:

• Problems: expensive, 

insecure against quantum attacks

[Bart Preneel @QCrypt 2014]



Hash & Sign

Alice

Evepublic key

secret key

Bob

𝐻

• Hash message to be signed, then digitally sign the hash

• Theorem: If 𝐻 is a random oracle, then hash & sign is secure.

• Proof sketch: Let 𝑥1, 𝑥2, … , 𝑥𝑞  be the list of Eve’s queries to 𝐻. 

Either she finds a collision in 𝐻, or the security of sign applies.



•  Heuristic to model hash functions in cryptographic proofs

Random-Oracle Model (ROM)

[Bellare Rogaway 93, slide by Dziembowski]

protocol

𝐻
“knows 𝐻”

protocol Every call to 𝐻 is replaced 
with a query to RO.

Adversarial queries are 
observed. 

Informal description:

Formal random-oracle model:

𝐻: 0,1 ∗ → 0,1 𝑛

https://cseweb.ucsd.edu/~mihir/papers/ro.pdf
https://www.slideshare.net/sdziembowski/lecture-2-message-authentication


Hash & Sign in the Random Oracle Model

Alice

Evepublic key

secret key

Bob

𝐻

• Hash message to be signed, then digitally sign the hash

• Theorem: If H is a random oracle, then hash & sign is secure

• Proof sketch: Let 𝑥1, 𝑥2, … , 𝑥𝑞  be the list of Eve’s queries to 𝐻. 

Either she finds a collision in 𝐻, or the security of sign applies.

𝐻: 0,1 ∗ → 0,1 𝑛



Building Hash Functions

• Secure building block 𝑓: 0,1 2𝑛 → 0,1 𝑛

• Construct a hash function 𝐻: 0,1 ∗ → 0,1 𝑛 from it

[Merkle Damgård 79, image: wikipedia]

[Merkle Damgård 79]

https://commons.wikimedia.org/wiki/File:Merkle-Damgard_hash.svg


Security Notions

• Collision resistance: If 𝑓 is collision resistant, then so is 𝐻, obtained by the Merkle-

Damgård construction.

[5-line proof, exercise for crypto students   ]

• Indistinguishability: If 𝑓 is a random oracle, then 𝐻’s input-output behavior is 

random, no efficient adv can distinguish interaction with 𝐻 from interaction with 𝑅𝑂.

[follows from reasoning above  ]

[Merkle Damgård 79, Bellare Canetti Krawczyk 05]

Dist

Ideal:Real:

Dist

https://eprint.iacr.org/2005/270.pdf


• Indifferentiability: If 𝑓 is a random oracle, then there exists 𝑆𝑖𝑚 such that no 

efficient adv can distinguish between interacting with (𝑓, 𝐻) and (𝑆𝑖𝑚𝑅𝑂, 𝑅𝑂)

Indifferentiability

[Maurer Renner Holenstein 04, Coron Dodis Malinaud Puniya 05]

Dist

𝑆𝑖𝑚

Dist

Real: Ideal:

https://eprint.iacr.org/2003/161.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4b5225d1313170fac59b02cd6231941655f784f5


There exists a digital signature scheme that is

• secure in the ROM, but

• not secure if RO is instantiated with any real hash function.

• Very “artificial” example, no ”realistic” examples known

• Common view: ROM proof is better than no proof

Criticism of the Random-Oracle Model (ROM)

[Canetti Goldreich Halevi 98, slide by Dziembowski]

[Matthew Green: https://blog.cryptographyengineering.com/2011/11/02/what-is-random-oracle-model-and-why/ ]

protocol
� : 0,1 ∗ → 0,1

https://eprint.iacr.org/1998/011
https://www.slideshare.net/sdziembowski/lecture-2-message-authentication
https://blog.cryptographyengineering.com/2011/11/02/what-is-random-oracle-model-and-why/


Classical Random-Oracle Model in Practice

• Digital Signatures: Fiat-Shamir Heuristic used by 

CRYSTALS-Dilithium, Hash-and-sign in FALCON

• Public-Key Encryption: KEMs are often built using the 

Fujisaki-Okamoto transform

like in CRYSTALS-Kyber

• Indifferentiability proofs 

• Etc.

https://app.wooclap.com/QROM 

https://app.wooclap.com/QROM


Example: Fiat-Shamir Transform

[slide by Ngoc Khanh Nguyen]



Example: Fiat-Shamir Transform

[slide by Ngoc Khanh Nguyen]



Example: Fiat-Shamir Transform

[slide by Ngoc Khanh Nguyen]



What will you Learn from this Talk?

✓Classical Random-Oracle Model

◼ Quantum Access

◼ Three Tools

◼ Extensions and Applications



• Post-quantum cryptography or quantum-safe cryptography 

studies quantum attackers on classical crypto.

• Attacker can look up description of hash function on 

Wikipedia, then run it in superposition on her quantum 

computer

• We need to allow attacker quantum (superposition) access 

to the random oracle

Quantum-Random-Oracle Model (QROM)

“knows 𝐻”

𝐻: 0,1 ∗ → 0,1 𝑛

[Boneh Dagdelen Fischlin Lehmann Schaffner Zhandry 11]

https://arxiv.org/abs/1008.0931


• Quantum attacker may query RO in superposition:

• Example: superposition over all inputs

1

2𝑛/2
෍

𝑥∈ 0,1 𝑛

𝑥 |0⟩ ↦
1

2𝑛/2
෍

𝑥∈ 0,1 𝑛

𝑥 |𝑓(𝑥)⟩

• With a single quantum query, Eve can access all function values in superposition. 

Quantum Superposition Access

𝐻: 0,1 ∗ → 0,1 𝑛

• Standard oracle (StO):  𝑥 𝑋 𝑦 𝑌 ↦ 𝑥 𝑋 𝑦 ⊕ 𝑓 𝑥 𝑌

|𝑥⟩

|𝑦⟩
𝑂𝑓 |𝑦 ⊕ 𝑓(𝑥)⟩

|𝑥⟩



• Many classical ROM proofs break down in the QROM

• Efficient simulation: how to emulate a RO towards an adversary

• Adaptive programmability: depending on the adversary’s queries, 

plant a challenge in the answer

• Extractability: Simulator learns pre-images of adversary’s queries

• Rewinding: replaying some hash values but changing some outputs

Trouble in the QROM

protocol
𝐻: 0,1 ∗ → 0,1 𝑛

[Boneh Dagdelen Fischlin Lehmann Schaffner Zhandry 11]

https://arxiv.org/abs/1008.0931


Example: Fiat-Shamir Transform

[slide by Ngoc Khanh Nguyen]



What will you Learn from this Talk?

✓Classical Random-Oracle Model

✓Quantum Access

◼ Three Tools

◼ Extensions and Applications



• A function family ℱ ⊂ {𝑓: 0,1 𝑛 → 0,1 𝑛} is called t-wise independent if 

for 𝑡 distinct inputs {𝑥1, 𝑥2, … , 𝑥𝑡} , the values 𝑓 𝑥1 , 𝑓 𝑥2 , … , 𝑓 𝑥𝑡  for 

𝑓 ← ℱ are independent and uniform.

Tool 1: q-wise independent functions

• Example Construction: The family 

ℱ𝑎 = {𝑓 𝑥 = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑡−2𝑥𝑡−2 + 𝑎𝑡−1𝑥𝑡−1} where 

Ԧ𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑡−1) ∈ 𝐺𝐹 2𝑛 𝑡 is 𝑡-wise independent. 

• Theorem: Let ℱ be a 2q-wise independent function family. For any q-query 

quantum algorithm 𝐴:  Pr
𝐻←𝑅𝑂

1 ← 𝐴𝐻 = Pr
𝑓←ℱ

1 ← 𝐴𝑓



Tool 1: Simulating RO to a quantum adversary 

Proof (extension  of the polynomial method): 

• [Zhandry 19] The quantity Pr
𝑓←ℱ

1 ← 𝐴𝑓  is a linear combination of the 

quantities Pr
𝑓←ℱ

𝑓 𝑥𝑖 = 𝑦𝑖 ∀𝑖 ∈ {1,2, … , 2𝑞}
𝑥𝑖,𝑦𝑖

• These quantities are identical for 𝑓 fully random and 𝑓 ← ℱ. 

[Ronald de Wolf’s lecture notes, Chapter 11, https://arxiv.org/abs/1907.09415]

[Zhandry 19: https://eprint.iacr.org/2012/076, Theorem 6.1]

• Theorem: Let ℱ be a 2q-wise independent function family. For any q-query 

quantum algorithm 𝐴:  Pr
𝐻←𝑅𝑂

1 ← 𝐴𝐻 = Pr
𝑓←ℱ

1 ← 𝐴𝑓

https://arxiv.org/abs/1907.09415
https://eprint.iacr.org/2012/076


Tool 1: Simulating RO to a quantum adversary 

[Zhandry 19] The quantity Pr
𝑓←ℱ

1 ← 𝐴𝑓  is a linear combination of the quantities 

𝛽𝑥1𝑦1𝑥2𝑦2
≔ Pr

𝑓←ℱ
𝑓 𝑥1 = 𝑦1 , 𝑓 𝑥2 = 𝑦2

[Ronald de Wolf’s lecture notes, Chapter 11, https://arxiv.org/abs/1907.09415]

[Zhandry 19: https://eprint.iacr.org/2012/076, Theorem 6.1]

|𝑥⟩

|𝑦⟩
𝑂𝑓 |𝑦 ⊕ 𝑓(𝑥)⟩

|𝑥⟩

|𝑧⟩ |𝑧⟩

|0⟩

|0⟩ 𝐴0

|0⟩

𝐴1

∑𝛼𝑥𝑦𝑧 𝑥 𝑦 𝑧 → ∑𝛼𝑥𝑦𝑧 𝑥 𝑦 ⊕ 𝑓(𝑥) 𝑧 = ∑𝛼𝑥𝑦𝑧 ∑𝑦′ Pr 𝑓 𝑥 = 𝑦′ 𝑥 𝑦 ⊕ 𝑦′ 𝑧

 = ∑𝛼𝑥𝑦𝑧 ∑𝑦′ 𝛽𝑥𝑦′ 𝑥 𝑦 ⊕ 𝑦′ 𝑧  = ∑𝛼𝑥𝑦′𝑧 ∑𝑦 𝛽𝑥𝑦′⊕𝑦 𝑥 𝑦′ 𝑧  

 

0/1

 

https://arxiv.org/abs/1907.09415
https://eprint.iacr.org/2012/076


Tool 1: Simulating RO to a quantum adversary 

Proof (extension  of the polynomial method): 

• [Zhandry 19] The quantity Pr
𝑓←ℱ

1 ← 𝐴𝑓  is a linear combination of the 

quantities Pr
𝑓←ℱ

𝑓 𝑥𝑖 = 𝑦𝑖 ∀𝑖 ∈ {1,2, … , 2𝑞}
𝑥𝑖,𝑦𝑖

• These quantities are identical for 𝑓 fully random and 𝑓 ← ℱ. 

[Ronald de Wolf’s lecture notes, Chapter 11, https://arxiv.org/abs/1907.09415]

[Zhandry 19: https://eprint.iacr.org/2012/076, Theorem 6.1]

• Theorem: Let ℱ be a 2q-wise independent function family. For any q-query 

quantum algorithm 𝐴:  Pr
𝐻←𝑅𝑂

1 ← 𝐴𝐻 = Pr
𝑓←ℱ

1 ← 𝐴𝑓

https://arxiv.org/abs/1907.09415
https://eprint.iacr.org/2012/076


Tool 2: One-way to Hiding Lemma (O2H)

• Illustrating example: Security of 𝐸𝑛𝑐 𝑚 : = 𝑓 𝑟 , 𝑚 ⊕ 𝐻 𝑟

• Security game:  IND-CPA security: Pr 𝑤𝑖𝑛 𝐺1 ≈ 1/2 where

Example from [Unruh 22: https://www.youtube.com/watch?v=YAIFGB4ryGE ]

Game 1:

1. 𝐻 ← 𝑅𝑂, 𝑏 ← 0,1 , 𝑟 ← 0,1 𝑛

2. 𝑚0, 𝑚1 ← 𝐴𝐻

3. 𝑏′ ← 𝐴𝐻 𝑓 𝑟 , 𝑚𝑏 ⊕ 𝐻 𝑟

4. 𝑤𝑖𝑛 ≔ [𝑏′ = 𝑏]

Game 2:

1. 𝐻 ← 𝑅𝑂, 𝑏 ← 0,1 , 𝑟 ← 0,1 𝑛, 𝑦 ← 0,1 𝑛

2. 𝑚0, 𝑚1 ← 𝐴𝐻

3. 𝑏′ ← 𝐴𝐻 𝑓 𝑟 , 𝑚𝑏 ⊕ 𝑦

4. 𝑤𝑖𝑛 ≔ [𝑏′ = 𝑏]

• Note: Pr 𝑤𝑖𝑛 𝐺2 = 1/2 because 𝑦 acts as one-time pad to hide 𝑚𝑏

• In classical ROM, we can argue that

Pr 𝑤𝑖𝑛 𝐺1 − Pr[𝑤𝑖𝑛 𝐺2] ≤ Pr 𝐻 𝑟 𝑖𝑠 𝑞𝑢𝑒𝑟𝑖𝑒𝑑 𝑖𝑛 𝐺2 ≈ 0

𝐻: 0,1 𝑛 → 0,1 𝑛

?

https://www.youtube.com/watch?v=YAIFGB4ryGE


Tool 2: One-way to Hiding Lemma (O2H)

To show: Pr 𝑤𝑖𝑛 𝐺1 ≈ 1/2

[Unruh 15: https://eprint.iacr.org/2013/606.pdf]

Game 1:

1. 𝐻 ← 𝑅𝑂, 𝑏 ← 0,1 , 𝑟 ← 0,1 𝑛

2. 𝑚0, 𝑚1 ← 𝐴𝐻

3. 𝑏′ ← 𝐴𝐻 𝑓 𝑟 , 𝑚𝑏 ⊕ 𝐻 𝑟

4. 𝑤𝑖𝑛 ≔ [𝑏′ = 𝑏]

Game 2:

1. 𝐻 ← 𝑅𝑂, 𝑏 ← 0,1 ,

𝑟 ← 0,1 𝑛, 𝑦 ← 0,1 𝑛

2. 𝑚0, 𝑚1 ← 𝐴𝐻

3. 𝑏′ ← 𝐴𝐻 𝑓 𝑟 , 𝑚𝑏 ⊕ 𝑦

4. 𝑤𝑖𝑛 ≔ [𝑏′ = 𝑏]

Note: Pr 𝑤𝑖𝑛 𝐺2 = 1/2

• Theorem: [original O2H, Unruh 15] 

Fix a q-query adversary 𝐴𝐻. Let 𝐵𝐻 run 𝐴𝐻 until the i-th query for random 

𝑖 ← {1,2, … , 𝑞}, measure the query register. Then, for random 𝑥, 𝑦

Pr 𝐴𝐻 𝑥, 𝐻 𝑥 = 1 − Pr 𝐴𝐻 𝑥, 𝑦 = 1 ≤ q Pr[𝐵𝐻(𝑥, 𝑦) = 𝑥]

Game 3: run 𝐴𝐻 𝑖𝑛

1. 𝐻 ← 𝑅𝑂, 𝑏 ← 0,1 , 𝑟 ← 0,1 𝑛,

𝑦 ← 0,1 𝑛, 𝑖 ← {1, 2, … , 𝑞}

2. 𝑚0, 𝑚1 ← 𝐴𝐻

3. 𝑏′ ← 𝐴𝐻 𝑓 𝑟 , 𝑚𝑏 ⊕ 𝑦

4. 𝑟′ ← 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑞𝑢𝑒𝑟𝑦 𝑖

5. 𝑤𝑖𝑛 ≔ [𝑟′ = 𝑟]

Pr 𝑤𝑖𝑛 𝐺1 − Pr 𝑤𝑖𝑛 𝐺2 ≤ q Pr 𝑤𝑖𝑛 𝐺3 ≈ 0

𝐻: 0,1 𝑛 → 0,1 𝑛

https://eprint.iacr.org/2013/606.pdf


What will you Learn from this Talk?

✓Classical Random-Oracle Model

✓Quantum Access

◼ Three Tools: 

✓t-wise independent functions

✓One-way to Hiding (O2H)

◼ Compressed oracles

◼ Applications



• What is the resulting quantum state?

Quantum: Warm-Up

CNOT gate

|0⟩ 𝐻

|0⟩

https://app.wooclap.com/QROM 

https://app.wooclap.com/QROM


• What is the resulting quantum state?

CNOT gate

|0⟩ 𝐻

|0⟩

00 + |11⟩

2

https://app.wooclap.com/QROM 

Quantum: Warm-Up

https://app.wooclap.com/QROM


Quantum Circuit Identity

CNOT gate 00 ↦ 00
01 ↦ 01
10 ↦ 11
11 ↦ 10

+ + ↦ + +
+ − ↦ − −
− + ↦ − +
− − ↦ + −

𝐻𝐻

𝐻 𝐻
=  ?

𝑍

𝐻𝐻

https://app.wooclap.com/QROM 

https://app.wooclap.com/QROM


Quantum Circuit Identity

CNOT gate + + ↦ + +
+ − ↦ − −
− + ↦ − +
− − ↦ + −

https://app.wooclap.com/QROM 

00 ↦ 00
01 ↦ 01
10 ↦ 11
11 ↦ 10

𝐻𝐻

𝐻 𝐻
=  ?

𝑍

𝐻𝐻

https://app.wooclap.com/QROM


• When viewed “in the Hadamard basis”, the control and target of the CNOT are swapped!

Quantum Circuit Identity

CNOT gate + + ↦ + +
+ − ↦ − −
− + ↦ − +
− − ↦ + −

𝐻𝐻

𝐻 𝐻
=

00 ↦ 00
01 ↦ 01
10 ↦ 11
11 ↦ 10



Quantum: Warm-Up Revisited

CNOT gate

|0⟩ 𝐻

|0⟩

|+⟩ 𝐻

|+⟩

00 + |11⟩

2

++ +|−−⟩

2
=

00 +|11⟩

2



• Introduce purifying register for function truth table

 StO: ∑𝑓 𝑥 𝑦 𝑓 ↦ ∑𝑓 𝑥 𝑦 ⊕ 𝑓(𝑥) 𝑓

• For a random oracle 𝑓, we have a superposition over all truth tables

• From Eve’s point of view, there is no difference!

A Crucial Insight: Purification

[Mark Zhandry 2018: How to Record Quantum Queries]

|𝑥⟩

|𝑦⟩ 𝑂𝑓 |𝑦 ⊕ 𝑓(𝑥)⟩

|𝑥⟩

|𝑓⟩ |𝑓⟩

|𝑥⟩

|𝑦⟩

𝑂𝑓

|𝑦 ⊕ 𝑓(𝑥)⟩

|𝑥⟩

|𝑓(0)⟩ |𝑓(0)⟩

|𝑓(1)⟩ |𝑓(1)⟩

𝑥 = 1𝑥 = 0

https://eprint.iacr.org/2018/276


Change of Viewpoint: Fourier Oracle

|𝑥⟩

|𝑦⟩ |𝑦 ⊕ 𝑓(𝑥)⟩

|𝑥⟩

|𝑓(0)⟩ |𝑓(0)⟩

|𝑓(1)⟩ |𝑓(1)⟩

𝑥 = 1𝑥 = 0

𝐻 𝐻 𝐻 𝐻

𝐻 𝐻

𝐻 𝐻

𝑥 = 1

|𝑥⟩

|𝜂⟩

Fourier Oracle

|𝜂⟩

|𝑥⟩

|0⟩ |𝜂⟩

|0⟩ |0⟩

𝑥 = 1𝑥 = 0

𝑥 = 0

|𝜂⟩

|𝑥⟩

|0⟩

|𝜂⟩

• By making a query, Eve entangles herself with the truth table in a very clean way, 

when observed in the Fourier basis!

Standard Oracle

[Mark Zhandry 2018: How to Record Quantum Queries]

https://eprint.iacr.org/2018/276


Compressing the Database

[Mark Zhandry 2018: How to Record Quantum Queries]

• Fourier Oracle (FO):

𝑥 𝜂 0𝑛 ⋯ 0𝑛
𝐹𝑂

|𝑥⟩|𝜂⟩|0𝑛 ⋯ 0𝑛 𝜂 0𝑛 ⋯ 0𝑛⟩ 

• Multiple FO queries “populate” the database

• Compression: only keep track of the non-zero entries

𝑥 𝜂 𝐷
𝐹𝑂

𝑥 𝜂 𝐷 ∪ (𝑥, 𝜂)

• Allows efficient simulation of the random oracle to the adversary

|𝑥⟩

|𝜂⟩

Fourier Oracle

|𝜂⟩

|𝑥⟩

|0⟩ |𝜂⟩

|0⟩ |0⟩

𝑥 = 1𝑥 = 0

𝑥 = 0 𝑥 = 1

|𝜂⟩

|𝑥⟩

|0⟩

|𝜂⟩

https://eprint.iacr.org/2018/276


What will you Learn from this Talk?

✓Classical Random-Oracle Model

✓Quantum Access

✓Three Tools: 

✓t-wise independent functions

✓One-way to Hiding (O2H)

✓Compressed oracles

◼ Extensions and Applications



Chung Fehr Huang Liao 21

• Intuition: The quantum queries are recorded in the database, an adversary can only 

learn about the function what is recorded there

• Theorem: For any quantum player making 𝑞 queries, if the database 𝐷 is measured 

after the 𝑞 queries, the probability that it contains a pair (𝑥, 0𝑛) is at most 𝑂
𝑞2

2𝑛 . 

• Idea: Track the norm of the state projected onto 𝐷 containing a zero. It starts at 0, 

and every query increases it by at most 
1

2𝑛/2. After 𝑞 queries, its norm is at most 

𝑞

2𝑛/2 . 

• Using newer tools from [Chung Fehr Huang Liao 21], such reasoning is almost 

classical.

Query Lower Bounds

[Mark Zhandry 2018: How to Record Quantum Queries, 
Chung, Fehr, Huang, Liao 2021]

https://eprint.iacr.org/2020/1305
https://eprint.iacr.org/2018/276
https://eprint.iacr.org/2020/1305


• Tool 1: t-wise independent function families:

semi-constant distributions, small-range distributions, …

• Tool 2: one-way to hiding

semi-classical O2H, many variants

• Measure and reprogram tools for Fiat-Shamir [PhD thesis by Jelle Don 24]

• Tool 3: compressed oracles

online extraction, (tight) adaptive reprogramming

compressed permutation oracles? Ideal-cipher model?

Extensions and More Advanced Tools

[Ambainis Hamburg Unruh 18][Mark Zhandry 2018: How to Record Quantum Queries, 
Chung, Fehr, Huang, Liao 2021]

https://ir.cwi.nl/pub/33745/33745D.pdf
https://eprint.iacr.org/2018/904
https://eprint.iacr.org/2018/276
https://eprint.iacr.org/2020/1305


• Query lower bounds for searching and (multi-)collisions in random functions

• Fujisaki-Okamoto transformation (to build public-key encryption) 

• Fiat-Shamir transform (for digital signatures)

• Indifferentiability 

• 4-round Luby-Rackoff/Feistel construction

• Succinct arguments

• Separations between ROM and QROM

• Adaptive reprogramming

• …

Numerous Applications



• How to lazy-sample a quantum-accessible random permutation both 

forwards and backwards? 

• Answer would yield indifferentiability of sponge construction used in SHA-3

Major Open Question: Compressed Permutation Oracles

𝑆𝑖𝑚

DistDist

Real: Ideal:

[Czajkowski Majenz Schaffner Zur 19, Unruh 21, Unruh 24, Majenz Malavolta Walter 24]

https://arxiv.org/abs/1904.11477
https://eprint.iacr.org/2021/062
https://eprint.iacr.org/2023/770.pdf
https://eprint.iacr.org/2024/1140


Summary

◼ Classical Random-Oracle Model

◼ Quantum Access

◼ Three Tools: 

◼ t-wise independence

◼ One-way to Hiding (O2H)

◼ Compressed oracles 

◼ Extensions & Applications

𝐻: 0,1 ∗ → 0,1 𝑛

𝑥 𝜂 0𝑛 ⋯ 0𝑛
𝐹 

𝐹𝑂
𝑥 𝜂 0𝑛 ⋯ 0𝑛 𝜂 0𝑛 ⋯ 0𝑛

𝐹 

𝑆𝑖𝑚
𝐻



Thank you for your attention!

Questions

wants you!



• detailed links and references at bottom of slides

• 2024 QSI Spring school on PQC: https://pqc-spring-school.nl/ 

• 2022 IPAM summer school: https://www.ipam.ucla.edu/programs/summer-
schools/graduate-summer-school-on-post-quantum-and-quantum-cryptography
Dominique Unruh on quantum tools

• 2021: Quantum Techniques for Provable Security: https://quiques.huelsing.net/
Kai-Min Chung on compressed oracles, Kathrin Hövelmanns on O2H lemmas, …

• 2021: 11th BIU Winter School on `Cryptography in a Quantum World’: 
https://www.youtube.com/playlist?list=PL8Vt-7cSFnw2JZsskO0bzeO7FswokQC7-
Mark Zhandry on compressed oracles 

• 2020: Simons institute: https://www.youtube.com/watch?v=LOtxqBJ6Qqk 
Christian Majenz on attacking hash functions

More Resources

https://pqc-spring-school.nl/
https://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-on-post-quantum-and-quantum-cryptography
https://www.ipam.ucla.edu/programs/summer-schools/graduate-summer-school-on-post-quantum-and-quantum-cryptography
https://quiques.huelsing.net/
https://www.youtube.com/playlist?list=PL8Vt-7cSFnw2JZsskO0bzeO7FswokQC7-
https://www.youtube.com/watch?v=LOtxqBJ6Qqk
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