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Basic Circuits



Quantum Hadamard Gates

A very important gate

1. Gate H: |0) — L{g” 1) >

2. By Iinearity, [¢) = a|0) + 5 |1), |1/J>
Hly) = S5(10) + |1) + 55(10) - (1))

= aH[0) + 6H 1
a4 |0) 4 28 |1y



Quantum Hadamard Gates

A very important gate

1. Gate H: |0) — % 11 >f|1>

)
2. By Iinearity, [¢) =al0) +51), H |1/J> = aH|0) + SH|1)
Hlg) = S5(10) + 1)) + Z5(10) — 1)) = 272 [0) + 272 [1)

3. Matrix version: My % ( )

0+
B
Similarly for My |1).

4. Eg., if [¢) =1]0) + (2+ /) |1), compute My |¢)) ?

M 0) =




Some Quantum Circuits

o—[x A

X|y) = B10) +a|l)
|

[¥) = «|0) + B |1) : { 0 with proba. |3|?

1 with proba. |a|?
I



Some Quantum Circuits

o—X A

X ) = B10) + 1)
|

[¥) = «|0) + 5 1) : { 0 With proba. |32

1 with proba. |a|?
|

2
[
I 0 with proba. 1/2

0 —.—¢—-—/7<

0 . | - { 1 with proba. 1/2
|

HI1) = 55(10) -

| 0 with proba. 1/2
11@{ 3
1) | - 1 with proba. 1/2



2-qubits = 4 possibilities

2-qubit
e |Y) = «]0.0) + 3]0.1) + v|1.0) + & ]1.1), with o, 3,7,0 € C
o [aP+ P+ P +10PP =1

ac 1
a c ad 1 1 0
f— d p— p— p— .
° <b> ® <d> be and |0) ® |0) <0> ® <0> 0 |0.0)
bd 0
Vectors
1 0 0 0 «
0 1 0 0 I5)
0.0) = ., 10.1) = , 11.0) = ,11.1) = , =
00 = | o[ lov={g[ o= | mn=] | m=|"
0 0 0 1 0



Operations on qubits

e Addition of qubits: |¢) = (1 + 3/)|0) 4+ 2i|1) and
) =310) + (1 —i) 1),

¢) +1¢) = (4+301)10) + (1 + 1) [1)

For 2 2-qubits: (]1.0) +10.1)) + (|1.0) — [0.1)) = 2]|1.0)
e Multiplication of 2 1-qubit is a 2-qubit: |¢) - [1))

((L4+30)]0) + 2/ 1)) ® (3]0) + (L — 1) 1))

(L+3i)-3-10)[0) + (1 +3i)- (1L —i)|0) |1) +6i - 1) |0) + ...
(34+9i)]0.0) + (4 +2i)]|0.1) + 6/ |1.0) + (2 + 2i)|1.1)



CNOT Gate: controlled gate with 2-qubit

——

_69_

If ... then ... else ...

e |0.0) — [0.0),]0.1) — |0.1),|1.0) > |1.1),]1.1) — |1.0)
0 0 0
0 1 0 0
If |0.0) = ., 10.1) = ,11.0) = , 1.1 =
100 = | | on=| | =] | 1=,
0 0 0 1
1 00O
1
M = > oL , the upper left submatrix is the identity
0 0 0 1
0 010

performed on the first line, the bottom right submatrix is the
inversion operation performed on the second line



Quantum Circuit

)=~ E A—Al)) where A s a unitary A*A = I,

Theorem
Every n-qubit quantum gate can be realized with a circuit using only

CNOT and 1-qubit gates



Quantum Circuit

) E A Aly) where A is a unitary A*A = I,

Theorem
Every n-qubit quantum gate can be realized with a circuit using only

CNOT and 1-qubit gates

Theorem (Solovay-Kitaev)

There is an infinite number of 1-qubit gates, and every such gate can be
approximated with only H, T, and CNOT gates

) ) —m/8
The T gate: [0) v [0) and |1) s e™/4|1): T = /8 (e . 7?/8>
€



Quantum Circuit

)=~ E A—Al)) where A s a unitary A*A = I,

Theorem
Every n-qubit quantum gate can be realized with a circuit using only

CNOT and 1-qubit gates

Theorem (Solovay-Kitaev)

There is an infinite number of 1-qubit gates, and every such gate can be
approximated with only H, T, and CNOT gates

Theorem: Toffoli (CCNOT) is a universal gate

e Toffoli gate is invertible: (]a.b.c) +— |a.b.c ® (ab))):
T |a.b.1) = |a.b.NAND(a, b))

e Any classical circuit using N gates in the set AND, OR, NOT
(universal gates for classical circuits) can be computed using O(NN)
Toffoli gates



Partial Measurement of a 2-qubit

o |¥) =a|0.0)+B30.1) +v[1.0) +&|1.1), |2+ |82+ |¥|>+ 6] =1

o) — A0 or 1

7

e |f one measures the first qubit as 1, what is the second qubit 7



Partial Measurement of a 2-qubit

|9) = ]0.0) + B10.1) +v|1.0) + 6 [1.1), |2+ |BP + 7P+ 152 =1

o) — A0 or 1

7

e |f one measures the first qubit as 1, what is the second qubit 7

Eg, If [¢) = ? |0.0) 4+ £(0.1) 4 3 |1.1), then if we observe |1) on
the first qubit, the second is |1).



Partial Measurement of a 2-qubit

|9) = ]0.0) + B10.1) +v|1.0) + 6 [1.1), |2+ |BP + 7P+ 152 =1

o) — A0 or 1

7

e |f one measures the first qubit as 1, what is the second qubit 7

A y) = ‘f |0.0) 4+ £(0.1) 4 3 |1.1), then if we observe |1) on
the flrst qubit, the second is |1).
0), as |¢) = ‘0> (v2]0) + |1)) 4+ 3 |1) [1), the second

qubit is f\O \/ [1)




Partial Measurement of a 2-qubit

[9) = «]0.0) + B10.1) +v|1.0) + 6 [1.1), |2+ |BP + 7P+ 162 =1

|1/}> or 1

7

If one measures the first qubit as 1, what is the second qubit ?

A y) = ‘[ |0.0) 4+ £10.1) 4 £ |1.1), then if we observe |1) on
the flrst qubit, the second is |1).

If we observe |0), as [¢) = ‘O -(V2]0) + |1)) + % |1) [1), the second
qubit is \/; |0) +

311)
More generally, [¢) = |0) - (a|0) + 5 [1)) 4+ [1) - (v]0) + & |1)), and if
one measures |0) for the first qubit, the second is

o B8
Jmmwvmy%wwquD




Partial Measurement of a 2-qubit

|9) = ]0.0) + B10.1) +v|1.0) + 6 [1.1), |2+ |BP + 7P+ 152 =1

[o)— 70 or 1

7

e |f one measures the first qubit as 1, what is the second qubit 7

) = ‘f |0.0) 4+ £(0.1) 4 3 |1.1), then if we observe |1) on
the flrst qubit, the second is |1).

0), as |¢) = ‘0> (v2]0) + |1)) 4+ 3 |1) [1), the second

qubit is f\O \/ [1)

Exo: If [¢) = £(2]0.0.0) —]0.0.1) +30.1.0) + [0.1.1) — 2]1.0.0) +
2]1.0.1) +v/2|1.1.1)), and we measure 0.0, what is the last qubit ?




First algorithm: Deutsch-Jozsa



Quantum oracle gate

Oracle
e Let f: E — 7Z/27 be a function
o (2/2Z,+) = ({0,1},®)
o FIEXZ/2Z — EXZ/2Z, (x,y)r— (x,y ®f(x)), is a bijection



Quantum oracle gate

Oracle
e Let f: E — 7Z/27 be a function
o (2/2Z,+) = ({0,1},®)
o FIEXZ/2Z — EXZ/2Z, (x,y)r— (x,y ®f(x)), is a bijection
e Proof: F~1 = F, F(F(x,y)) = F(x,y @ f(x)) = (x,y)



Quantum oracle gate

Oracle

e Let f: E — 7Z/27 be a function
(2/2Z,+) = ({0,1}, ®)
o FIEXZ/2Z — EXZ/2Z, (x,y)r— (x,y ®f(x)), is a bijection
Proof: F~1 = F, F(F(x,y)) = F(x,y @ f(x)) = (x,y)
Deutsch-Jozsa Oracle f : (Z/27)% — 7./27Z:

X1— —Xi
Or
Xk— —Xk
y— —y B F(x1,. .., Xk)




Deutsch-Jozsa problem

Goal
o Let 7:{0,1} — {0,1}.

e There are 4 such functions: two are constant and two are balanced
(0 and 1 are taken the same number of times)

0—0 0—1 0—0 0—1
1—0 1—1 1—1 1—0

e Decide if f is constant or balanced ?

10



Deutsch-Jozsa problem

Goal
o Let 7:{0,1} — {0,1}.

e There are 4 such functions: two are constant and two are balanced
(0 and 1 are taken the same number of times)

0—0 0—1 0—0 0—1
1—0 1—1 1—1 1—0
e Decide if f is constant or balanced ?

e Classically, ask 2 queries ((0) and (1)), quantumly 1 query !
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Deutsch-Jozsa problem

Goal
o Let 7:{0,1} — {0,1}.

e There are 4 such functions: two are constant and two are balanced
(0 and 1 are taken the same number of times)

0—0 0—1 0—0 0—1
1—0 1—1 1—1 1—0
e Decide if f is constant or balanced ?

e Classically, ask 2 queries ((0) and (1)), quantumly 1 query !
Exponential gap: Let f: {0,1}" — {0,1} and we have the promise f is
either balanced or constant.

Classically, one need at most 27! + 1 queries, while only 1 quantumly !

10



Deutsch-Jozsa Quantum Circuit (n = 1)

o—r——

x)

y—  —lyefx)

11



Deutsch-Jozsa Quantum Circuit (n = 1)

|
|
Of:
|

1),

11



Deutsch-Jozsa Quantum Circuit (n = 1)

y— —lref(x)

e [th2) =00—-01+1.0—1.1,

12



Deutsch-Jozsa Quantum Circuit (n = 1)

Y1) ld2)  [3) (s

Of' |

y— —lyef(x)

o |tp) =00-01+1.0-11,
o |1h3) =0.(0® £(0)) — 0.(1® £(0)) + 1.(0 @ £(1)) — L(L & £(1))

A B

" { (i(()O._OO—.loi.fl)f(i?)f(_O)O: 1 A= U000

12



Deutsch-Jozsa Quantum Circuit (n = 1)

Y1) ld2)  [3) (s

Of' |

y— —lyef(x)

e |12) =0.0—-0.1+1.0-1.1,

e |43) =0.(00f(0)) —0.(1® f(0)) +1.(0® (1)) — L.(1 & £(1))
A B

= (—-1)f©(0.0 - 0.1) and B = (—1)fM(1.0 — 1.1)

= (-1)f®(0.0-0.1) + (-1)" (1.0 - 1.1)

o |1/J3>

12



Deutsch-Jozsa Quantum Circuit (n = 1)

|0>

|
|

[ ) | Of |
| |
|

|1> |

o |y3) = (—1)}(0)(0.OI— 0.1) + (_1)’;(1)(1,0 ~1.1)
o [a) = (=1)fO((041).0— (0+1).1)+(=1)" ™M ((0-1).0- (0-1).1)
o ) = (-1)©(0.0-0.1+1.0-1.1)+(-1)"®(0.0-0.1-1.0+ 1.1)

Y1) [2)  [¥3)  |¢a)
| | |
| | |
| |
| |
| |

13



Deutsch-Jozsa Quantum Circuit (n = 1)

Y1) l2)  [3) (e

O —{TH—H Ao

I I
° I 1| Of |1 I
h——AH

e |tg) = (—1)1©(0.0-0.14+1.0-1.1) +(-1)f®(0.0-0.1-1.0+1.1)

14



Deutsch-Jozsa Quantum Circuit (n = 1)

) L Y o o

I Of | 1
| |

H—H

o |t4) = 1)f<0 (0 0-0.14+1.0—-1.1)+(-1)f®(0.0-0.1-1.0+1.1)

(-
o [9) = (1) + (~1)/®)0.0 + ((~1)/© — (-1)M)0.1 +
((-1)/© - (- )<>)1o+( (-1 + (1) @)1

Y1) [2)  [¥3)  |¢a)
| | |
| | |
| |
| |
|

N

14



Deutsch-Jozsa Quantum Circuit (n = 1)

Y1) l2)  [3) (e

o—frH—  P{AHA o
° I I Of |1 I
| | | |
H—H
e |tg) = (—1)1©(0.0-0.14+1.0-1.1) +(-1)f®(0.0-0.1-1.0+1.1)
o [¢a) = (1)@ + (=1)"1)0.0 + (—(-1)"@ — (-1)"M)0.1 +
(=D = (1) ONL0 (— (1) + (—1)f 1.1
e If fis constant, (—1)7® 4 (—1)f) = 42 and

(=1)f©® — (—1)f™) =0 and (1)@ — (=1)M) =0, so
[tha) = 0.0 — 0.1 the measure of the first qubit 0 in both cases

e If f is balanced, check that the first bit is 1

14



Deutsch-Jozsa Circuit for n =2

0 [H] Of [HH A N
1 [H]H

X)— [x)

y)— O ly)

22— zefluy)

e Check that if f is constant, the final state before the measurement is

+0.0) ‘%(0 - 1)>, and the 2 first bits are 0.0
e if f is balanced, the final state does not contain qubits starting with

0.0, so no measurement of these qubits will give 0.0. 15



Shor Algorithm




Arithmetic

e order of a: smallest positive integer r s.t. 8" =1 mod N
e r|p(N) Lagrange Theorem in the group (Z/NZ)*

e r is the smallest period of the function f : k — a¥ mod N

16



Arithmetic

e order of a: smallest positive integer r s.t. 8" =1 mod N
e r|p(N) Lagrange Theorem in the group (Z/NZ)*

e r is the smallest period of the function f : k — a¥ mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2
2. Fact: (a"/2 —1)(a”/?> 4+ 1) =0 mod N

16



Arithmetic

e order of a: smallest positive integer r s.t. 8" =1 mod N
e r|p(N) Lagrange Theorem in the group (Z/NZ)*

e r is the smallest period of the function f : k — a¥ mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

. Fact: (a"/? —1)(a"/? +1) =0mod N

/2 41 is not divisible by N for many a's

. Under Assumption 1 and 2: d = ged(a’/? — 1, N) and
d" = gcd(a’/? 4 1, N) are non-trivial factors of N

2
3. Assumption 2: a
4

16



Arithmetic

e order of a: smallest positive integer r s.t. 8" =1 mod N

o r|o(N) Lagrange Theorem in the group (Z/NZ)*

e r is the smallest period of the function f : k — a¥ mod N

Assumptions

1.
2. Fact: (a"/2 —1)(a”/?> 4+ 1) =0 mod N

3.

4. Under Assumption 1 and 2: d = ged(a’/? — 1, N) and

Assumption 1: ord(a) = r is even with proba. 1/2

Assumption 2: a"/2 + 1 is not divisible by N for many a's

d" = gcd(a’/? 4 1, N) are non-trivial factors of N
Recall: Z/NZ is not an integral domain: N =6, 2 x 3 =0mod 6

16



Arithmetic

e order of a: smallest positive integer r s.t. 8" =1 mod N
e r|p(N) Lagrange Theorem in the group (Z/NZ)*

e r is the smallest period of the function f : k — a¥ mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (a'/?2 —1)(a"/?+1) =0mod N

3. Assumption 2: a’/? + 1 is not divisible by N for many a's
4

. Under Assumption 1 and 2: d = ged(a’/? — 1, N) and
d" = gcd(a’/? 4 1, N) are non-trivial factors of N

a=2 (a,N)=1 r=4,2*=16=1mod 15 (24/2—1,15):3
=03 no
a=11 (a,N)=1 r=2, 112 =121 = 1 mod 15 (112/2 —1,15)=5

16



Order and Oracle

order of a: smallest positive integer r s.t. 3" =1 mod N

rl¢(N) Lagrange Theorem in the group (Z/NZ)*

r is the smallest period of the function f : k — ak mod N
Oracle F : (k,0) — (k, a* mod N)
Eg N=15anda=2,r=4

17



Order and Oracle

order of a: smallest positive integer r s.t. 3" =1 mod N

rl¢(N) Lagrange Theorem in the group (Z/NZ)*

r is the smallest period of the function f : k — ak mod N
Oracle F : (k,0) — (k, a* mod N)

e Eg N=15anda=2r=4

0,005 (0,1) (4,005 (4,1) (8,005 (8,1) (12,00 5 (12,1)
(1,0)5 (1,2) (5,005 (5,2) (9,005 (9,2)  (13,0) 5 (13,2)
(2,0)5 (2,4)  (6,0)+5 (6,4) (10,0) 5 (10,4) (14,0) 5 (14,4)
(3,005 (3,8) (7,005 (7,8) (11,0) 5 (11,8) (15,0) & (15,8)

17



Oracle Circuit 2" > N

The oracle is composed of 2 registers: the first receives the integer k in
binary with n bits, and the second, 0 on n bits. We write |k) the register
containing k written in binary. For instance, |0) = |0....0) with n bits.
The initial state is |k) ® |0).

kU ’I‘U
First register k : - k
kn1—  —kn-1—
° Of
0
Second register { - tak mod N
0

18



Starting the Circuit 2" > N

e Initialization: [¢g) = [0) ® |0).

o Hadamard: [¢1) = H®"(|0)) ® [0) = (ﬁ T |k>) ® |0)

e Oracle: [1hy) = 515 22 Lk ® |ak)

Yo (G Y2
[ [
1R
| |
| |
i i
| |
| |
[ [
| |
[
|
|
|
:
|
|
[
|

First register 1 | [3) after partial

measurement

Or

19

I
I

1

I

I

. I

Second register { —
T

I

I

1

|

I - | measure of. the
| second register
[
[

LA —




Using the period to rewrite

e Assumption 3: ord(a) = r|2". This assumption is not true, and can
be removed (see later)
e Under Assumption 3: k =ar+ g with0< S <rand0<a<2"/r,

P, r—1 /2"/r-1
o) = K ®la)y =" ( > |ar+ﬂ>> ®|a")

B=0 a=0

20



Using the period to rewrite

e Assumption 3: ord(a) = r|2". This assumption is not true, and can
be removed (see later)

e Under Assumption 3: k =ar+ g with0< S <rand0<a<2"/r,

2"—1 r—1 /2"/r-1
o) =Y I @) = ( 3 |ar+/3>> 2 |#%)
k=0 B=0 \ a=0
e If we measure the second register, we get for a fixed Sy,

2"/r—1

[s) = Y Jar+ Bo) ®|a®)

a=0

20



Using the period to rewrite

e Assumption 3: ord(a) = r|2". This assumption is not true, and can
be removed (see later)
e Under Assumption 3: k =ar+ g with0< S <rand0<a<2"/r,

P, r—1 /2"/r-1
o) = K ®la)y =" ( > |ar+ﬂ>> ®|a")

B=0 a=0

e If we measure the second register, we get for a fixed Sy,

2"/r—1

[s) = Y Jar+ Bo) ®|a®)

a=0

e Assume we measure the first register, |agr + o) for fixed ag and Sy

If we redo the computation, we will not the same f,

e We cannot do many measures of the first register ...

20



Example N =15, a =2

* [¢) =10) ®[0)

e Hadamard Transform: |¢;) =(

+]1) + ...+ |15)) ® |0)
e Oracle: [¢) = [0).]a%) +[1).]a") +... + |1j> |a2)

21



Example N =15, a =2

* [¢) =10) ®[0)
e Hadamard Transform: |¢1) = (]0) + [1) + ...+ [15)) ®|0)
Oracle: [th2) = [0). 2%) + |1). |at) + ...+ |15) . |21%)

Since r = 4|2* = 16, the values form a rectangular table

|2) = (10) + [4) +18) + [12) ). 1) +
(1) +15) +19) + 113) ). |2) +

(12) +16) + 110) + [14) ). [4) +

(13) +|7) +|11) + [15) ).

8)

If we measure the second register, |4), the first register is

[va) = 12) +16) +110) + |14)

They are separated by the period r = 4, but how can we recover r ? ,
1



Discrete Fourier Transform

Complex numbers

_ n ifz=1
l+z+...+2"t =40 7 . e
= otherwise.

e Crucial Lemma: n>0,j € Z,

n—1 D i
lzeziﬂ% _ ) if L is an integer
n 0 otherwise.

22



Discrete Fourier Transform

Complex numbers

°
_ n ifz=1
l+z+...+2"t =40 7 . e
i—s Otherwise.

e Crucial Lemma: n > 0,j € Z,
_1 o )
lnzez,-ﬂ% _ { 1 if L is an integer
W 0 otherwise.

Discrete Fourier Transform and Inverse
271 271

1 - ki
Yand F~1|k) = > e
DYoL

j=0

Flk \/27 Z e2’”2"

J)

22



Discrete Fourier Transform

Complex numbers

_ n ifz=1
l+z+...+2"t =40 7 . e
= otherwise.

e Crucial Lemma: n>0,j € Z,
lnile?iﬂ% _ 1 if J; is an integer
n 0 otherwise.

Discrete Fourier Transform and Inverse
271 271

and F- \/» Z efz”r?" J

Flk \/27 Z e2’”2"

The Discrete Fourier Transform is Linear and Unitary
APl Dl

If [¥) = axlk), then Flv) = Y aiF k)

k=0 k=0 22



Initialization: |¢g) = [0) ® |0).
Hadamard: [1) = H2"(10)) @ 10) = (& i 1K) ) @ [0)
Oracle: [3h2) = 5z Y5 o' [K) ® |24)

n

0) H®n
Or
0)—#

HE A

Measure of the first register: T>

2"

Allows (often) to get r (or a factor of r)

23



Computation

e After measuring the second register |1/;3> = ZZ /r=1 |ar + /)’o>

24



Computation

e After measuring the second register |1/;3> = ZZ /r=1 |ar + /)’o>
e Action of F~1:
2"/r—1

! 1/33> = Z Ft lar + fo)
a=0

oori1

B —_———
r-:ra+30 Y- _ojxPos
:z :2 : |_/> z :(2 :e ITrQn/,)e 2im 55
a  j=0 j a

r—1 27"6
r

Z e—2im W ) = Ze72i7rﬁ0€
"/

) integer £=0

) =

J)

J with j/(2

24



Computation

e After measuring the second register |1/;3> = ZZ /r=1 |ar + /)’o>
e Action of F~1:
2"/r—1

By = F1|ds) = Y F'|ar+6o)
a=0

oori1

_ —_——f
Z Z _ 2ix( er30 |j> Z (Z e2i7r2;’j,) ef2iﬂ'% J,>
a  j=0 J e

r—1 n

- —2in 2% —2inpyt | 2"

D G o
j with j/(27/r) integer £=0

e Measure the first register: 7> for ¢ € {0,1,...,r —1}

o We get m = Z* for one of the states |2 [> .



Measure the first register

m = # integer with n known and ¢ unknown

m 4

e Divide m by 2" to obtain the rational x = 7% = 7

e If x € Z, we get no information on r, and we redo the quantum
circult

e If gcd(f, r) = 1, then £ is irreducible and we get r.

o If gcd(f,r) # 1, then x = 2 = £ — £ and we get r a factor of r.

20 r’ r
We redo the computation with @’ = a" which is of period r/r’.
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Continued Fractions

Definition
1
e 3o+ PE— = noted [ao, a1, - . ., an]
.,.+¥
e Eg,[5,2,1,4] =5+ 51— =5.3571428. ..
1+

e [5]=5,[52] =4 =55,[52,1 =2 =533...
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Continued Fractions

Definition

® ag+ —2— noted [ag, a1, -, an]
81+752++

41 1

o Eg. [5214]—5+

s = 53571428 ...

1tz

e [5]=5,[5,2] = ——55 [5,2,1] = ——533
Good Approximation by continued fractions

o m=3.14159... ~ 3 (denominator is large)

o 6= 3"'100*3'1'10073‘"”2 73"‘”1 [3,7,7]

e 3,7]=3+1=2=31428

e [3,7,15,1] = ‘;’i‘g = 3.14159292... (same order with 6 exact values
instead of 2)

26



Example Shor with N =21

e N=21,a=2,2"=512=2°

e Circuit outputs |427), so x = 227

512
427 . 4 ?2?
® 75 ~ ¢ so order 5 7

o $21=10,1,5,42,2] and [0,1] = 1,[0,1,5] = 2,[0,1,5,42] = 3%

e We keep the best fraction whose denominator is < N and it gives r
or a fraction of r
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Example Shor with N =21

e N=21,a=2,2"=512=2°

e Circuit outputs |427), so x = %

421 4 7
® 75 ~ ¢ so order 5 7

o $21=10,1,5,42,2] and [0,1] = 1,[0,1,5] = 2,[0,1,5,42] = 3%
e We keep the best fraction whose denominator is < N and it gives r

or a fraction of r
Shor algorithm with arbitrary order
e N=21,a=2,2"=512=2%> N?
1bo) = 10) ®|0)
) = Siso 1K) @ [0)
2) = Yoz k) ® |2 mod N)
er=6and 2t ¢7

27



The first two lines have 86 terms and 85 in the others

e The state [¢;) is not rectangular:

1
|th2) = ﬁ(@ +16) + ... +1504) + [510)) [1)

1
+ ﬁ(lb +1[7) + ... +1505) + |511)) |2)

1
4 ﬁ(@ +18) + ... +|506)) |4)

+...

1
+ m5(18) + 10 + ..+ 1508)) |11
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The first two lines have 86 terms and 85 in the others

e The state [¢;) is not rectangular:

1
|th2) = \/5@(\ ) +16) + ... + [504) + [510)) |1)
1
+ﬁ(ll>+|1>+---+\@>+Im>)|2>
1
+\/5T(|2>+|> ..+ 1506)) [4)
+...

1
+ m5(18) + 10 + ..+ 1508)) |11

e measure the second register |2): [i3) = [1) + |7) + ...+ |511)
o [va) = F1|ys) = S0 F 1 B+ 1)

o |iy) = 2511 (2250 e_ziﬂfﬂ)e_ymju ‘l> 28



Example Shor with arbitrary order

[va) = 7 Tt (r > ge ) 2imst | )

Now, X(j) = \ﬁ Za 2 g€ —2im$3% does not take only 0 /1 values.

29



Example S with arbitrary order

[va) = 7 Tt (r > ge ) 2imst | )

Now, X(j) = \ﬁ Za - e=2i75% does not take only 0 /1 values.
If we measure the first register, we get |j) with probability |Z(j)|?.
The proba. are =~ 0, except when j ~ 2% for { =5, 512X5 = 426.66.

r

_J | p

0150 422 | 0.00062...
423 | 0.00099...

oz 424 | 0.00186...
0.100 425 | 0.00469...
0075 426 | 0.02888...
427 | 0.11389...

o0 428 | 0.00702...
0.025 429 | 0.00226...
0,000 430 | 0.00109...
0 100 200 300 400 500 431 | 0.00063...
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Hardy-Wright Theorem

Theorem
Let x € R and a rational g such that

1

P

Then, g is obtained as one of the continued fractions of x.
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Theorem
Let x € R and a rational g such that

1

P

Then, g is obtained as one of the continued fractions of x.

2°¢

Let m the closest integer to %g. So, |m — =

1
| <5

m 1

¢
If x = 5%, we get |[x — 7| < 51

As we set 2" > N2 > r?, [x — £ < 2

2r2:

Using Theorem, we obtain % as one of the continued fractions of x.
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Discrete Fourier Transform




Rewritting the Discrete Fourier Transform

Definition

o Fliy = J5 T05t e2m# |j)

e Factorization: F |k) = % ITo—: (10) + 2ot 1))

31



Rewritting the Discrete Fourier Transform

Definition
2"—1 I‘ﬂ' H
° F|k> \/27 EJ o ¥ 7>
e Factorization: F k) = \/27 ITr—; (10) + &2 57 1))

eEg n=1 Flk=-=>1 (|O>+e2’”2|1>).
Hadamard Transform F |0) = %(|0> +11)), F|1) = %(|0) —11)).
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Rewritting the Discrete Fourier Transform

Definition

_ kj .
o Flky = 2 575t e |)

e Factorization: F |k) = \/17 ITo—: (10) + 2o 1))

Proof

e For each |j), show that the coefficient in both expressions is the same
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Rewritting the Discrete Fourier Transform

Definition

_ kj .
o Flky = 2 575t e |)

e Factorization: F |k) = \/17 ITo—: (10) + 2o 1))

Proof
e For each |j), show that the coefficient in both expressions is the same
o Write 0 </ < 2" in binary: j = Zz;gjgﬂ with jo =0 or 1.
For j = jn—1---j1do, [f) = ln—1---J2-f1do) = ljn—1) ---li2) - L) - Ljo)-
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Rewritting the Discrete Fourier Transform

Definition

_ kj .
o Flky = 2 575t e |)

e Factorization: F |k) = \/17 ITo—: (10) + g 1))

Proof
e For each |j), show that the coefficient in both expressions is the same
o Write 0 </ < 2" in binary: j = Zz;gjgﬂ with jo =0 or 1.
For j = jn—1---j1do, [f) = ln—1---J2-f1do) = ljn—1) ---li2) - L) - Ljo)-

e For each term of the product, we take either |0) or 2ot 11).
If we choose |0) every times, we get |0). In the first term, if we
ik
choose [0), |j) = |0...), while if we choose €*27 [1), |j) = |1...).
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Rewritting the Discrete Fourier Transform

Definition

21 oipki .
o Fliy= =320 2 |j)
e Factorization: F |k) = \/17 ITo—: (10) + g 1))

Proof
e For each |j), show that the coefficient in both expressions is the same
o Write 0 </ < 2" in binary: j = Zz;gjgﬂ with jo =0 or 1.
For j = jn—1---j1do, [f) = ln—1---J2-f1do) = ljn—1) ---li2) - L) - Ljo)-

e For each term of the product, we take either |0) or 2ot 11).
If we choose |0) every times, we get |0). In the first term, if we
ik
choose [0), |j) = |0...), while if we choose €*27 [1), |j) = |1...).

.k
2/7r"

1
e We can summarize both cases as e ln—1)
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Rewritting the Discrete Four

. kjn—l
. i dn—1 |
e We can summarize these 2 cases as e”'" 27 |j,_1)
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Rewritting the Discrete Four

. kin—1
. i In=1 |
e We can summarize these 2 cases as e”'" 27 |j,_1)
. kin_g
. 2jrn=t .,
e More generally, the £ term can be written as e”'™ 2% |j, ), and

- i o=t 2 ikt L
1T <e2’” 27 jn_£>> = (He2’ 2 > Un—1 - - - j2-j1-Jo)
(=1

(=1
Jn—2

_ Q2T |J>

= e2i7r2i’7'zz:1j”*£2nie |-£>
e DIV
= & |j)

e The coefficient of |l> is the same as the one of the DFT. Since it is

true for all j, the two expressions are equivalent
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We can write binary notation for 0 < x < 1:

. . . n .
s PR ) S Jn Je
0]1J2Jn*§+2*2+§—671?

0.1.J2 - .Jn: the dots separate the bits, and .. represent 0.abc
E.g., x = 0.625 is written x = 0..1.0.1 since 0.625 = 2 + 9 + 1
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We can write binary notation for 0 < x < 1:

. . . n .
s PR ) S Jn Je
0]1J2Jn*§+2*2+§—671?

0.1.J2 - .Jn: the dots separate the bits, and .. represent 0.abc
E.g., x = 0.625 is written x = 0..1.0.1 since 0.625 = 2 + 9 + 1

Corollary
If |k) = |kn—1... ki-ko),

A

1 0. ke
Flk) = Vo H (|0) + e2mO-he-rko1y ).
=1

'E|K> _ \/127(|0> + e2im0..ko |1>) ® (|0> + e2im0..ki.ko |1>) R ® (|0> o
eZ/ﬂ'O..kn,lu-kl.ko ‘1> )
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Corollary

If |k) = |kn1 ... ki.ko), Flk) = ¢12* ®7_; (|0) + e2m0-ke-1-ko 1)),
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Corollary . _
If |k) = |kn—1...ki.ko), F k) = ¢12* ®7_; (|0) + e2m0-ke-1-ko 1)),
Proof

For any integer p, €™ = 1.

k . kn_12n_1 + ...+ k222 + k12 + ko

2 2

ko ki
_ n—1—¢ {—1 0
—kn712 ++k€+T++27
N——— —

fractional part

integer part
=p+ 0..kg—1... ko
2 X

SO e 2 — e2/‘7r(p+0..kg,1...k0)-
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Corollary . _
If |k) = |kn—1...ki.ko), F k) = ¢12* ®7_; (|0) + e2m0-ke-1-ko 1)),
Proof

For any integer p, €™ = 1.

k . kn_12n_1 + ...+ k222 + k12 + ko

2 2

ko ki
_ n—1—¢ {—1 0
—kn712 ++k€+T++27
N——— —

fractional part

integer part
= P+O..kg_1...k0

So e2in2§ — 2im(p+0..ke—_1...ko)

Example

:k _ 2im0..ky
o for (=1, e?m2=¢

k_ 2im0..ky ko
o for { =2, e?imi=e

kim0 ky_q...k Ky
and for ¢ = n, 2iman=e"""""
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Quantum Circuit of the Discrete Fourier Transform

Gate R, and controlled

1 0
.Rk:<0 ezzllr>

1 0 1 0 1 0 1 0
Ro = , R = , R = , Rz = in

35



Quantum Circuit of the Discrete Fourier Transform

Gate R, and controlled
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Quantum Circuit of the Discrete Fourier Transform

Gate R, and controlled

1 0
.Rk:<0 ezzllr>

10 1 0 10 1
R - ,R = YR = 'R —
- (0 1> ! (o —1> 2 (0 i) 2 (o e

e n=1: w0:H|k0>Z |w0>:|0>+|1> if ko =0, |0>—|]_> if ko =
We get [1g) = |0) + ™0k |1) as 201 = eI = 1

S5 ©

2

[ko) @_> |0)+32in0“k0 1)

k) ' HHR, [0) + eZim0-kiko | 1)
oo FISCARCAS )+ B ke 1
|kn_1) Ry HR; |-+~ é [0) + €2im0-kus-Ki ko |1

35



Quantum Circuit of the Discrete Fourier Transform

Case n=2

| ko EI—|¢0>
o) —{ A} Re ——w)

[tho) is the same as in the case n = 1.

If [ko) = |0), [1) = H |ki) = |0) + 2" |1) (R2 not active)
f ko) = 11}, 1) = Ra(H k) = Ra(10) + €2 1)
1) = Re [0) + €272 R, \1> 0) + €2 - €274 1)

|w1> — ‘0> + e2/71' 7 . e217r n |1> and e2l7’ 2, e2I7T T e2i7r0..k1.k0.
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Quantum Circuit of the Discrete Fourier Transform

Case n=2

|ko EI—|¢0>

.
o) —{ H I Re |——)
e |t)o) is the same as in the case n = 1.
o If [ko) = |0), [1) = H [ki) = |0) + 2" |1) (R2 not active)
o 1F ko) = |1). o) = Ra(H ko)) = Re((0) + 7% |1)
1) = Re [0) + €373 Ry |1) = |0) + €27 - €274 |1)
o [ih) = |0) + €2 % . 27 1) and 2T . g2 — g2im0-kiko,

ko) @_> |0) + €20k | 1)
|k1) ’ H R2 |0) + ezino..k,.kﬂ |1)
) R -[Rs] 10+ B0k sk 1y

R, Ry ‘é IO)+ezin0..k,l,1...kpk(,|1> 36




Conclusion

Generalization

e HSP (Hidden Subgroup Problem): Let G a group and H a
subgroup. The function f is constant on each coset of H, find H
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subgroup. The function f is constant on each coset of H, find H

e Shor's algorithm is for subgroup H of G = Z/¢(N)Z and H = (r)
e Simon's algorithm: G =5 and H = {0, s}
e Kitaev: any Abelian Group G
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New Results on factorization
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Conclusion

Generalization

e HSP (Hidden Subgroup Problem): Let G a group and H a
subgroup. The function f is constant on each coset of H, find H

Shor's algorithm is for subgroup H of G = Z/p(N)Z and H = (r)
Simon'’s algorithm: G = Fj and H = {0, s}

e Kitaev: any Abelian Group G

e Non-abelian group: Kuperberg and Relation to Lattice problems

New Results on factorization

e Shor algorithm: O(n) qubits and O(n? log n) gates
e Regev algorithm [R23]: O(n*/?) qubits and O(n3/2log n) gates
RV24 O(nlog n)) qubits and O(n%/?log n) gates

CFS24 o(n) qubits: RSA-2048, with 1730 qubits and O(n®) gates
For DL in [F, with a 2024-bit prime and 224-bit DL, 684 qubits
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Conclusion

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy
qubits by Gidney and Ekerd
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Conclusion

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy
qubits by Gidney and Ekerd

Further Reading

1. Quantum Computation and Quantum Information, Nielsen and
Chuang.

2. Lecture Notes on Quantum Algorithms, A. Childs,
https://www.cs.und.edu/~amchilds/qa/qa.pdf
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