

Quantum algorithms for factorization and other problems

Pierre-Alain Fouque

Centre Inria de l'Université de Rennes

Contents

1. Basic Circuits
2. Deutsch-Jozsa algorithm
3. Shor algorithm
4. Discrete Fourier Transform

Basic Circuits

Quantum Hadamard Gates

A very important gate

1. Gate H : $|0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ $|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}$
2. By linearity, $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, $H|\psi\rangle = \alpha H|0\rangle + \beta H|1\rangle$
$$H|\psi\rangle = \frac{\alpha}{\sqrt{2}}(|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}}(|0\rangle - |1\rangle) = \frac{\alpha + \beta}{\sqrt{2}}|0\rangle + \frac{\alpha - \beta}{\sqrt{2}}|1\rangle$$

Quantum Hadamard Gates

A very important gate

1. Gate H : $|0\rangle \mapsto \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ $|1\rangle \mapsto \frac{|0\rangle - |1\rangle}{\sqrt{2}}$
2. By linearity, $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, $H|\psi\rangle = \alpha H|0\rangle + \beta H|1\rangle$
 $H|\psi\rangle = \frac{\alpha}{\sqrt{2}}(|0\rangle + |1\rangle) + \frac{\beta}{\sqrt{2}}(|0\rangle - |1\rangle) = \frac{\alpha + \beta}{\sqrt{2}}|0\rangle + \frac{\alpha - \beta}{\sqrt{2}}|1\rangle$
3. Matrix version: $M_H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$$M_H|0\rangle = M_H \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{|0\rangle + |1\rangle}{\sqrt{2}}.$$

Similarly for $M_H|1\rangle$.

4. Eg., if $|\psi\rangle = i|0\rangle + (2+i)|1\rangle$, compute $M_H|\psi\rangle$?

Some Quantum Circuits

$$X |\psi\rangle = \beta |0\rangle + \alpha |1\rangle$$



Some Quantum Circuits

$$X|\psi\rangle = \beta|0\rangle + \alpha|1\rangle$$



$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

2-qubits \Rightarrow 4 possibilities

2-qubit

- $|\psi\rangle = \alpha|0.0\rangle + \beta|0.1\rangle + \gamma|1.0\rangle + \delta|1.1\rangle$, with $\alpha, \beta, \gamma, \delta \in \mathbb{C}$
- $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$
- $\begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix}$ and $|0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = |0.0\rangle$

Vectors

$$|0.0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, |0.1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, |1.0\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, |1.1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, |\psi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$$

Operations on qubits

- Addition of qubits: $|\phi\rangle = (1 + 3i)|0\rangle + 2i|1\rangle$ and $|\psi\rangle = 3|0\rangle + (1 - i)|1\rangle$,

$$|\phi\rangle + |\psi\rangle = (4 + 3i)|0\rangle + (1 + i)|1\rangle$$

For 2 2-qubits: $(|1.0\rangle + |0.1\rangle) + (|1.0\rangle - |0.1\rangle) = 2|1.0\rangle$

- Multiplication of 2 1-qubit is a 2-qubit: $|\phi\rangle \cdot |\psi\rangle$

$$((1 + 3i)|0\rangle + 2i|1\rangle) \otimes (3|0\rangle + (1 - i)|1\rangle)$$

$$(1 + 3i) \cdot 3 \cdot |0\rangle |0\rangle + (1 + 3i) \cdot (1 - i) |0\rangle |1\rangle + 6i \cdot |1\rangle |0\rangle + \dots$$

$$(3 + 9i)|0.0\rangle + (4 + 2i)|0.1\rangle + 6i|1.0\rangle + (2 + 2i)|1.1\rangle$$

CNOT Gate: controlled gate with 2-qubit

If ... then ... else ...

- $|0.0\rangle \mapsto |0.0\rangle, |0.1\rangle \mapsto |0.1\rangle, |1.0\rangle \mapsto |1.1\rangle, |1.1\rangle \mapsto |1.0\rangle$

- If $|0.0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, |0.1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, |1.0\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, |1.1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix},$

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \text{ the upper left submatrix is the identity}$$

performed on the first line, the bottom right submatrix is the inversion operation performed on the second line

Quantum Circuit

$|\psi\rangle \xrightarrow{n} \boxed{A} \xrightarrow{n} A|\psi\rangle$ where A is a unitary $A^*A = I_n$

Theorem

Every n -qubit quantum gate can be realized with a circuit using only CNOT and 1-qubit gates

Quantum Circuit

Theorem

Every n -qubit quantum gate can be realized with a circuit using only $CNOT$ and 1-qubit gates

Theorem (Solovay-Kitaev)

There is an infinite number of 1-qubit gates, and every such gate can be approximated with only H , T , and $CNOT$ gates

The T gate: $|0\rangle \mapsto |0\rangle$ and $|1\rangle \mapsto e^{i\pi/4}|1\rangle$: $T = e^{i\pi/8} \begin{pmatrix} e^{-\pi/8} & 0 \\ 0 & e^{\pi/8} \end{pmatrix}$

Quantum Circuit

Theorem

Every n -qubit quantum gate can be realized with a circuit using only $CNOT$ and 1-qubit gates

Theorem (Solovay-Kitaev)

There is an infinite number of 1-qubit gates, and every such gate can be approximated with only H , T , and $CNOT$ gates

Theorem: Toffoli (CCNOT) is a universal gate

- Toffoli gate is **invertible**: $(|a.b.c\rangle \mapsto |a.b.c \oplus (ab)\rangle)$:
 $T|a.b.1\rangle = |a.b.NAND(a, b)\rangle$
- Any classical circuit using N gates in the set AND, OR, NOT (universal gates for classical circuits) can be computed using $O(N)$ Toffoli gates

Partial Measurement of a 2-qubit

- $|\psi\rangle = \alpha|0.0\rangle + \beta|0.1\rangle + \gamma|1.0\rangle + \delta|1.1\rangle$, $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

- If one measures the first qubit as 1, what is the second qubit ?

Partial Measurement of a 2-qubit

- $|\psi\rangle = \alpha|0.0\rangle + \beta|0.1\rangle + \gamma|1.0\rangle + \delta|1.1\rangle$, $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

- If one measures the first qubit as 1, what is the second qubit ?
- E.g., If $|\psi\rangle = \frac{\sqrt{2}}{2}|0.0\rangle + \frac{1}{2}|0.1\rangle + \frac{1}{2}|1.1\rangle$, then if we observe $|1\rangle$ on the first qubit, the second is $|1\rangle$.

Partial Measurement of a 2-qubit

- $|\psi\rangle = \alpha|0.0\rangle + \beta|0.1\rangle + \gamma|1.0\rangle + \delta|1.1\rangle$, $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

- If one measures the first qubit as 1, what is the second qubit ?
- E.g., If $|\psi\rangle = \frac{\sqrt{2}}{2}|0.0\rangle + \frac{1}{2}|0.1\rangle + \frac{1}{2}|1.1\rangle$, then if we observe $|1\rangle$ on the first qubit, the second is $|1\rangle$.
- If we observe $|0\rangle$, as $|\psi\rangle = \frac{|0\rangle}{2} \cdot (\sqrt{2}|0\rangle + |1\rangle) + \frac{1}{2}|1\rangle|1\rangle$, the second qubit is $\sqrt{\frac{2}{3}}|0\rangle + \frac{1}{\sqrt{3}}|1\rangle$

Partial Measurement of a 2-qubit

- $|\psi\rangle = \alpha|0.0\rangle + \beta|0.1\rangle + \gamma|1.0\rangle + \delta|1.1\rangle$, $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

- If one measures the first qubit as 1, what is the second qubit ?
- E.g., If $|\psi\rangle = \frac{\sqrt{2}}{2}|0.0\rangle + \frac{1}{2}|0.1\rangle + \frac{1}{2}|1.1\rangle$, then if we observe $|1\rangle$ on the first qubit, the second is $|1\rangle$.
- If we observe $|0\rangle$, as $|\psi\rangle = \frac{|0\rangle}{2} \cdot (\sqrt{2}|0\rangle + |1\rangle) + \frac{1}{2}|1\rangle|1\rangle$, the second qubit is $\sqrt{\frac{2}{3}}|0\rangle + \frac{1}{\sqrt{3}}|1\rangle$
- More generally, $|\psi\rangle = |0\rangle \cdot (\alpha|0\rangle + \beta|1\rangle) + |1\rangle \cdot (\gamma|0\rangle + \delta|1\rangle)$, and if one measures $|0\rangle$ for the first qubit, the second is $\frac{\alpha}{\sqrt{|\alpha|^2 + |\beta|^2}}|0\rangle + \frac{\beta}{\sqrt{|\alpha|^2 + |\beta|^2}}|1\rangle$

Partial Measurement of a 2-qubit

- $|\psi\rangle = \alpha|0.0\rangle + \beta|0.1\rangle + \gamma|1.0\rangle + \delta|1.1\rangle$, $|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$

- If one measures the first qubit as 1, what is the second qubit ?
- E.g., If $|\psi\rangle = \frac{\sqrt{2}}{2}|0.0\rangle + \frac{1}{2}|0.1\rangle + \frac{1}{2}|1.1\rangle$, then if we observe $|1\rangle$ on the first qubit, the second is $|1\rangle$.
- If we observe $|0\rangle$, as $|\psi\rangle = \frac{|0\rangle}{2} \cdot (\sqrt{2}|0\rangle + |1\rangle) + \frac{1}{2}|1\rangle|1\rangle$, the second qubit is $\sqrt{\frac{2}{3}}|0\rangle + \frac{1}{\sqrt{3}}|1\rangle$
- Exo: If $|\psi\rangle = \frac{1}{5}(2|0.0.0\rangle - |0.0.1\rangle + 3|0.1.0\rangle + |0.1.1\rangle - 2|1.0.0\rangle + 2|1.0.1\rangle + \sqrt{2}|1.1.1\rangle)$, and we measure 0.0, what is the last qubit ?

First algorithm: Deutsch-Jozsa

Quantum oracle gate

Oracle

- Let $f : E \longrightarrow \mathbb{Z}/2\mathbb{Z}$ be a function
- $(\mathbb{Z}/2\mathbb{Z}, +) = (\{0, 1\}, \oplus)$
- $F : E \times \mathbb{Z}/2\mathbb{Z} \longrightarrow E \times \mathbb{Z}/2\mathbb{Z}$, $(x, y) \longmapsto (x, y \oplus f(x))$, is a bijection

Quantum oracle gate

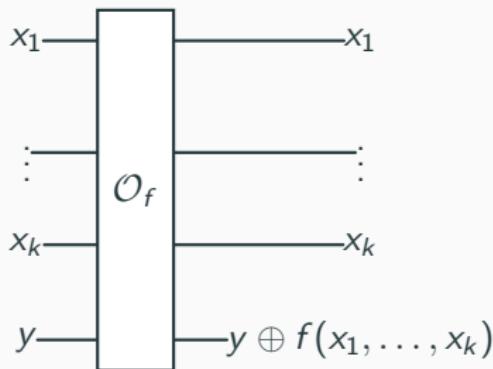
Oracle

- Let $f : E \longrightarrow \mathbb{Z}/2\mathbb{Z}$ be a function
- $(\mathbb{Z}/2\mathbb{Z}, +) = (\{0, 1\}, \oplus)$
- $F : E \times \mathbb{Z}/2\mathbb{Z} \longrightarrow E \times \mathbb{Z}/2\mathbb{Z}$, $(x, y) \longmapsto (x, y \oplus f(x))$, is a bijection
- Proof: $F^{-1} = F$, $F(F(x, y)) = F(x, y \oplus f(x)) = (x, y)$

Quantum oracle gate

Oracle

- Let $f : E \longrightarrow \mathbb{Z}/2\mathbb{Z}$ be a function
- $(\mathbb{Z}/2\mathbb{Z}, +) = (\{0, 1\}, \oplus)$
- $F : E \times \mathbb{Z}/2\mathbb{Z} \longrightarrow E \times \mathbb{Z}/2\mathbb{Z}$, $(x, y) \longmapsto (x, y \oplus f(x))$, is a bijection
- Proof: $F^{-1} = F$, $F(F(x, y)) = F(x, y \oplus f(x)) = (x, y)$
- Deutsch-Jozsa Oracle $f : (\mathbb{Z}/2\mathbb{Z})^k \longrightarrow \mathbb{Z}/2\mathbb{Z}$:



Deutsch-Jozsa problem

Goal

- Let $f : \{0, 1\} \rightarrow \{0, 1\}$.
- There are 4 such functions: two are **constant** and two are **balanced**
(0 and 1 are taken the same number of times)
$$f_0 = \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 0 \end{cases} \quad f_1 = \begin{cases} 0 \mapsto 1 \\ 1 \mapsto 1 \end{cases} \quad f_2 = \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 1 \end{cases} \quad f_3 = \begin{cases} 0 \mapsto 1 \\ 1 \mapsto 0 \end{cases}$$
- **Decide** if f is constant or balanced ?

Deutsch-Jozsa problem

Goal

- Let $f : \{0, 1\} \rightarrow \{0, 1\}$.
- There are 4 such functions: two are **constant** and two are **balanced**
(0 and 1 are taken the same number of times)

$$f_0 = \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 0 \end{cases} \quad f_1 = \begin{cases} 0 \mapsto 1 \\ 1 \mapsto 1 \end{cases} \quad f_2 = \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 1 \end{cases} \quad f_3 = \begin{cases} 0 \mapsto 1 \\ 1 \mapsto 0 \end{cases}$$

- **Decide** if f is constant or balanced ?
- Classically, ask 2 queries ($f(0)$ and $f(1)$), quantumly 1 query !

Deutsch-Jozsa problem

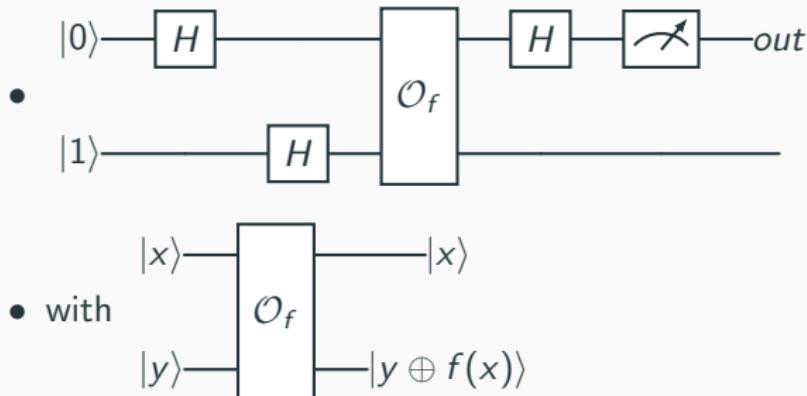
Goal

- Let $f : \{0, 1\} \rightarrow \{0, 1\}$.
- There are 4 such functions: two are **constant** and two are **balanced**
(0 and 1 are taken the same number of times)
$$f_0 = \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 0 \end{cases} \quad f_1 = \begin{cases} 0 \mapsto 1 \\ 1 \mapsto 1 \end{cases} \quad f_2 = \begin{cases} 0 \mapsto 0 \\ 1 \mapsto 1 \end{cases} \quad f_3 = \begin{cases} 0 \mapsto 1 \\ 1 \mapsto 0 \end{cases}$$
- **Decide** if f is constant or balanced ?
- Classically, ask 2 queries ($f(0)$ and $f(1)$), quantumly 1 query !

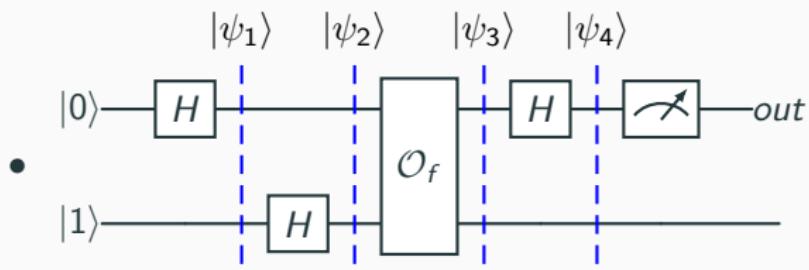
Exponential gap: Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ and we have the **promise** f is either balanced or constant.

Classically, one need **at most** $2^{n-1} + 1$ queries, while only **1** quantumly !

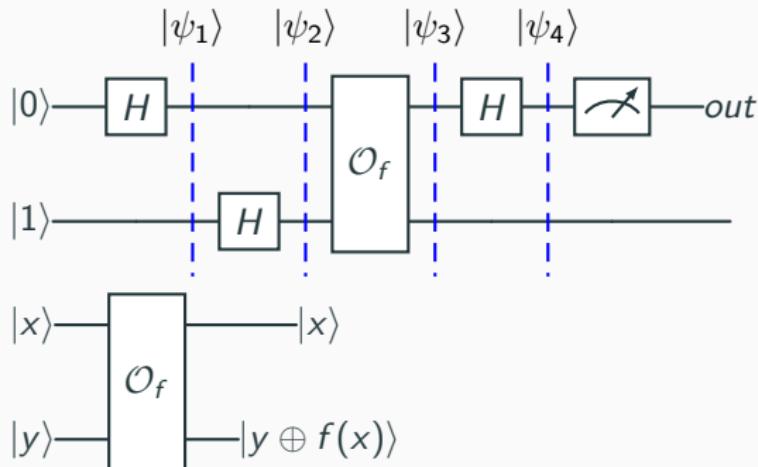
Deutsch-Jozsa Quantum Circuit ($n = 1$)



Deutsch-Jozsa Quantum Circuit ($n = 1$)

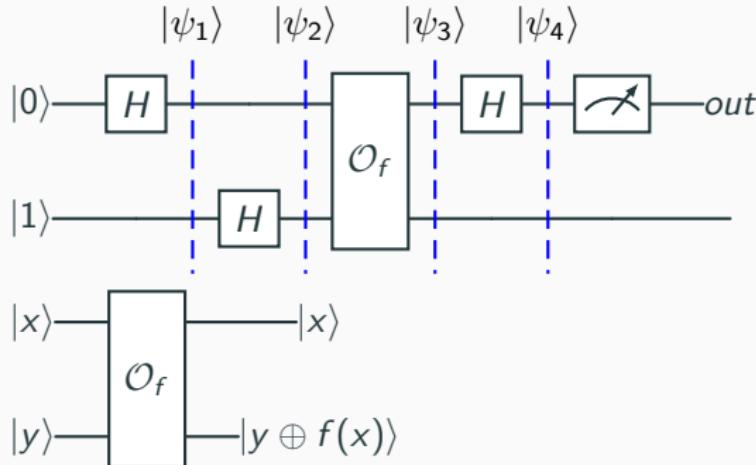


Deutsch-Jozsa Quantum Circuit ($n = 1$)



- $|\psi_2\rangle = 0.0 - 0.1 + 1.0 - 1.1,$

Deutsch-Jozsa Quantum Circuit ($n = 1$)



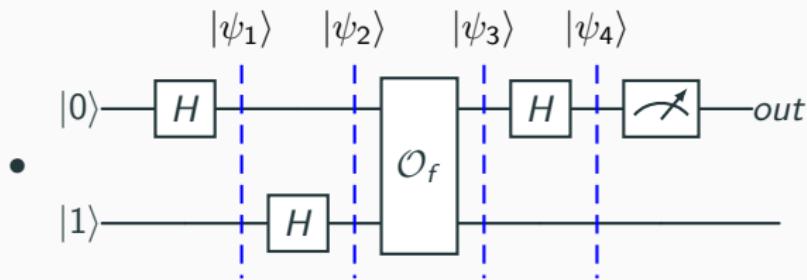
- $|\psi_2\rangle = 0.0 - 0.1 + 1.0 - 1.1,$
- $|\psi_3\rangle = \underbrace{0.(0 \oplus f(0)) - 0.(1 \oplus f(0))}_{A} + \underbrace{1.(0 \oplus f(1)) - 1.(1 \oplus f(1))}_{B}$
- $A = \begin{cases} 0.0 - 0.1 & \text{if } f(0) = 0 \\ -(0.0 - 0.1) & \text{if } f(0) = 1 \end{cases} \quad \text{so } A = (-1)^{f(0)}(0.0 - 0.1)$

Deutsch-Jozsa Quantum Circuit ($n = 1$)



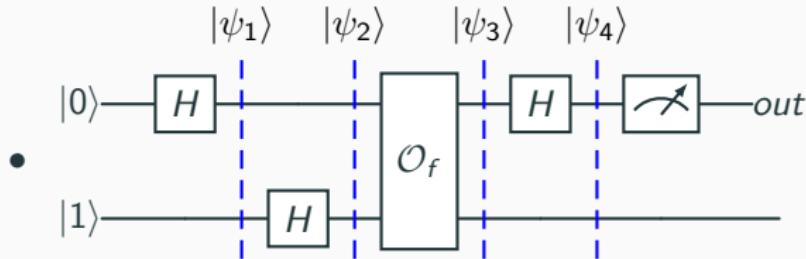
- $|\psi_2\rangle = 0.0 - 0.1 + 1.0 - 1.1$,
- $|\psi_3\rangle = \underbrace{0.(0 \oplus f(0)) - 0.(1 \oplus f(0))}_{A} + \underbrace{1.(0 \oplus f(1)) - 1.(1 \oplus f(1))}_{B}$
- $A = (-1)^{f(0)}(0.0 - 0.1)$ and $B = (-1)^{f(1)}(1.0 - 1.1)$
- $|\psi_3\rangle = (-1)^{f(0)}(0.0 - 0.1) + (-1)^{f(1)}(1.0 - 1.1)$

Deutsch-Jozsa Quantum Circuit ($n = 1$)



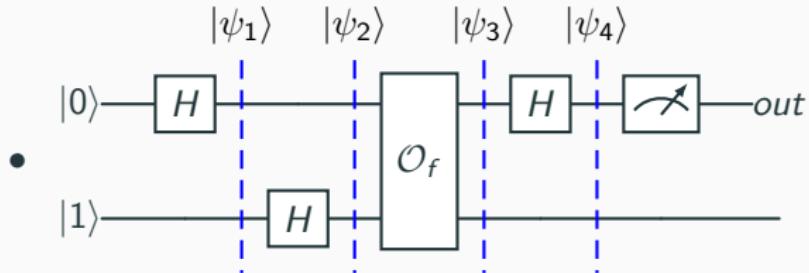
- $|\psi_3\rangle = (-1)^{f(0)}(0.0 - 0.1) + (-1)^{f(1)}(1.0 - 1.1)$
- $|\psi_4\rangle = (-1)^{f(0)}((0+1).0 - (0+1).1) + (-1)^{f(1)}((0-1).0 - (0-1).1)$
- $|\psi_4\rangle = (-1)^{f(0)}(0.0 - 0.1 + 1.0 - 1.1) + (-1)^{f(1)}(0.0 - 0.1 - 1.0 + 1.1)$

Deutsch-Jozsa Quantum Circuit ($n = 1$)



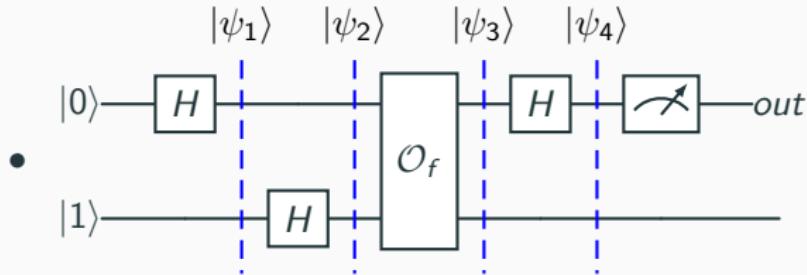
- $|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle, |\psi_4\rangle$
- $|\psi_4\rangle = (-1)^{f(0)}(0.0 - 0.1 + 1.0 - 1.1) + (-1)^{f(1)}(0.0 - 0.1 - 1.0 + 1.1)$

Deutsch-Jozsa Quantum Circuit ($n = 1$)



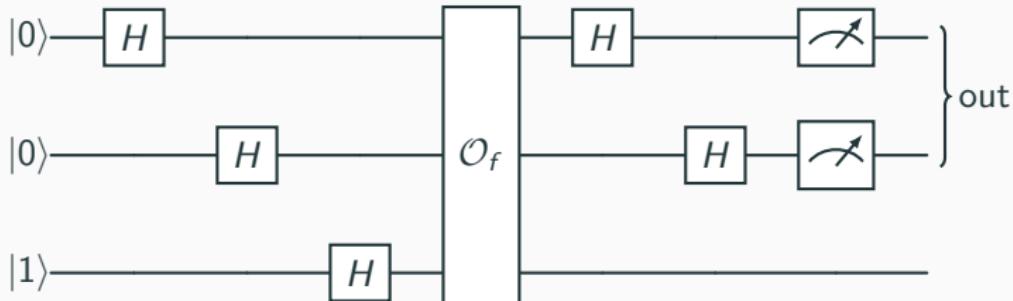
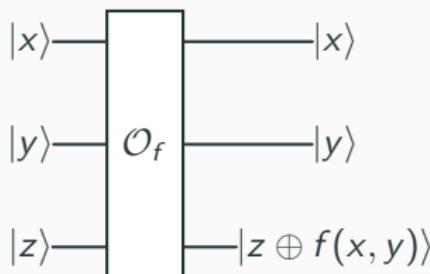
- $|\psi_4\rangle = (-1)^{f(0)}(0.0 - 0.1 + 1.0 - 1.1) + (-1)^{f(1)}(0.0 - 0.1 - 1.0 + 1.1)$
- $|\psi_4\rangle = ((-1)^{f(0)} + (-1)^{f(1)})0.0 + (-(-1)^{f(0)} - (-1)^{f(1)})0.1 + ((-1)^{f(0)} - (-1)^{f(1)})1.0 + (-(-1)^{f(0)} + (-1)^{f(1)})1.1$

Deutsch-Jozsa Quantum Circuit ($n = 1$)



- $|\psi_4\rangle = (-1)^{f(0)}(0.0 - 0.1 + 1.0 - 1.1) + (-1)^{f(1)}(0.0 - 0.1 - 1.0 + 1.1)$
- $|\psi_4\rangle = ((-1)^{f(0)} + (-1)^{f(1)})0.0 + ((-1)^{f(0)} - (-1)^{f(1)})0.1 + ((-1)^{f(0)} - (-1)^{f(1)})1.0 + ((-1)^{f(0)} + (-1)^{f(1)})1.1$
- If f is **constant**, $(-1)^{f(0)} + (-1)^{f(1)} = \pm 2$ and $(-1)^{f(0)} - (-1)^{f(1)} = 0$ and $(-1)^{f(0)} - (-1)^{f(1)} = 0$, so $|\psi_4\rangle = 0.0 - 0.1$ the measure of the first qubit 0 in both cases
- If f is **balanced**, check that the first bit is 1

Deutsch-Jozsa Circuit for $n = 2$



- Check that if f is constant, the final state before the measurement is $\pm |0.0\rangle \left| \frac{1}{\sqrt{2}}(0-1) \right\rangle$, and the 2 first bits are 0.0
- if f is balanced, the final state does not contain qubits starting with 0.0, so no measurement of these qubits will give 0.0.

Shor Algorithm

- order of a : smallest positive integer r s.t. $a^r = 1 \pmod{N}$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the **smallest period of the function $f : k \mapsto a^k \pmod{N}$**

- order of a : smallest positive integer r s.t. $a^r = 1 \bmod N$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the **smallest period of the function $f : k \mapsto a^k \bmod N$**

Assumptions

1. **Assumption 1: $\text{ord}(a) = r$ is even** with proba. $1/2$
2. Fact: $(a^{r/2} - 1)(a^{r/2} + 1) = 0 \bmod N$

- order of a : smallest positive integer r s.t. $a^r = 1 \pmod{N}$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the **smallest period of the function $f : k \mapsto a^k \pmod{N}$**

Assumptions

1. **Assumption 1: $\text{ord}(a) = r$ is even** with proba. $1/2$
2. Fact: $(a^{r/2} - 1)(a^{r/2} + 1) = 0 \pmod{N}$
3. **Assumption 2: $a^{r/2} + 1$ is not divisible by N** for many a 's
4. Under Assumption 1 and 2: $d = \gcd(a^{r/2} - 1, N)$ and $d' = \gcd(a^{r/2} + 1, N)$ are non-trivial factors of N

- order of a : smallest positive integer r s.t. $a^r = 1 \pmod{N}$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the **smallest period of the function $f : k \mapsto a^k \pmod{N}$**

Assumptions

1. **Assumption 1: $\text{ord}(a) = r$ is even** with proba. 1/2
2. Fact: $(a^{r/2} - 1)(a^{r/2} + 1) = 0 \pmod{N}$
3. **Assumption 2: $a^{r/2} + 1$ is not divisible by N** for many a 's
4. Under Assumption 1 and 2: $d = \gcd(a^{r/2} - 1, N)$ and $d' = \gcd(a^{r/2} + 1, N)$ are non-trivial factors of N
5. Recall: $\mathbb{Z}/N\mathbb{Z}$ is not an integral domain: $N = 6, 2 \times 3 = 0 \pmod{6}$

- order of a : smallest positive integer r s.t. $a^r \equiv 1 \pmod{N}$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the **smallest period of the function $f : k \mapsto a^k \pmod{N}$**

Assumptions

1. **Assumption 1: $\text{ord}(a) = r$ is even** with proba. $1/2$
2. Fact: $(a^{r/2} - 1)(a^{r/2} + 1) \equiv 0 \pmod{N}$
3. **Assumption 2: $a^{r/2} + 1$ is not divisible by N** for many a 's
4. Under Assumption 1 and 2: $d = \gcd(a^{r/2} - 1, N)$ and $d' = \gcd(a^{r/2} + 1, N)$ are non-trivial factors of N

$$a=2 \quad (a, N) = 1 \quad r = 4, 2^4 \equiv 16 \equiv 1 \pmod{15} \quad (2^{4/2} - 1, 15) = 3$$

$$a=3 \quad \text{no}$$

$$a=11 \quad (a, N) = 1 \quad r = 2, 11^2 \equiv 121 \equiv 1 \pmod{15} \quad (11^{2/2} - 1, 15) = 5$$

- order of a : smallest positive integer r s.t. $a^r = 1 \pmod{N}$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the **smallest period of the function** $f : k \mapsto a^k \pmod{N}$
- **Oracle** $F : (k, 0) \mapsto (k, a^k \pmod{N})$
- E.g. $N = 15$ and $a = 2$, $r = 4$

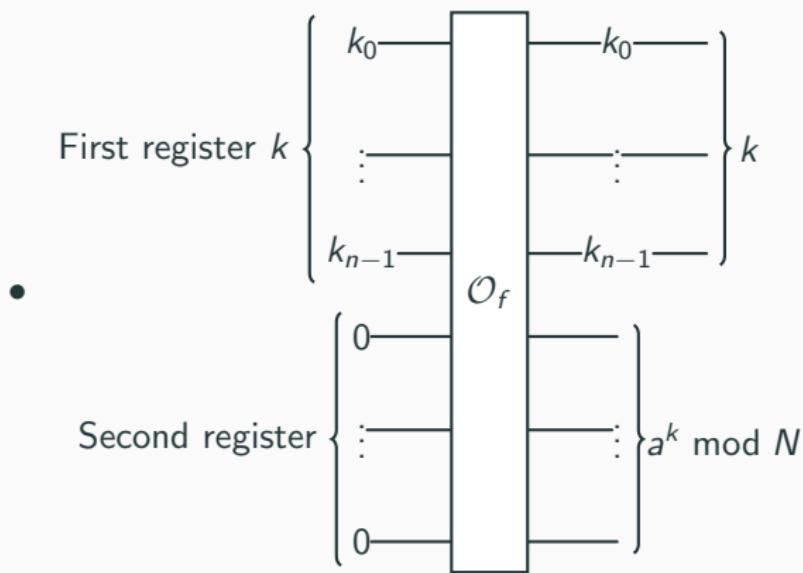
Order and Oracle

- order of a : smallest positive integer r s.t. $a^r = 1 \pmod{N}$
- $r|\varphi(N)$ Lagrange Theorem in the group $(\mathbb{Z}/N\mathbb{Z})^*$
- r is the **smallest period of the function** $f : k \mapsto a^k \pmod{N}$
- **Oracle F** : $(k, 0) \mapsto (k, a^k \pmod{N})$
- E.g. $N = 15$ and $a = 2$, $r = 4$

$$\begin{array}{llll} (0, 0) \xrightarrow{F} (0, 1) & (4, 0) \xrightarrow{F} (4, 1) & (8, 0) \xrightarrow{F} (8, 1) & (12, 0) \xrightarrow{F} (12, 1) \\ (1, 0) \xrightarrow{F} (1, 2) & (5, 0) \xrightarrow{F} (5, 2) & (9, 0) \xrightarrow{F} (9, 2) & (13, 0) \xrightarrow{F} (13, 2) \\ (2, 0) \xrightarrow{F} (2, 4) & (6, 0) \xrightarrow{F} (6, 4) & (10, 0) \xrightarrow{F} (10, 4) & (14, 0) \xrightarrow{F} (14, 4) \\ (3, 0) \xrightarrow{F} (3, 8) & (7, 0) \xrightarrow{F} (7, 8) & (11, 0) \xrightarrow{F} (11, 8) & (15, 0) \xrightarrow{F} (15, 8) \end{array}$$

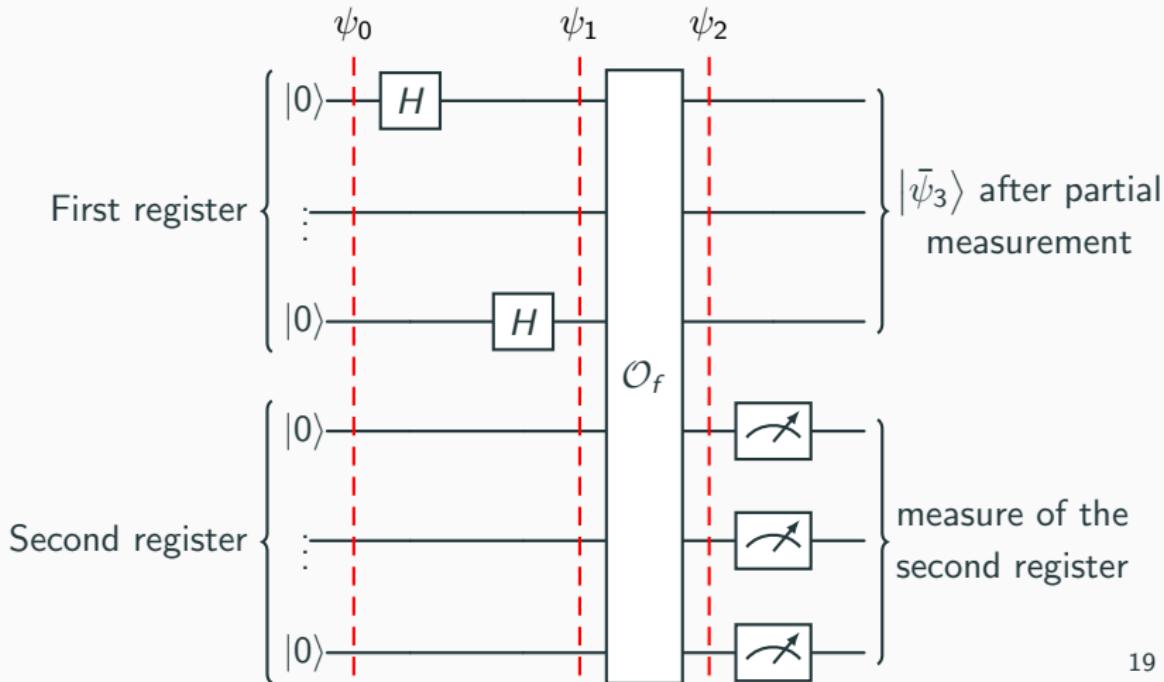
Oracle Circuit $2^n \geq N$

The oracle is composed of 2 registers: the first receives the integer k in binary with n bits, and the second, 0 on n bits. We write $|k\rangle$ the register containing k written in binary. For instance, $|0\rangle = |0\dots 0\rangle$ with n bits. The initial state is $|k\rangle \otimes |0\rangle$.



Starting the Circuit $2^n \geq N$

- Initialization: $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$.
- Hadamard: $|\psi_1\rangle = H^{\otimes n}(|\underline{0}\rangle) \otimes |\underline{0}\rangle = \left(\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle\right) \otimes |\underline{0}\rangle$
- Oracle: $|\psi_2\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{a^k}\rangle$



Using the period to rewrite $|\psi_2\rangle$

- Assumption 3: $\text{ord}(a) = r|2^n$. This assumption is not true, and can be removed (see later)
- Under Assumption 3: $k = \alpha r + \beta$ with $0 \leq \beta < r$ and $0 \leq \alpha < 2^n/r$,

$$|\psi_2\rangle = \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{a^k}\rangle = \sum_{\beta=0}^{r-1} \left(\sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha r + \beta}\rangle \right) \otimes |\underline{a^{\beta}}\rangle$$

Using the period to rewrite $|\psi_2\rangle$

- Assumption 3: $\text{ord}(a) = r|2^n$. This assumption is not true, and can be removed (see later)
- Under Assumption 3: $k = \alpha r + \beta$ with $0 \leq \beta < r$ and $0 \leq \alpha < 2^n/r$,

$$|\psi_2\rangle = \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{a}^{\underline{k}}\rangle = \sum_{\beta=0}^{r-1} \left(\sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha r + \beta}\rangle \right) \otimes |\underline{a}^{\underline{\beta}}\rangle$$

- If we measure the second register, we get for a fixed β_0 ,

$$|\psi_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\alpha r + \beta_0\rangle \otimes |\underline{a}^{\beta_0}\rangle$$

Using the period to rewrite $|\psi_2\rangle$

- Assumption 3: $\text{ord}(a) = r|2^n$. This assumption is not true, and can be removed (see later)
- Under Assumption 3: $k = \alpha r + \beta$ with $0 \leq \beta < r$ and $0 \leq \alpha < 2^n/r$,

$$|\psi_2\rangle = \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{a^k}\rangle = \sum_{\beta=0}^{r-1} \left(\sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha r + \beta}\rangle \right) \otimes |\underline{a^{\beta}}\rangle$$

- If we measure the second register, we get for a fixed β_0 ,

$$|\psi_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\alpha r + \beta_0\rangle \otimes |\underline{a^{\beta_0}}\rangle$$

- Assume we measure the first register, $|\alpha_0 r + \beta_0\rangle$ for fixed α_0 and β_0
- If we redo the computation, we will not get the same β_0 ,
- We cannot do many measures of the first register ...

Example $N = 15, a = 2$

- $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$
- Hadamard Transform: $|\psi_1\rangle = (|\underline{0}\rangle + |\underline{1}\rangle + \dots + |\underline{15}\rangle) \otimes |\underline{0}\rangle$
- Oracle: $|\psi_2\rangle = |\underline{0}\rangle \cdot |\underline{a^0}\rangle + |\underline{1}\rangle \cdot |\underline{a^1}\rangle + \dots + |\underline{15}\rangle \cdot |\underline{a^{15}}\rangle$

Example $N = 15$, $a = 2$

- $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$
- Hadamard Transform: $|\psi_1\rangle = (|\underline{0}\rangle + |\underline{1}\rangle + \dots + |\underline{15}\rangle) \otimes |\underline{0}\rangle$
- Oracle: $|\psi_2\rangle = |\underline{0}\rangle \cdot |\underline{a^0}\rangle + |\underline{1}\rangle \cdot |\underline{a^1}\rangle + \dots + |\underline{15}\rangle \cdot |\underline{a^{15}}\rangle$
- Since $r = 4|2^4 = 16$, the values form a **rectangular table**

$$\begin{aligned} |\psi_2\rangle = & (|\underline{0}\rangle + |\underline{4}\rangle + |\underline{8}\rangle + |\underline{12}\rangle) \cdot |\underline{1}\rangle + \\ & (|\underline{1}\rangle + |\underline{5}\rangle + |\underline{9}\rangle + |\underline{13}\rangle) \cdot |\underline{2}\rangle + \\ & (|\underline{2}\rangle + |\underline{6}\rangle + |\underline{10}\rangle + |\underline{14}\rangle) \cdot |\underline{4}\rangle + \\ & (|\underline{3}\rangle + |\underline{7}\rangle + |\underline{11}\rangle + |\underline{15}\rangle) \cdot |\underline{8}\rangle \end{aligned}$$

- If we measure the second register, $|\underline{4}\rangle$, the first register is

$$|\widetilde{\psi}_3\rangle = |\underline{2}\rangle + |\underline{6}\rangle + |\underline{10}\rangle + |\underline{14}\rangle$$

- They are separated by the period $r = 4$, but how can we recover r ?

Discrete Fourier Transform

Complex numbers

-

$$1 + z + \dots + z^{n-1} = \begin{cases} n & \text{if } z = 1 \\ \frac{1-z^n}{1-z} & \text{otherwise.} \end{cases}$$

- Crucial Lemma: $n > 0, j \in \mathbb{Z}$,

$$\frac{1}{n} \sum_{k=0}^{n-1} e^{2i\pi \frac{kj}{n}} = \begin{cases} 1 & \text{if } \frac{j}{n} \text{ is an integer} \\ 0 & \text{otherwise.} \end{cases}$$

Discrete Fourier Transform

Complex numbers

-

$$1 + z + \dots + z^{n-1} = \begin{cases} n & \text{if } z = 1 \\ \frac{1-z^n}{1-z} & \text{otherwise.} \end{cases}$$

- Crucial Lemma: $n > 0, j \in \mathbb{Z}$,

$$\frac{1}{n} \sum_{k=0}^{n-1} e^{2i\pi \frac{kj}{n}} = \begin{cases} 1 & \text{if } \frac{j}{n} \text{ is an integer} \\ 0 & \text{otherwise.} \end{cases}$$

Discrete Fourier Transform and Inverse

$$\widehat{F} |\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi \frac{kj}{2^n}} |\underline{j}\rangle \text{ and } \widehat{F}^{-1} |\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{-2i\pi \frac{kj}{2^n}} |\underline{j}\rangle$$

Discrete Fourier Transform

Complex numbers

-

$$1 + z + \dots + z^{n-1} = \begin{cases} n & \text{if } z = 1 \\ \frac{1-z^n}{1-z} & \text{otherwise.} \end{cases}$$

- Crucial Lemma: $n > 0, j \in \mathbb{Z}$,

$$\frac{1}{n} \sum_{k=0}^{n-1} e^{2i\pi \frac{kj}{n}} = \begin{cases} 1 & \text{if } \frac{j}{n} \text{ is an integer} \\ 0 & \text{otherwise.} \end{cases}$$

Discrete Fourier Transform and Inverse

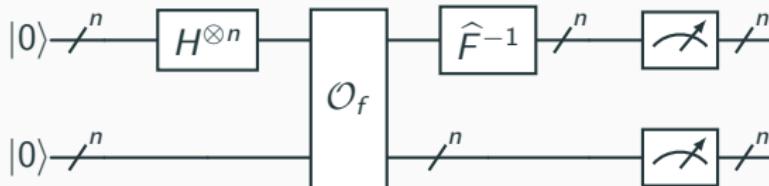
$$\hat{F} |\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi \frac{kj}{2^n}} |\underline{j}\rangle \text{ and } \hat{F}^{-1} |\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{-2i\pi \frac{kj}{2^n}} |\underline{j}\rangle$$

The Discrete Fourier Transform is Linear and Unitary

$$\text{If } |\psi\rangle = \sum_{k=0}^{2^n-1} \alpha_k |\underline{k}\rangle, \text{ then } \hat{F} |\psi\rangle = \sum_{k=0}^{2^n-1} \alpha_k \hat{F} |\underline{k}\rangle$$

Shor Circuit

- Initialization: $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$.
- Hadamard: $|\psi_1\rangle = H^{\otimes n}(|\underline{0}\rangle) \otimes |\underline{0}\rangle = \left(\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle \right) \otimes |\underline{0}\rangle$
- Oracle: $|\psi_2\rangle = \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} |\underline{k}\rangle \otimes |\underline{a^k}\rangle$



- Measure of the first register: $\left| \frac{2^n \ell}{r} \right\rangle$
- Allows (often) to get r (or a factor of r)

Computation

- After measuring the second register $|\bar{\psi}_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha r + \beta_0}\rangle$

Computation

- After measuring the second register $|\bar{\psi}_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha r + \beta_0}\rangle$
- Action of \hat{F}^{-1} :

$$\begin{aligned} |\bar{\psi}_4\rangle &= \hat{F}^{-1} |\hat{\psi}_3\rangle = \sum_{\alpha=0}^{2^n/r-1} \hat{F}^{-1} |\underline{\alpha r + \beta_0}\rangle \\ &= \sum_{\alpha} \sum_{j=0}^{2^n-1} e^{-\frac{2i\pi(\alpha r + \beta_0)j}{2^n}} |j\rangle = \sum_j \overbrace{\left(\sum_{\alpha} e^{-2i\pi \frac{\alpha j}{2^n/r}} \right)}^{0 \text{ or } 1} e^{-2i\pi \frac{\beta_0 j}{2^n}} |j\rangle \\ &= \sum_{\substack{j \text{ with } j/(2^n/r) \text{ integer}}} e^{-2i\pi \frac{\beta_0 j}{2^n}} |j\rangle = \sum_{\ell=0}^{r-1} e^{-2i\pi \beta_0 \frac{\ell}{r}} \left| \frac{2^n \ell}{r} \right\rangle \end{aligned}$$

Computation

- After measuring the second register $|\bar{\psi}_3\rangle = \sum_{\alpha=0}^{2^n/r-1} |\underline{\alpha r + \beta_0}\rangle$
- Action of \hat{F}^{-1} :

$$\begin{aligned} |\bar{\psi}_4\rangle &= \hat{F}^{-1} |\hat{\psi}_3\rangle = \sum_{\alpha=0}^{2^n/r-1} \hat{F}^{-1} |\underline{\alpha r + \beta_0}\rangle \\ &= \sum_{\alpha} \sum_{j=0}^{2^n-1} e^{-\frac{2i\pi(\alpha r + \beta_0)j}{2^n}} |j\rangle = \sum_j \overbrace{\left(\sum_{\alpha} e^{-2i\pi \frac{\alpha j}{2^n/r}} \right)}^{0 \text{ or } 1} e^{-2i\pi \frac{\beta_0 j}{2^n}} |j\rangle \\ &= \sum_{\substack{j \text{ with } j/(2^n/r) \text{ integer}}} e^{-2i\pi \frac{\beta_0 j}{2^n}} |j\rangle = \sum_{\ell=0}^{r-1} e^{-2i\pi \beta_0 \frac{\ell}{r}} \left| \frac{2^n \ell}{r} \right\rangle \end{aligned}$$

- Measure the first register: $\left| \frac{2^n \ell}{r} \right\rangle$, for $\ell \in \{0, 1, \dots, r-1\}$
- We get $m = \frac{2^n \ell}{r}$ for one of the states $\left| \frac{2^n \ell}{r} \right\rangle$

Measure the first register

$m = \frac{2^n \ell}{r}$ integer with n known and ℓ unknown

- Divide m by 2^n to obtain the rational $x = \frac{m}{2^n} = \frac{\ell}{r}$
- If $x \in \mathbb{Z}$, we get no information on r , and we redo the quantum circuit
- If $\gcd(\ell, r) = 1$, then $\frac{\ell}{r}$ is irreducible and we get r .
- If $\gcd(\ell, r) \neq 1$, then $x = \frac{m}{2^n} = \frac{\ell'}{r'} = \frac{\ell}{r}$ and we get r' a factor of r . We redo the computation with $a' = a^{r'}$ which is of period r/r' .

Continued Fractions

Definition

- $a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\dots + \cfrac{1}{a_n}}}}$, noted $[a_0, a_1, \dots, a_n]$
- E.g., $[5, 2, 1, 4] = 5 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{4}}} = 5.3571428\dots$
- $[5] = 5, [5, 2] = \frac{11}{2} = 5.5, [5, 2, 1] = \frac{16}{3} = 5.33\dots$

Continued Fractions

Definition

- $a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\dots + \cfrac{1}{a_n}}}}$, noted $[a_0, a_1, \dots, a_n]$
- E.g., $[5, 2, 1, 4] = 5 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{4}}} = 5.3571428\dots$
- $[5] = 5, [5, 2] = \frac{11}{2} = 5.5, [5, 2, 1] = \frac{16}{3} = 5.33\dots$

Good Approximation by continued fractions

- $\pi = 3.14159\dots \approx \frac{314}{100}$ (denominator is large)
- $\frac{314}{100} = 3 + \frac{14}{100} = 3 + \frac{1}{\frac{100}{14}} = 3 + \frac{1}{7 + \frac{2}{14}} = 3 + \frac{1}{7 + \frac{1}{7}} = [3, 7, 7]$
- $[3, 7] = 3 + \frac{1}{7} = \frac{22}{7} = 3.1428$
- $[3, 7, 15, 1] = \frac{355}{113} = 3.14159292\dots$ (same order with 6 exact values instead of 2)

Example Shor with $N = 21$

- $N = 21$, $a = 2$, $2^n = 512 = 2^9$
- Circuit outputs $|427\rangle$, so $x = \frac{427}{512}$
- $\frac{427}{512} \approx \frac{4}{5}$ so order 5 ??
- $\frac{427}{512} = [0, 1, 5, 42, 2]$ and $[0, 1] = 1$, $[0, 1, 5] = \frac{5}{6}$, $[0, 1, 5, 42] = \frac{211}{253}$
- We keep the best fraction whose denominator is $\leq N$ and it gives r or a fraction of r

Example Shor with $N = 21$

- $N = 21, a = 2, 2^n = 512 = 2^9$
- Circuit outputs $|427\rangle$, so $x = \frac{427}{512}$
- $\frac{427}{512} \approx \frac{4}{5}$ so order 5 ??
- $\frac{427}{512} = [0, 1, 5, 42, 2]$ and $[0, 1] = 1, [0, 1, 5] = \frac{5}{6}, [0, 1, 5, 42] = \frac{211}{253}$
- We keep the best fraction whose denominator is $\leq N$ and it gives r or a fraction of r

Shor algorithm with arbitrary order

- $N = 21, a = 2, 2^n = 512 = 2^9 \geq N^2$
- $|\psi_0\rangle = |\underline{0}\rangle \otimes |\underline{0}\rangle$
- $|\psi_1\rangle = \sum_{k=0}^{r-1} |\underline{k}\rangle \otimes |\underline{0}\rangle$
- $|\psi_2\rangle = \sum_{k=0}^{r-1} |\underline{k}\rangle \otimes |\underline{a^k \bmod N}\rangle$
- $r = 6$ and $\frac{2^n \ell}{r} \notin \mathbb{Z}$

Example

The first two lines have 86 terms and 85 in the others

- The state $|\psi_2\rangle$ is **not rectangular**:

$$\begin{aligned} |\psi_2\rangle &= \frac{1}{\sqrt{512}}(|\underline{0}\rangle + |\underline{6}\rangle + \dots + |\underline{504}\rangle + |\underline{510}\rangle) |\underline{1}\rangle \\ &+ \frac{1}{\sqrt{512}}(|\underline{1}\rangle + |\underline{7}\rangle + \dots + |\underline{505}\rangle + |\underline{511}\rangle) |\underline{2}\rangle \\ &+ \frac{1}{\sqrt{512}}(|\underline{2}\rangle + |\underline{8}\rangle + \dots + |\underline{506}\rangle) |\underline{4}\rangle \\ &+ \dots \\ &+ \frac{1}{\sqrt{512}}(|\underline{5}\rangle + |\underline{11}\rangle + \dots + |\underline{509}\rangle) |\underline{11}\rangle \end{aligned}$$

Example

The first two lines have 86 terms and 85 in the others

- The state $|\psi_2\rangle$ is not rectangular:

$$\begin{aligned} |\psi_2\rangle &= \frac{1}{\sqrt{512}}(|\underline{0}\rangle + |\underline{6}\rangle + \dots + |\underline{504}\rangle + |\underline{510}\rangle) |\underline{1}\rangle \\ &+ \frac{1}{\sqrt{512}}(|\underline{1}\rangle + |\underline{7}\rangle + \dots + |\underline{505}\rangle + |\underline{511}\rangle) |\underline{2}\rangle \\ &+ \frac{1}{\sqrt{512}}(|\underline{2}\rangle + |\underline{8}\rangle + \dots + |\underline{506}\rangle) |\underline{4}\rangle \\ &+ \dots \\ &+ \frac{1}{\sqrt{512}}(|\underline{5}\rangle + |\underline{11}\rangle + \dots + |\underline{509}\rangle) |\underline{11}\rangle \end{aligned}$$

- measure the second register $|\underline{2}\rangle$: $|\psi_3\rangle = |\underline{1}\rangle + |\underline{7}\rangle + \dots + |\underline{511}\rangle$
- $|\psi_4\rangle = \hat{F}^{-1} |\psi_3\rangle = \sum_{\alpha=0}^{85} \hat{F}^{-1} |\underline{6\alpha+1}\rangle$
- $|\psi_4\rangle = \sum_{j=0}^{511} \left(\sum_{\alpha=0}^{85} e^{-2i\pi \frac{6\alpha j}{512}} \right) e^{-2i\pi \frac{j}{512}} |\underline{j}\rangle$

Example Shor with arbitrary order

$$|\psi_4\rangle = \frac{1}{\sqrt{512}} \sum_{j=0}^{511} \left(\frac{1}{\sqrt{86}} \sum_{\alpha=0}^{85} e^{-2i\pi \frac{6\alpha j}{512}} \right) e^{-2i\pi \frac{j}{512}} |j\rangle$$

Now, $\Sigma(j) = \frac{1}{\sqrt{86}} \sum_{\alpha=0}^{85} e^{-2i\pi \frac{6\alpha j}{512}}$ does not take only 0 /1 values.

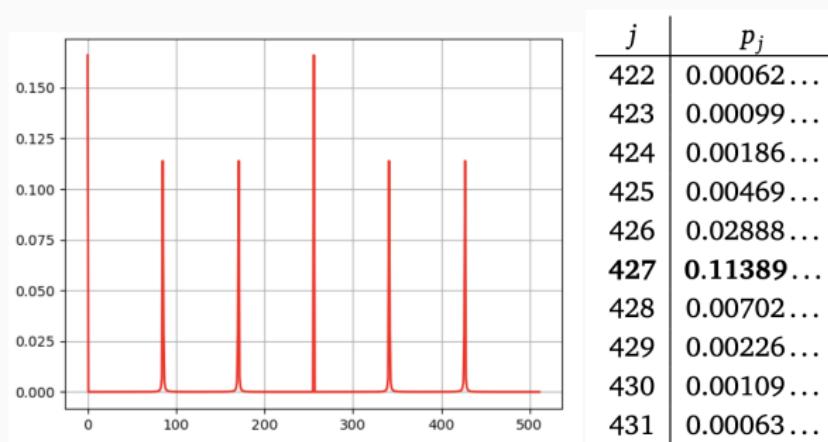
Example Shor with arbitrary order

$$|\psi_4\rangle = \frac{1}{\sqrt{512}} \sum_{j=0}^{511} \left(\frac{1}{\sqrt{86}} \sum_{\alpha=0}^{85} e^{-2i\pi \frac{6\alpha j}{512}} \right) e^{-2i\pi \frac{j}{512}} |j\rangle$$

Now, $\Sigma(j) = \frac{1}{\sqrt{86}} \sum_{\alpha=0}^{85} e^{-2i\pi \frac{6\alpha j}{512}}$ does not take only 0 /1 values.

If we measure the first register, we get $|j\rangle$ with probability $|\Sigma(j)|^2$.

The proba. are ≈ 0 , except when $j \approx \frac{2^n \ell}{r}$: for $\ell = 5$, $\frac{512 \times 5}{6} = 426.66$.



Hardy-Wright Theorem

Theorem

Let $x \in \mathbb{R}$ and a rational $\frac{p}{q}$ such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{2q^2}.$$

Then, $\frac{p}{q}$ is obtained as one of the continued fractions of x .

Hardy-Wright Theorem

Theorem

Let $x \in \mathbb{R}$ and a rational $\frac{p}{q}$ such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{2q^2}.$$

Then, $\frac{p}{q}$ is obtained as one of the continued fractions of x .

Let m the closest integer to $\frac{2^n \ell}{r}$. So, $|m - \frac{2^n \ell}{r}| < \frac{1}{2}$.

If $x = \frac{m}{2^n}$, we get $|x - \frac{\ell}{r}| < \frac{1}{2^{n+1}}$.

As we set $2^n \geq N^2 \geq r^2$, $|x - \frac{\ell}{r}| < \frac{1}{2r^2}$.

Using Theorem, we obtain $\frac{\ell}{r}$ as one of the continued fractions of x .

Discrete Fourier Transform

Rewriting the Discrete Fourier Transform

Definition

- $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi \frac{\underline{k} \cdot \underline{j}}{2^n}} |\underline{j}\rangle$
- Factorization: $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \prod_{\ell=1}^n (|0\rangle + e^{2i\pi \frac{k_\ell}{2^\ell}} |1\rangle)$

Rewriting the Discrete Fourier Transform

Definition

- $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi \frac{\underline{k}\cdot \underline{j}}{2^n}} |\underline{j}\rangle$

- Factorization: $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \prod_{\ell=1}^n (|0\rangle + e^{2i\pi \frac{k_\ell}{2^\ell}} |1\rangle)$

- E.g. $n = 1$, $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2}} (|0\rangle + e^{2i\pi \frac{k}{2}} |1\rangle)$.

Hadamard Transform: $\hat{F}|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, $\hat{F}|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.

Rewriting the Discrete Fourier Transform

Definition

- $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi \frac{\underline{k} \cdot \underline{j}}{2^n}} |\underline{j}\rangle$

- Factorization: $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \prod_{\ell=1}^n (|0\rangle + e^{2i\pi \frac{k_\ell}{2^\ell}} |1\rangle)$

Proof

- For each $|\underline{j}\rangle$, show that the coefficient in both expressions **is the same**

Rewriting the Discrete Fourier Transform

Definition

- $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi \frac{\underline{k} \cdot \underline{j}}{2^n}} |\underline{j}\rangle$

- Factorization: $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \prod_{\ell=1}^n (|0\rangle + e^{2i\pi \frac{k_\ell}{2^\ell}} |1\rangle)$

Proof

- For each $|\underline{j}\rangle$, show that the coefficient in both expressions **is the same**
- Write $0 \leq j < 2^n$ in binary: $j = \sum_{\ell=0}^{n-1} j_\ell 2^\ell$ with $j_\ell = 0$ or 1 .
For $\underline{j} = j_{n-1} \dots j_1 j_0$, $|\underline{j}\rangle = |j_{n-1} \dots j_2 j_1 j_0\rangle = |j_{n-1}\rangle \dots |j_2\rangle \cdot |j_1\rangle \cdot |j_0\rangle$.

Rewriting the Discrete Fourier Transform

Definition

- $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi \frac{\underline{k} \cdot \underline{j}}{2^n}} |\underline{j}\rangle$

- Factorization: $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \prod_{\ell=1}^n (|0\rangle + e^{2i\pi \frac{k_\ell}{2^\ell}} |1\rangle)$

Proof

- For each $|\underline{j}\rangle$, show that the coefficient in both expressions **is the same**
- Write $0 \leq j < 2^n$ in binary: $j = \sum_{\ell=0}^{n-1} j_\ell 2^\ell$ with $j_\ell = 0$ or 1 .
For $\underline{j} = j_{n-1} \dots j_1 j_0$, $|\underline{j}\rangle = |j_{n-1} \dots j_2 j_1 j_0\rangle = |j_{n-1}\rangle \dots |j_2\rangle \cdot |j_1\rangle \cdot |j_0\rangle$.
- For each term of the product, we take either $|0\rangle$ or $e^{2i\pi \frac{k_\ell}{2^\ell}} |1\rangle$.
If we choose $|0\rangle$ every times, we get $|\underline{0}\rangle$. In the first term, if we choose $|0\rangle$, $|\underline{j}\rangle = |0\dots\rangle$, while if we choose $e^{2i\pi \frac{k_\ell}{2^\ell}} |1\rangle$, $|\underline{j}\rangle = |1\dots\rangle$.

Rewriting the Discrete Fourier Transform

Definition

- $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{j=0}^{2^n-1} e^{2i\pi \frac{\underline{k} \cdot \underline{j}}{2^n}} |\underline{j}\rangle$
- Factorization: $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \prod_{\ell=1}^n (|0\rangle + e^{2i\pi \frac{k}{2^\ell}} |1\rangle)$

Proof

- For each $|\underline{j}\rangle$, show that the coefficient in both expressions **is the same**
- Write $0 \leq j < 2^n$ in binary: $j = \sum_{\ell=0}^{n-1} j_\ell 2^\ell$ with $j_\ell = 0$ or 1 .
For $\underline{j} = j_{n-1} \dots j_1 j_0$, $|\underline{j}\rangle = |j_{n-1} \dots j_2 j_1 j_0\rangle = |j_{n-1}\rangle \dots |j_2\rangle \cdot |j_1\rangle \cdot |j_0\rangle$.
- For each term of the product, we take either $|0\rangle$ or $e^{2i\pi \frac{k}{2^\ell}} |1\rangle$.
If we choose $|0\rangle$ every times, we get $|\underline{0}\rangle$. In the first term, if we choose $|0\rangle$, $|\underline{j}\rangle = |0\dots\rangle$, while if we choose $e^{2i\pi \frac{k}{2^\ell}} |1\rangle$, $|\underline{j}\rangle = |1\dots\rangle$.
- We can summarize both cases as $e^{2i\pi \frac{k j_{n-1}}{2^n}} |j_{n-1}\rangle$

Rewriting the Discrete Fourier Transform

- We can summarize these 2 cases as $e^{2i\pi \frac{kj_{n-1}}{2^\ell}} |j_{n-1}\rangle$

Rewriting the Discrete Fourier Transform

- We can summarize these 2 cases as $e^{2i\pi \frac{kj_{n-1}}{2^\ell}} |j_{n-1}\rangle$
- More generally, the ℓ term can be written as $e^{2i\pi \frac{kj_{n-\ell}}{2^\ell}} |j_{n-\ell}\rangle$, and

$$\begin{aligned} \prod_{\ell=1}^n \left(e^{2i\pi \frac{kj_{n-\ell}}{2^\ell}} |j_{n-\ell}\rangle \right) &= \left(\prod_{\ell=1}^n e^{2i\pi \frac{kj_{n-\ell}}{2^\ell}} \right) |j_{n-1} \dots j_2, j_1, j_0\rangle \\ &= e^{2i\pi k \cdot \sum_{\ell=1}^n \frac{j_{n-\ell}}{2^\ell}} |j\rangle \\ &= e^{2i\pi \frac{k}{2^n} \cdot \sum_{\ell=1}^n j_{n-\ell} 2^{n-\ell}} |j\rangle \\ &= e^{2i\pi \frac{k}{2^n} \cdot \sum_{\ell'=0}^{n-1} j_{\ell'} 2^{\ell'}} |j\rangle \\ &= e^{2i\pi \frac{k}{2^n} \cdot j} |j\rangle \end{aligned}$$

- The coefficient of $|j\rangle$ is the same as the one of the DFT. Since it is true for all j , the two expressions are equivalent

Variant

We can write binary notation for $0 \leq x < 1$:

$$0..j_1.j_2 \dots j_n = \frac{j_1}{2} + \frac{j_2}{2^2} + \dots + \frac{j_n}{2^n} = \sum_{\ell=1}^n \frac{j_\ell}{2^\ell}$$

$0..j_1.j_2 \dots j_n$: the dots separate the bits, and .. represent 0.abc

E.g., $x = 0.625$ is written $x = 0..1.0.1$ since $0.625 = \frac{1}{2} + \frac{0}{4} + \frac{1}{8}$

Variant

We can write binary notation for $0 \leq x < 1$:

$$0..j_1.j_2 \dots j_n = \frac{j_1}{2} + \frac{j_2}{2^2} + \dots + \frac{j_n}{2^n} = \sum_{\ell=1}^n \frac{j_\ell}{2^\ell}$$

$0..j_1.j_2 \dots j_n$: the dots separate the bits, and .. represent 0.abc

E.g., $x = 0.625$ is written $x = 0..1.0.1$ since $0.625 = \frac{1}{2} + \frac{0}{4} + \frac{1}{8}$

Corollary

If $|\underline{k}\rangle = |k_{n-1} \dots k_1.k_0\rangle$,

$$\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \prod_{\ell=1}^n (|0\rangle + e^{2i\pi 0..k_{\ell-1} \dots k_0} |1\rangle).$$

$$\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} (|0\rangle + e^{2i\pi 0..k_0} |1\rangle) \otimes (|0\rangle + e^{2i\pi 0..k_1..k_0} |1\rangle) \otimes \dots \otimes (|0\rangle + e^{2i\pi 0..k_{n-1} \dots k_1..k_0} |1\rangle).$$

Corollary

If $|\underline{k}\rangle = |k_{n-1} \dots k_1.k_0\rangle$, $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \otimes_{\ell=1}^n (|0\rangle + e^{2i\pi 0..k_{\ell-1}..k_0} |1\rangle)$.

Variant

Corollary

If $|\underline{k}\rangle = |k_{n-1} \dots k_1.k_0\rangle$, $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \otimes_{\ell=1}^n (|0\rangle + e^{2i\pi 0..k_{\ell-1}..k_0} |1\rangle)$.

Proof

For any integer p , $e^{2i\pi p} = 1$.

$$\begin{aligned}\frac{k}{2^\ell} &= \frac{k_{n-1}2^{n-1} + \dots + k_22^2 + k_12 + k_0}{2^\ell} \\ &= \underbrace{k_{n-1}2^{n-1-\ell} + \dots + k_\ell}_{\text{integer part}} + \underbrace{\frac{k_{\ell-1}}{2} + \dots + \frac{k_0}{2^\ell}}_{\text{fractional part}} \\ &= p + 0..k_{\ell-1}..k_0\end{aligned}$$

So, $e^{2i\pi \frac{k}{2^\ell}} = e^{2i\pi(p+0..k_{\ell-1}..k_0)}$.

Variant

Corollary

If $|\underline{k}\rangle = |k_{n-1} \dots k_1.k_0\rangle$, $\hat{F}|\underline{k}\rangle = \frac{1}{\sqrt{2^n}} \otimes_{\ell=1}^n (|0\rangle + e^{2i\pi 0..k_{\ell-1}..k_0} |1\rangle)$.

Proof

For any integer p , $e^{2i\pi p} = 1$.

$$\begin{aligned} \frac{k}{2^\ell} &= \frac{k_{n-1}2^{n-1} + \dots + k_22^2 + k_12 + k_0}{2^\ell} \\ &= \underbrace{k_{n-1}2^{n-1-\ell} + \dots + k_\ell}_{\text{integer part}} + \underbrace{\frac{k_{\ell-1}}{2} + \dots + \frac{k_0}{2^\ell}}_{\text{fractional part}} \\ &= p + 0..k_{\ell-1}..k_0 \end{aligned}$$

So, $e^{2i\pi \frac{k}{2^\ell}} = e^{2i\pi(p+0..k_{\ell-1}..k_0)}$.

Example

- for $\ell = 1$, $e^{2i\pi \frac{k}{2}} = e^{2i\pi 0..k_0}$
- for $\ell = 2$, $e^{2i\pi \frac{k}{4}} = e^{2i\pi 0..k_1.k_0}$ and for $\ell = n$, $e^{2i\pi \frac{k}{2^n}} = e^{2i\pi 0..k_{n-1}..k_1..k_0}$

Quantum Circuit of the Discrete Fourier Transform

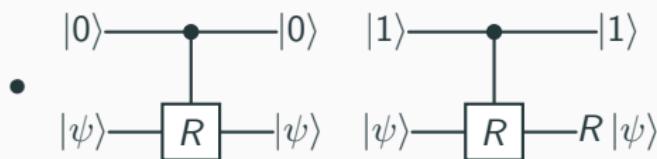
Gate R_k and controlled

- $R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{2i\pi}{2^k}} \end{pmatrix}$
- $R_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, R_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, R_2 = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, R_3 = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$

Quantum Circuit of the Discrete Fourier Transform

Gate R_k and controlled

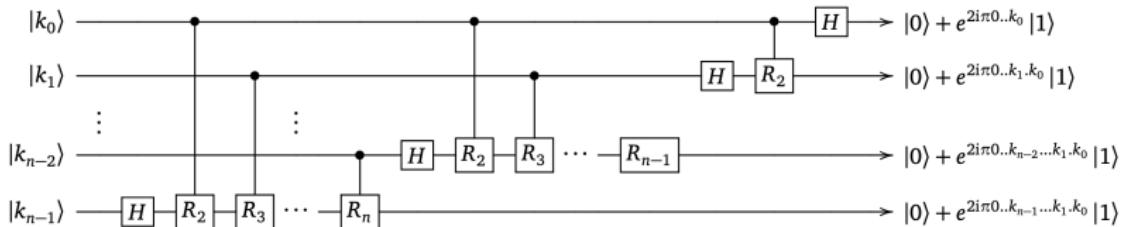
- $R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{2i\pi}{2^k}} \end{pmatrix}$ —
- $R_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $R_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $R_2 = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, $R_3 = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$



Quantum Circuit of the Discrete Fourier Transform

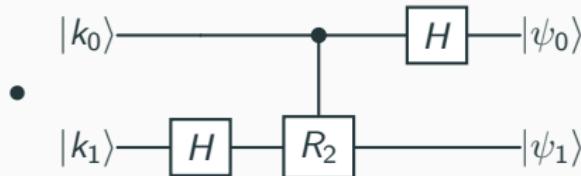
Gate R_k and controlled

- $R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{2i\pi}{2^k}} \end{pmatrix}$
- $R_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $R_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $R_2 = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, $R_3 = \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$
- $n = 1$: $\psi_0 = H|k_0\rangle$: $|\psi_0\rangle = |0\rangle + |1\rangle$ if $k_0 = 0$, $|0\rangle - |1\rangle$ if $k_0 = 1$
We get $|\psi_0\rangle = |0\rangle + e^{2i\pi 0..k_0} |1\rangle$ as $e^{2i\pi 0..1} = e^{i\pi} = -1$



Quantum Circuit of the Discrete Fourier Transform

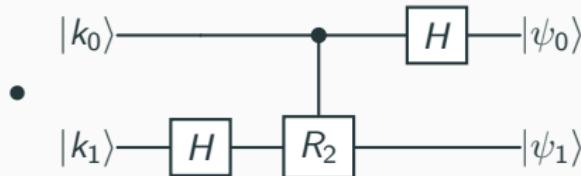
Case $n = 2$



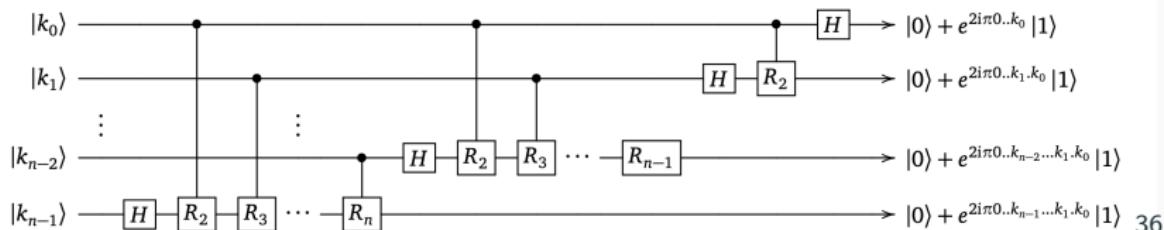
- $|\psi_0\rangle$ is the same as in the case $n = 1$.
- If $|k_0\rangle = |0\rangle$, $|\psi_1\rangle = H|k_1\rangle = |0\rangle + e^{2i\pi\frac{k_1}{2}}|1\rangle$ (R_2 not active)
- If $|k_0\rangle = |1\rangle$, $|\psi_1\rangle = R_2(H|k_1\rangle) = R_2(|0\rangle + e^{2i\pi\frac{k_1}{2}}|1\rangle)$
 $|\psi_1\rangle = R_2|0\rangle + e^{2i\pi\frac{k_1}{2}}R_2|1\rangle = |0\rangle + e^{2i\pi\frac{k_1}{2}} \cdot e^{2i\pi\frac{1}{4}}|1\rangle$
- $|\psi_1\rangle = |0\rangle + e^{2i\pi\frac{k_1}{2}} \cdot e^{2i\pi\frac{k_0}{4}}|1\rangle$ and $e^{2i\pi\frac{k_1}{2}} \cdot e^{2i\pi\frac{k_0}{4}} = e^{2i\pi 0..k_1..k_0}$.

Quantum Circuit of the Discrete Fourier Transform

Case $n = 2$



- $|\psi_0\rangle$ is the same as in the case $n = 1$.
- If $|k_0\rangle = |0\rangle$, $|\psi_1\rangle = H|k_1\rangle = |0\rangle + e^{2i\pi\frac{k_1}{2}}|1\rangle$ (R_2 not active)
- If $|k_0\rangle = |1\rangle$, $|\psi_1\rangle = R_2(H|k_1\rangle) = R_2(|0\rangle + e^{2i\pi\frac{k_1}{2}}|1\rangle)$
 $|\psi_1\rangle = R_2|0\rangle + e^{2i\pi\frac{k_1}{2}}R_2|1\rangle = |0\rangle + e^{2i\pi\frac{k_1}{2}} \cdot e^{2i\pi\frac{1}{4}}|1\rangle$
- $|\psi_1\rangle = |0\rangle + e^{2i\pi\frac{k_1}{2}} \cdot e^{2i\pi\frac{k_0}{4}}|1\rangle$ and $e^{2i\pi\frac{k_1}{2}} \cdot e^{2i\pi\frac{k_0}{4}} = e^{2i\pi 0..k_1..k_0}$.



Conclusion

Generalization

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H , find H

Conclusion

Generalization

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H , find H
- Shor's algorithm is for subgroup H of $G = \mathbb{Z}/\varphi(N)\mathbb{Z}$ and $H = \langle r \rangle$
- Simon's algorithm: $G = \mathbb{F}_2^n$ and $H = \{0, s\}$
- Kitaev: any Abelian Group G

Conclusion

Generalization

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H , find H
- Shor's algorithm is for subgroup H of $G = \mathbb{Z}/\varphi(N)\mathbb{Z}$ and $H = \langle r \rangle$
- Simon's algorithm: $G = \mathbb{F}_2^n$ and $H = \{0, s\}$
- Kitaev: any Abelian Group G
- Non-abelian group: Kuperberg and Relation to Lattice problems

Conclusion

Generalization

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H , find H
- Shor's algorithm is for subgroup H of $G = \mathbb{Z}/\varphi(N)\mathbb{Z}$ and $H = \langle r \rangle$
- Simon's algorithm: $G = \mathbb{F}_2^n$ and $H = \{0, s\}$
- Kitaev: any Abelian Group G
- Non-abelian group: Kuperberg and Relation to Lattice problems

New Results on factorization

- Shor algorithm: $O(n)$ qubits and $O(n^2 \log n)$ gates

Conclusion

Generalization

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H , find H
- Shor's algorithm is for subgroup H of $G = \mathbb{Z}/\varphi(N)\mathbb{Z}$ and $H = \langle r \rangle$
- Simon's algorithm: $G = \mathbb{F}_2^n$ and $H = \{0, s\}$
- Kitaev: any Abelian Group G
- Non-abelian group: Kuperberg and Relation to Lattice problems

New Results on factorization

- Shor algorithm: $O(n)$ qubits and $O(n^2 \log n)$ gates
- Regev algorithm [R23]: $O(n^{3/2})$ qubits and $O(n^{3/2} \log n)$ gates

RV24 $O(n \log n)$ qubits and $O(n^{3/2} \log n)$ gates

Conclusion

Generalization

- HSP (Hidden Subgroup Problem): Let G a group and H a subgroup. The function f is constant on each coset of H , find H
- Shor's algorithm is for subgroup H of $G = \mathbb{Z}/\varphi(N)\mathbb{Z}$ and $H = \langle r \rangle$
- Simon's algorithm: $G = \mathbb{F}_2^n$ and $H = \{0, s\}$
- Kitaev: any Abelian Group G
- Non-abelian group: Kuperberg and Relation to Lattice problems

New Results on factorization

- Shor algorithm: $O(n)$ qubits and $O(n^2 \log n)$ gates
- Regev algorithm [R23]: $O(n^{3/2})$ qubits and $O(n^{3/2} \log n)$ gates

RV24 $O(n \log n)$ qubits and $O(n^{3/2} \log n)$ gates

CFS24 $o(n)$ qubits: RSA-2048, with 1730 qubits and $O(n^3)$ gates
For DL in \mathbb{F}_p with a 2024-bit prime and 224-bit DL, 684 qubits

Conclusion

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits by Gidney and Ekerå

Conclusion

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits by Gidney and Ekerå

Further Reading

1. Quantum Computation and Quantum Information, Nielsen and Chuang.
2. Lecture Notes on Quantum Algorithms, A. Childs,
<https://www.cs.umd.edu/~amchilds/qa/qa.pdf>