
Quantum algorithms for factorization and

other problems

Pierre-Alain Fouque

Centre Inria de l’Université de Rennes
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Basic Circuits



Quantum Hadamard Gates

A very important gate

1. Gate H: |0⟩ 7→ |0⟩+|1⟩√
2

|1⟩ 7→ |0⟩−|1⟩√
2

2. By linearity, |ψ⟩ = α |0⟩+ β |1⟩, H |ψ⟩ = αH |0⟩+ βH |1⟩
H |ψ⟩ = α√

2
(|0⟩+ |1⟩) + β√

2
(|0⟩ − |1⟩) = α+β√

2
|0⟩+ α−β√

2
|1⟩

3. Matrix version: MH = 1√
2

(
1 1

1 −1

)

MH |0⟩ = MH

(
1

0

)
=

1√
2

(
1

1

)
=

|0⟩+ |1⟩√
2

.

Similarly for MH |1⟩.
4. Eg., if |ψ⟩ = i |0⟩+ (2 + i) |1⟩, compute MH |ψ⟩ ?
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Some Quantum Circuits

|0⟩ 1

|1⟩ 0

X

X

|ψ⟩ = α |0⟩+ β |1⟩

{
0 with proba. |β|2

1 with proba. |α|2X

X |ψ⟩ = β |0⟩+ α |1⟩

|0⟩

{
0 with proba. 1/2

1 with proba. 1/2
H

H |0⟩ = 1√
2
(|0⟩+ |1⟩)

|1⟩

{
0 with proba. 1/2

1 with proba. 1/2
H

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

|0⟩ 0H H

HH |0⟩ = 1√
2
(H |0⟩+ H |1⟩) = |0⟩
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2-qubits ⇒ 4 possibilities

2-qubit

• |ψ⟩ = α |0.0⟩+ β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, with α, β, γ, δ ∈ C

• |α|2 + |β|2 + |γ|2 + |δ|2 = 1

•

(
a

b

)
⊗

(
c

d

)
=


ac

ad

bc

bd

 and |0⟩⊗ |0⟩ =

(
1

0

)
⊗

(
1

0

)
=


1

0

0

0

 = |0.0⟩

Vectors

|0.0⟩ =


1

0

0

0

, |0.1⟩ =


0

1

0

0

, |1.0⟩ =


0

0

1

0

, |1.1⟩ =


0

0

0

1

, |ψ⟩ =


α

β

γ

δ


4



Operations on qubits

• Addition of qubits: |ϕ⟩ = (1 + 3i) |0⟩+ 2i |1⟩ and
|ψ⟩ = 3 |0⟩+ (1− i) |1⟩,

|ϕ⟩+ |ψ⟩ = (4 + 3i) |0⟩+ (1 + i) |1⟩

For 2 2-qubits: (|1.0⟩+ |0.1⟩) + (|1.0⟩ − |0.1⟩) = 2 |1.0⟩
• Multiplication of 2 1-qubit is a 2-qubit: |ϕ⟩ · |ψ⟩

((1 + 3i) |0⟩+ 2i |1⟩)⊗ (3 |0⟩+ (1− i) |1⟩)
(1 + 3i) · 3 · |0⟩ |0⟩+ (1 + 3i) · (1− i) |0⟩ |1⟩+ 6i · |1⟩ |0⟩+ ...

(3 + 9i) |0.0⟩+ (4 + 2i) |0.1⟩+ 6i |1.0⟩+ (2 + 2i) |1.1⟩
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CNOT Gate: controlled gate with 2-qubit

If ... then ... else ...

• |0.0⟩ 7→ |0.0⟩ , |0.1⟩ 7→ |0.1⟩ , |1.0⟩ 7→ |1.1⟩ , |1.1⟩ 7→ |1.0⟩

• If |0.0⟩ =


1

0

0

0

, |0.1⟩ =


0

1

0

0

, |1.0⟩ =


0

0

1

0

, |1.1⟩ =


0

0

0

1

,

M =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

, the upper left submatrix is the identity

performed on the first line, the bottom right submatrix is the

inversion operation performed on the second line
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Quantum Circuit

n n|ψ⟩ A |ψ⟩A where A is a unitary A∗A = In

Theorem
Every n-qubit quantum gate can be realized with a circuit using only

CNOT and 1-qubit gates

Theorem (Solovay-Kitaev)
There is an infinite number of 1-qubit gates, and every such gate can be

approximated with only H, T, and CNOT gates

Theorem: Toffoli (CCNOT) is a universal gate

• Toffoli gate is invertible: (|a.b.c⟩ 7→ |a.b.c ⊕ (ab)⟩):
T |a.b.1⟩ = |a.b.NAND(a, b)⟩

• Any classical circuit using N gates in the set AND, OR, NOT

(universal gates for classical circuits) can be computed using O(N)

Toffoli gates
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Partial Measurement of a 2-qubit

• |ψ⟩ = α |0.0⟩+β |0.1⟩+ γ |1.0⟩+ δ |1.1⟩, |α|2 + |β|2 + |γ|2 + |δ|2 = 1

•
|ψ⟩ 0 or 1

?

• If one measures the first qubit as 1, what is the second qubit ?

• E.g., If |ψ⟩ =
√
2
2 |0.0⟩+ 1

2 |0.1⟩+
1
2 |1.1⟩, then if we observe |1⟩ on

the first qubit, the second is |1⟩.
• If we observe |0⟩, as |ψ⟩ = |0⟩

2 · (
√
2 |0⟩+ |1⟩) + 1

2 |1⟩ |1⟩, the second

qubit is
√

2
3 |0⟩+

1√
3
|1⟩

• Exo: If |ψ⟩ = 1
5 (2 |0.0.0⟩ − |0.0.1⟩+ 3 |0.1.0⟩+ |0.1.1⟩ − 2 |1.0.0⟩+

2 |1.0.1⟩+
√
2 |1.1.1⟩), and we measure 0.0, what is the last qubit ?
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First algorithm: Deutsch-Jozsa



Quantum oracle gate

Oracle

• Let f : E −→ Z/2Z be a function

• (Z/2Z,+) = ({0, 1},⊕)

• F : E ×Z/2Z −→ E ×Z/2Z, (x , y) 7−→ (x , y ⊕ f (x)), is a bijection

• Proof: F−1 = F , F (F (x , y)) = F (x , y ⊕ f (x)) = (x , y)

• Deutsch-Jozsa Oracle f : (Z/2Z)k −→ Z/2Z:
x1 x1

...
...

xk xk

y y ⊕ f (x1, . . . , xk)

Of
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Deutsch-Jozsa problem

Goal

• Let f : {0, 1} −→ {0, 1}.
• There are 4 such functions: two are constant and two are balanced

(0 and 1 are taken the same number of times)

f0 =

{
0 7→ 0

1 7→ 0
f1 =

{
0 7→ 1

1 7→ 1
f2 =

{
0 7→ 0

1 7→ 1
f3 =

{
0 7→ 1

1 7→ 0

• Decide if f is constant or balanced ?

• Classically, ask 2 queries (f (0) and f (1)), quantumly 1 query !

Exponential gap: Let f : {0, 1}n −→ {0, 1} and we have the promise f is

either balanced or constant.

Classically, one need at most 2n−1 + 1 queries, while only 1 quantumly !
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Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

• with

|x⟩ |x⟩

|y⟩ |y ⊕ f (x)⟩
Of

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

|ψ1⟩ = (|0⟩+ |1⟩). |1⟩,
|ψ2⟩ = (|0⟩+ |1⟩).(|0⟩ − |1⟩) = 0.0− 0.1 + 1.0− 1.1
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• |ψ2⟩ = 0.0− 0.1 + 1.0− 1.1,

• |ψ3⟩ = 0.(0⊕ f (0))− 0.(1⊕ f (0))︸ ︷︷ ︸
A

+1.(0⊕ f (1))− 1.(1⊕ f (1))︸ ︷︷ ︸
B

• |ψ3⟩ = (−1)f (0)(0.0− 0.1) + (−1)f (1)(1.0− 1.1)
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Deutsch-Jozsa Quantum Circuit (n = 1)

•

|0⟩ out

|1⟩

H

Of

H

H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

• |ψ4⟩ = (−1)f (0)(0.0−0.1+1.0−1.1)+(−1)f (1)(0.0−0.1−1.0+1.1)

• |ψ4⟩ = ((−1)f (0) + (−1)f (1))0.0 + (−(−1)f (0) − (−1)f (1))0.1 +

((−1)f (0) − (−1)f (1))1.0 + (−(−1)f (0) + (−1)f (1))1.1

• If f is constant, (−1)f (0) + (−1)f (1) = ±2 and

(−1)f (0) − (−1)f (1) = 0 and (−1)f (0) − (−1)f (1) = 0, so

|ψ4⟩ = 0.0− 0.1 the measure of the first qubit 0 in both cases

• If f is balanced, check that the first bit is 1
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Deutsch-Jozsa Circuit for n = 2

|0⟩

|0⟩ |

|1⟩

H

Of

H

out

H H

H

|x⟩ |x⟩

|y⟩ |y⟩

|z⟩ |z ⊕ f (x , y)⟩

Of

• Check that if f is constant, the final state before the measurement is

± |0.0⟩
∣∣∣ 1√

2
(0− 1)

〉
, and the 2 first bits are 0.0

• if f is balanced, the final state does not contain qubits starting with

0.0, so no measurement of these qubits will give 0.0.
15



Shor Algorithm



Arithmetic

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

16



Arithmetic

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

16



Arithmetic

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

16



Arithmetic

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

5. Recall: Z/NZ is not an integral domain: N = 6, 2× 3 = 0 mod 6

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

16



Arithmetic

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

Assumptions

1. Assumption 1: ord(a) = r is even with proba. 1/2

2. Fact: (ar/2 − 1)(ar/2 + 1) = 0 mod N

3. Assumption 2: ar/2 + 1 is not divisible by N for many a’s

4. Under Assumption 1 and 2: d = gcd(ar/2 − 1,N) and

d ′ = gcd(ar/2 + 1,N) are non-trivial factors of N

a=2 (a,N) = 1 r = 4, 24 = 16 = 1 mod 15 (24/2 − 1, 15) = 3

a=3 no

a=11 (a,N) = 1 r = 2, 112 = 121 = 1 mod 15 (112/2 − 1, 15) = 5

16



Order and Oracle

• order of a: smallest positive integer r s.t. ar = 1 mod N

• r |φ(N) Lagrange Theorem in the group (Z/NZ)∗

• r is the smallest period of the function f : k 7→ ak mod N

• Oracle F : (k , 0) 7→ (k , ak mod N)

• E.g. N = 15 and a = 2, r = 4

(0, 0)
F7→ (0, 1) (4, 0)

F7→ (4, 1) (8, 0)
F7→ (8, 1) (12, 0)

F7→ (12, 1)

(1, 0)
F7→ (1, 2) (5, 0)

F7→ (5, 2) (9, 0)
F7→ (9, 2) (13, 0)

F7→ (13, 2)

(2, 0)
F7→ (2, 4) (6, 0)

F7→ (6, 4) (10, 0)
F7→ (10, 4) (14, 0)

F7→ (14, 4)

(3, 0)
F7→ (3, 8) (7, 0)

F7→ (7, 8) (11, 0)
F7→ (11, 8) (15, 0)

F7→ (15, 8)
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Oracle Circuit 2n ≥ N

The oracle is composed of 2 registers: the first receives the integer k in

binary with n bits, and the second, 0 on n bits. We write |k⟩ the register

containing k written in binary. For instance, |0⟩ = |0. . . . 0⟩ with n bits.

The initial state is |k⟩ ⊗ |0⟩.

•

k0 k0

...
...

kn−1 kn−1

0

...
...

0

First register k

Of

k

Second register ak mod N

18



Starting the Circuit 2n ≥ N

• Initialization: |ψ0⟩ = |0⟩ ⊗ |0⟩.
• Hadamard: |ψ1⟩ = H⊗n(|0⟩)⊗ |0⟩ =

(
1√
2n

∑2n−1
k=0 |k⟩

)
⊗ |0⟩

• Oracle: |ψ2⟩ = 1
2n/2

∑2n−1
k=0 |k⟩ ⊗

∣∣ak〉
|0⟩

...
...

|0⟩

|0⟩

...

|0⟩

First register

H

Of

∣∣ψ̄3

〉
after partial

measurement

H

Second register
measure of the

second register

ψ0 ψ1 ψ2

19



Using the period to rewrite |ψ2⟩

• Assumption 3: ord(a) = r |2n. This assumption is not true, and can

be removed (see later)

• Under Assumption 3: k = αr + β with 0 ≤ β < r and 0 ≤ α < 2n/r ,

|ψ2⟩ =
2n−1∑
k=0

|k⟩ ⊗
∣∣ak〉 = r−1∑

β=0

(
2n/r−1∑
α=0

∣∣αr + β
〉)

⊗
∣∣aβ〉

• If we measure the second register, we get for a fixed β0,

|ψ3⟩ =
2n/r−1∑
α=0

|αr + β0⟩ ⊗
∣∣aβ0

〉
• Assume we measure the first register, |α0r + β0⟩ for fixed α0 and β0

• If we redo the computation, we will not the same β0,

• We cannot do many measures of the first register ...
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Example N = 15, a = 2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• Hadamard Transform: |ψ1⟩ = (|0⟩+ |1⟩+ . . .+ |15⟩)⊗ |0⟩
• Oracle: |ψ2⟩ = |0⟩ .

∣∣a0〉+ |1⟩ .
∣∣a1〉+ . . .+ |15⟩ .

∣∣a15〉

• Since r = 4|24 = 16, the values form a rectangular table

|ψ2⟩ =
(
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
. |1⟩+(

|1⟩+ |5⟩+ |9⟩+ |13⟩
)
. |2⟩+(

|2⟩+ |6⟩+ |10⟩+ |14⟩
)
. |4⟩+(

|3⟩+ |7⟩+ |11⟩+ |15⟩
)
. |8⟩

• If we measure the second register, |4⟩, the first register is∣∣∣ψ̃3

〉
= |2⟩+ |6⟩+ |10⟩+ |14⟩

• They are separated by the period r = 4, but how can we recover r ?
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Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩

22



Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩

22



Discrete Fourier Transform

Complex numbers

•

1 + z + . . .+ zn−1 =

{
n if z = 1
1−zn

1−z otherwise.

• Crucial Lemma: n > 0, j ∈ Z,

1

n

n−1∑
k=0

e2iπ
kj
n =

{
1 if j

n is an integer

0 otherwise.

Discrete Fourier Transform and Inverse

F̂ |k⟩ = 1√
2n

2n−1∑
j=0

e2iπ
kj
2n
∣∣j〉 and F̂−1 |k⟩ = 1√

2n

2n−1∑
j=0

e−2iπ kj
2n
∣∣j〉

The Discrete Fourier Transform is Linear and Unitary

If |ψ⟩ =
2n−1∑
k=0

αk |k⟩ , then F̂ |ψ⟩ =
2n−1∑
k=0

αk F̂ |k⟩
22



Shor Circuit

• Initialization: |ψ0⟩ = |0⟩ ⊗ |0⟩.

• Hadamard: |ψ1⟩ = H⊗n(|0⟩)⊗ |0⟩ =
(

1√
2n

∑2n−1
k=0 |k⟩

)
⊗ |0⟩

• Oracle: |ψ2⟩ = 1
2n/2

∑2n−1
k=0 |k⟩ ⊗

∣∣ak〉
n n n

n n n

|0⟩

|0⟩

H⊗n

Of

F̂−1

• Measure of the first register:
∣∣∣ 2nℓr 〉

• Allows (often) to get r (or a factor of r)

23



Computation

• After measuring the second register
∣∣ψ̄3

〉
=
∑2n/r−1

α=0

∣∣αr + β0
〉

• Action of F̂−1:

∣∣ψ̄4

〉
= F̂−1

∣∣∣ψ̂3

〉
=

2n/r−1∑
α=0

F̂−1
∣∣αr + β0

〉

=
∑
α

2n−1∑
j=0

e−
2iπ(αr+β0)j

2n
∣∣j〉 =∑

j

0 or 1︷ ︸︸ ︷(∑
α

e−2iπ αj
2n/r

)
e−2iπ

β0 j
2n
∣∣j〉

=
∑

j with j/(2n/r) integer

e−2iπ
β0 j
2n |j⟩ =

r−1∑
ℓ=0

e−2iπβ0
ℓ
r

∣∣∣∣2nℓr
〉

• Measure the first register:
∣∣∣ 2nℓr 〉, for ℓ ∈ {0, 1, . . . , r − 1}

• We get m = 2nℓ
r for one of the states

∣∣∣ 2nℓr 〉
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Measure the first register

m = 2nℓ
r integer with n known and ℓ unknown

• Divide m by 2n to obtain the rational x = m
2n = ℓ

r

• If x ∈ Z, we get no information on r , and we redo the quantum

circuit

• If gcd(ℓ, r) = 1, then ℓ
r is irreducible and we get r .

• If gcd(ℓ, r) ̸= 1, then x = m
2n = ℓ′

r ′ =
ℓ
r and we get r ′ a factor of r .

We redo the computation with a′ = ar
′
which is of period r/r ′.
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Continued Fractions

Definition

• a0 +
1

a1+
1

a2+
1

...+ 1
an

, noted [a0, a1, . . . , an]

• E.g., [5, 2, 1, 4] = 5 + 1
2+ 1

1+ 1
4

= 5.3571428 . . .

• [5] = 5, [5, 2] = 11
2 = 5.5, [5, 2, 1] = 16

3 = 5.33 . . .

Good Approximation by continued fractions

• π = 3.14159 . . . ≈ 314
100 (denominator is large)

• 314
100 = 3 + 14

100 = 3 + 1
100
14

= 3 + 1
7+ 2

14

= 3 + 1
7+ 1

7

= [3, 7, 7]

• [3, 7] = 3 + 1
7 = 22

7 = 3.1428

• [3, 7, 15, 1] = 355
113 = 3.14159292 . . . (same order with 6 exact values

instead of 2)
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Example Shor with N = 21

• N = 21, a = 2, 2n = 512 = 29

• Circuit outputs |427⟩, so x = 427
512

• 427
512 ≈ 4

5 so order 5 ??

• 427
512 = [0, 1, 5, 42, 2] and [0, 1] = 1, [0, 1, 5] = 5

6 , [0, 1, 5, 42] =
211
253

• We keep the best fraction whose denominator is ≤ N and it gives r

or a fraction of r

Shor algorithm with arbitrary order

• N = 21, a = 2, 2n = 512 = 29 ≥ N2

• |ψ0⟩ = |0⟩ ⊗ |0⟩
• |ψ1⟩ =

∑r−1
k=0 |k⟩ ⊗ |0⟩

• |ψ2⟩ =
∑r−1

k=0 |k⟩ ⊗
∣∣ak mod N

〉
• r = 6 and 2nℓ

r ̸∈ Z
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Example

The first two lines have 86 terms and 85 in the others

• The state |ψ2⟩ is not rectangular:

|ψ2⟩ =
1√
512

(|0⟩+ |6⟩+ . . .+ |504⟩+ |510⟩) |1⟩

+
1√
512

(|1⟩+ |7⟩+ . . .+ |505⟩+ |511⟩) |2⟩

+
1√
512

(|2⟩+ |8⟩+ . . .+ |506⟩) |4⟩

+ . . .

+
1√
512

(|5⟩+ |11⟩+ . . .+ |509⟩) |11⟩

• measure the second register |2⟩: |ψ3⟩ = |1⟩+ |7⟩+ . . .+ |511⟩
• |ψ4⟩ = F̂−1 |ψ3⟩ =

∑85
α=0 F̂

−1 |6α+ 1⟩

• |ψ4⟩ =
∑511

j=0

(∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉
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Example Shor with arbitrary order

|ψ4⟩ = 1√
512

∑511
j=0

(
1√
86

∑85
α=0 e

−2iπ 6αj
512

)
e−2iπ j

512

∣∣j〉
Now, Σ(j) = 1√

86

∑85
α=0 e

−2iπ 6αj
512 does not take only 0 /1 values.

If we measure the first register, we get |j⟩ with probability |Σ(j)|2.

The proba. are ≈ 0, except when j ≈ 2nℓ
r : for ℓ = 5, 512×5

6 = 426.66.
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Hardy-Wright Theorem

Theorem
Let x ∈ R and a rational p

q such that

∣∣x − p

q

∣∣ < 1

2q2
.

Then, p
q is obtained as one of the continued fractions of x .

Let m the closest integer to 2nℓ
r . So, |m − 2nℓ

r | < 1
2 .

If x = m
2n , we get |x − ℓ

r | <
1

2n+1 .

As we set 2n ≥ N2 ≥ r2, |x − ℓ
r | <

1
2r2 .

Using Theorem, we obtain ℓ
r as one of the continued fractions of x .

30



Hardy-Wright Theorem

Theorem
Let x ∈ R and a rational p

q such that

∣∣x − p

q

∣∣ < 1

2q2
.

Then, p
q is obtained as one of the continued fractions of x .

Let m the closest integer to 2nℓ
r . So, |m − 2nℓ

r | < 1
2 .

If x = m
2n , we get |x − ℓ

r | <
1

2n+1 .

As we set 2n ≥ N2 ≥ r2, |x − ℓ
r | <

1
2r2 .

Using Theorem, we obtain ℓ
r as one of the continued fractions of x .

30



Discrete Fourier Transform



Rewritting the Discrete Fourier Transform

Definition

• F̂ |k⟩ = 1√
2n

∑2n−1
j=0 e2iπ

k·j
2n
∣∣j〉

• Factorization: F̂ |k⟩ = 1√
2n

∏n
ℓ=1

(
|0⟩+ e2iπ

k

2ℓ |1⟩
)

• E.g. n = 1, F̂ |k⟩ = 1√
2

(
|0⟩+ e2iπ

k
2 |1⟩

)
.

Hadamard Transform: F̂ |0⟩ = 1√
2
(|0⟩+ |1⟩), F̂ |1⟩ = 1√

2
(|0⟩ − |1⟩).

Proof

• For each |j⟩, show that the coefficient in both expressions is the same

• Write 0 ≤ j < 2n in binary: j =
∑n−1

ℓ=0 jℓ2
ℓ with jℓ = 0 or 1.

For j = jn−1 . . . j1.j0,
∣∣j〉 = |jn−1 . . . j2.j1.j0⟩ = |jn−1⟩ . . . |j2⟩ . |j1⟩ . |j0⟩.

• For each term of the product, we take either |0⟩ or e2iπ
k

2ℓ |1⟩.
If we choose |0⟩ every times, we get |0⟩. In the first term, if we

choose |0⟩,
∣∣j〉 = |0...⟩, while if we choose e2iπ

k

2ℓ |1⟩,
∣∣j〉 = |1...⟩.

• We can summarize both cases as e2iπ
kjn−1

2ℓ |jn−1⟩
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Rewritting the Discrete Fourier Transform

• We can summarize these 2 cases as e2iπ
kjn−1

2ℓ |jn−1⟩

• More generally, the ℓ term can be written as e2iπ
kjn−ℓ

2ℓ |jn−ℓ⟩, and

n∏
ℓ=1

(
e2iπ

kjn−ℓ

2ℓ |jn−ℓ⟩
)

=

( n∏
ℓ=1

e2iπ
kjn−ℓ

2ℓ

)
|jn−1 . . . j2.j1.j0⟩

= e2iπk·
∑n

ℓ=1

jn−ℓ

2ℓ
∣∣j〉

= e2iπ
k
2n ·

∑n
ℓ=1 jn−ℓ2

n−ℓ ∣∣j〉
= e2iπ

k
2n ·

∑n−1

ℓ′=0
jℓ′2

ℓ′ ∣∣j〉
= e2iπ

k
2n ·j
∣∣j〉

• The coefficient of
∣∣j〉 is the same as the one of the DFT. Since it is

true for all j , the two expressions are equivalent
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Variant

We can write binary notation for 0 ≤ x < 1:

0..j1.j2 . . . jn =
j1
2
+

j2
22

+ . . .
jn
2n

=
n∑

ℓ=1

jℓ
2ℓ

0..j1.j2 . . . jn: the dots separate the bits, and .. represent 0.abc

E.g., x = 0.625 is written x = 0..1.0.1 since 0.625 = 1
2 + 0

4 + 1
8

Corollary
If |k⟩ = |kn−1 . . . k1.k0⟩,

F̂ |k⟩ = 1√
2n

n∏
ℓ=1

(
|0⟩+ e2iπ0..kℓ−1...k0 |1⟩

)
.

F̂ |k⟩ = 1√
2n

(
|0⟩+ e2iπ0..k0 |1⟩

)
⊗
(
|0⟩+ e2iπ0..k1.k0 |1⟩

)
⊗ · · · ⊗

(
|0⟩+

e2iπ0..kn−1···k1.k0 |1⟩
)
.
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Variant

Corollary
If |k⟩ = |kn−1 . . . k1.k0⟩, F̂ |k⟩ = 1√

2n
⊗n

ℓ=1

(
|0⟩+ e2iπ0..kℓ−1...k0 |1⟩

)
.

Proof
For any integer p, e2iπp = 1.

k

2ℓ
=

kn−12
n−1 + . . .+ k22

2 + k12 + k0
2ℓ

= kn−12
n−1−ℓ + . . .+ kℓ︸ ︷︷ ︸
integer part

+
kℓ−1

2
+ . . .+

k0
2ℓ︸ ︷︷ ︸

fractional part

= p + 0..kℓ−1 . . . k0

So, e2iπ
k

2ℓ = e2iπ(p+0..kℓ−1...k0).

Example

• for ℓ = 1, e2iπ
k
2=e2iπ0..k0

• for ℓ = 2, e2iπ
k
4=e2iπ0..k1.k0

and for ℓ = n, e2iπ
k
2n =e2iπ0..kn−1...k1.k0
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• for ℓ = 2, e2iπ
k
4=e2iπ0..k1.k0

and for ℓ = n, e2iπ
k
2n =e2iπ0..kn−1...k1.k0
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Quantum Circuit of the Discrete Fourier Transform

Gate Rk and controlled

• Rk =

(
1 0

0 e
2iπ

2k

)
Rk

• R0 =

(
1 0

0 1

)
, R1 =

(
1 0

0 −1

)
, R2 =

(
1 0

0 i

)
, R3 =

(
1 0

0 e
iπ
4

)

• n = 1: ψ0 = H |k0⟩: |ψ0⟩ = |0⟩+ |1⟩ if k0 = 0, |0⟩ − |1⟩ if k0 = 1

We get |ψ0⟩ = |0⟩+ e2iπ0..k0 |1⟩ as e2iπ0..1 = e iπ = −1
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Quantum Circuit of the Discrete Fourier Transform

Case n = 2

•

|k0⟩ |ψ0⟩

|k1⟩ |ψ1⟩

H

H R2

• |ψ0⟩ is the same as in the case n = 1.

• If |k0⟩ = |0⟩, |ψ1⟩ = H |k1⟩ = |0⟩+ e2iπ
k1
2 |1⟩ (R2 not active)

• If |k0⟩ = |1⟩, |ψ1⟩ = R2(H |k1⟩) = R2(|0⟩+ e2iπ
k1
2 |1⟩)

|ψ1⟩ = R2 |0⟩+ e2iπ
k1
2 R2 |1⟩ = |0⟩+ e2iπ

k1
2 · e2iπ 1

4 |1⟩
• |ψ1⟩ = |0⟩+ e2iπ

k1
2 · e2iπ

k0
4 |1⟩ and e2iπ

k1
2 · e2iπ

k0
4 = e2iπ0..k1.k0 .
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Conclusion

Generalization

• HSP (Hidden Subgroup Problem): Let G a group and H a

subgroup. The function f is constant on each coset of H, find H

• Shor’s algorithm is for subgroup H of G = Z/φ(N)Z and H = ⟨r⟩
• Simon’s algorithm: G = Fn

2 and H = {0, s}
• Kitaev: any Abelian Group G

• Non-abelian group: Kuperberg and Relation to Lattice problems

New Results on factorization

• Shor algorithm: O(n) qubits and O(n2 log n) gates

• Regev algorithm [R23]: O(n3/2) qubits and O(n3/2 log n) gates

RV24 O(n log n)) qubits and O(n3/2 log n) gates

CFS24 o(n) qubits: RSA-2048, with 1730 qubits and O(n3) gates

For DL in Fp with a 2024-bit prime and 224-bit DL, 684 qubits
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Conclusion

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy

qubits by Gidney and Eker̊a

Further Reading

1. Quantum Computation and Quantum Information, Nielsen and

Chuang.

2. Lecture Notes on Quantum Algorithms, A. Childs,

https://www.cs.umd.edu/~amchilds/qa/qa.pdf
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