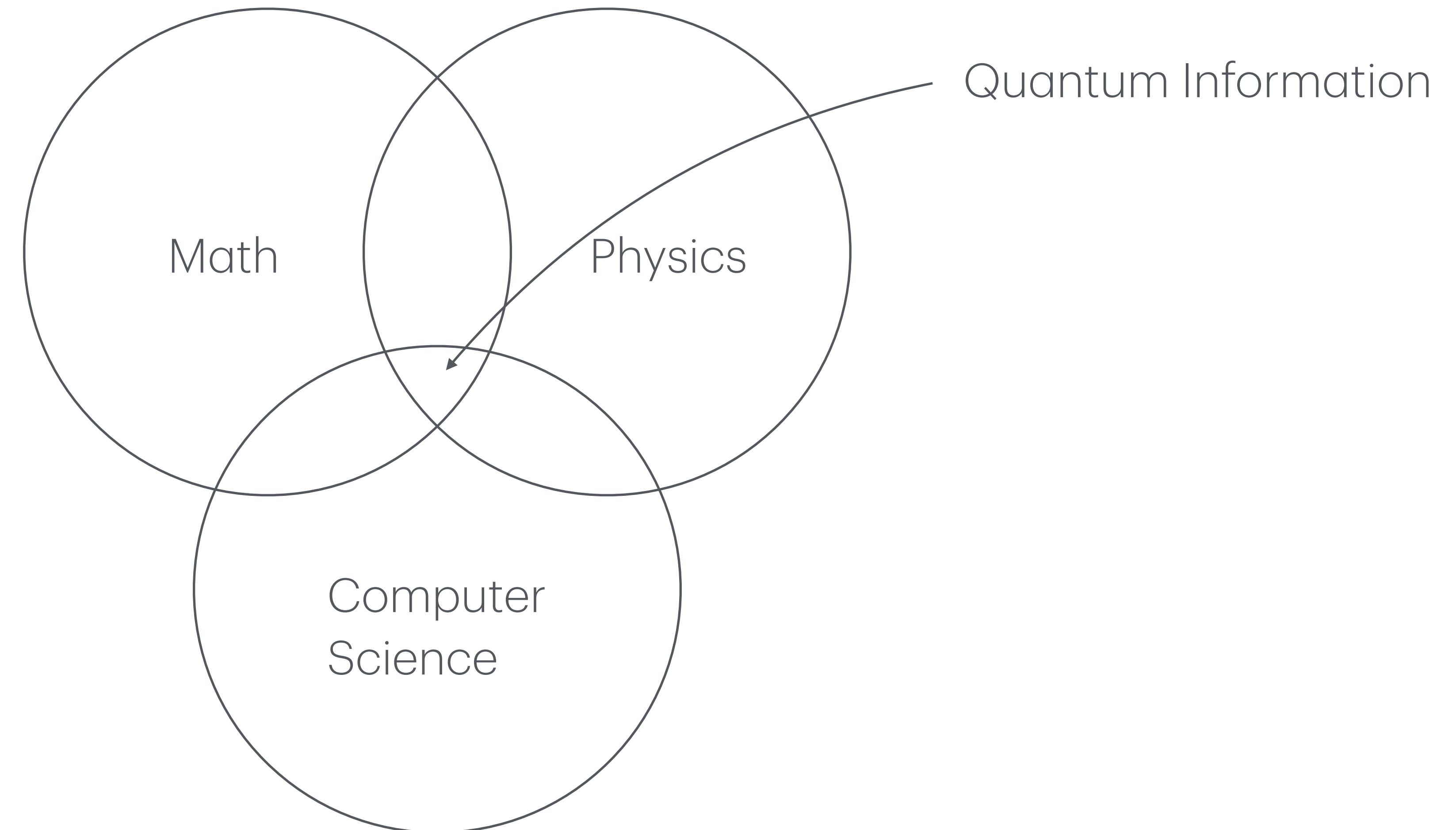


# Introduction to Quantum Information

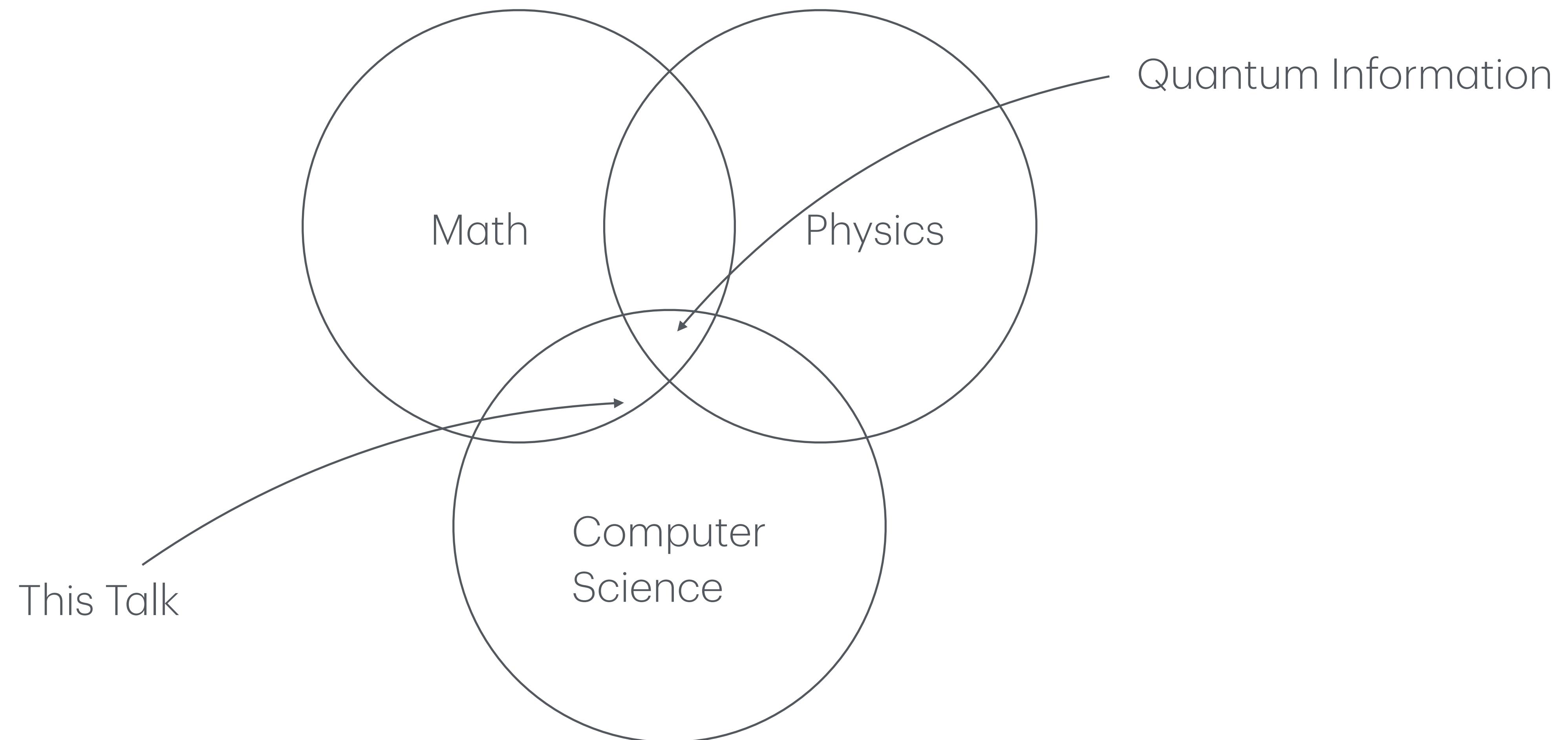
Giulio Malavolta

Bocconi University

# Quantum Information



# Quantum Information



# Linear Algebra Review

# Linear Algebra Review

- A complex number  $\alpha \in \mathbb{C}$  is expressed as

$$\alpha = a + ib$$

$$a, b \in \mathbb{R}$$

# Linear Algebra Review

- A complex number  $\alpha \in \mathbb{C}$  is expressed as

$$\alpha = a + ib \quad a, b \in \mathbb{R}$$

- Conjugate:  $\alpha^* = a - ib$

# Linear Algebra Review

- A complex number  $\alpha \in \mathbb{C}$  is expressed as

$$\alpha = a + ib \quad a, b \in \mathbb{R}$$

- Conjugate:  $\alpha^* = a - ib$

- Norm:  $|\alpha| = \sqrt{a^2 + b^2}$

# Linear Algebra Review

- A complex number  $\alpha \in \mathbb{C}$  is expressed as

$$\alpha = a + ib \quad a, b \in \mathbb{R}$$

- Conjugate:  $\alpha^* = a - ib$

- Norm:  $|\alpha| = \sqrt{a^2 + b^2}$

- Inner product:

$$\langle \phi, \psi \rangle = \sum_i \phi_i^* \cdot \psi_i \quad \phi, \psi \in \mathbb{C}^n$$

# Linear Algebra Review

- A complex number  $\alpha \in \mathbb{C}$  is expressed as

$$\alpha = a + ib \quad a, b \in \mathbb{R}$$

- Conjugate:  $\alpha^* = a - ib$

- Norm:  $|\alpha| = \sqrt{a^2 + b^2}$

- Inner product:

$$\langle \phi, \psi \rangle = \sum_i \phi_i^* \cdot \psi_i \quad \phi, \psi \in \mathbb{C}^n$$

- Matrix conjugate:  $M_{i,j}^\dagger = M_{j,i}^*$  where  $M \in \mathbb{C}^{n \times n}$

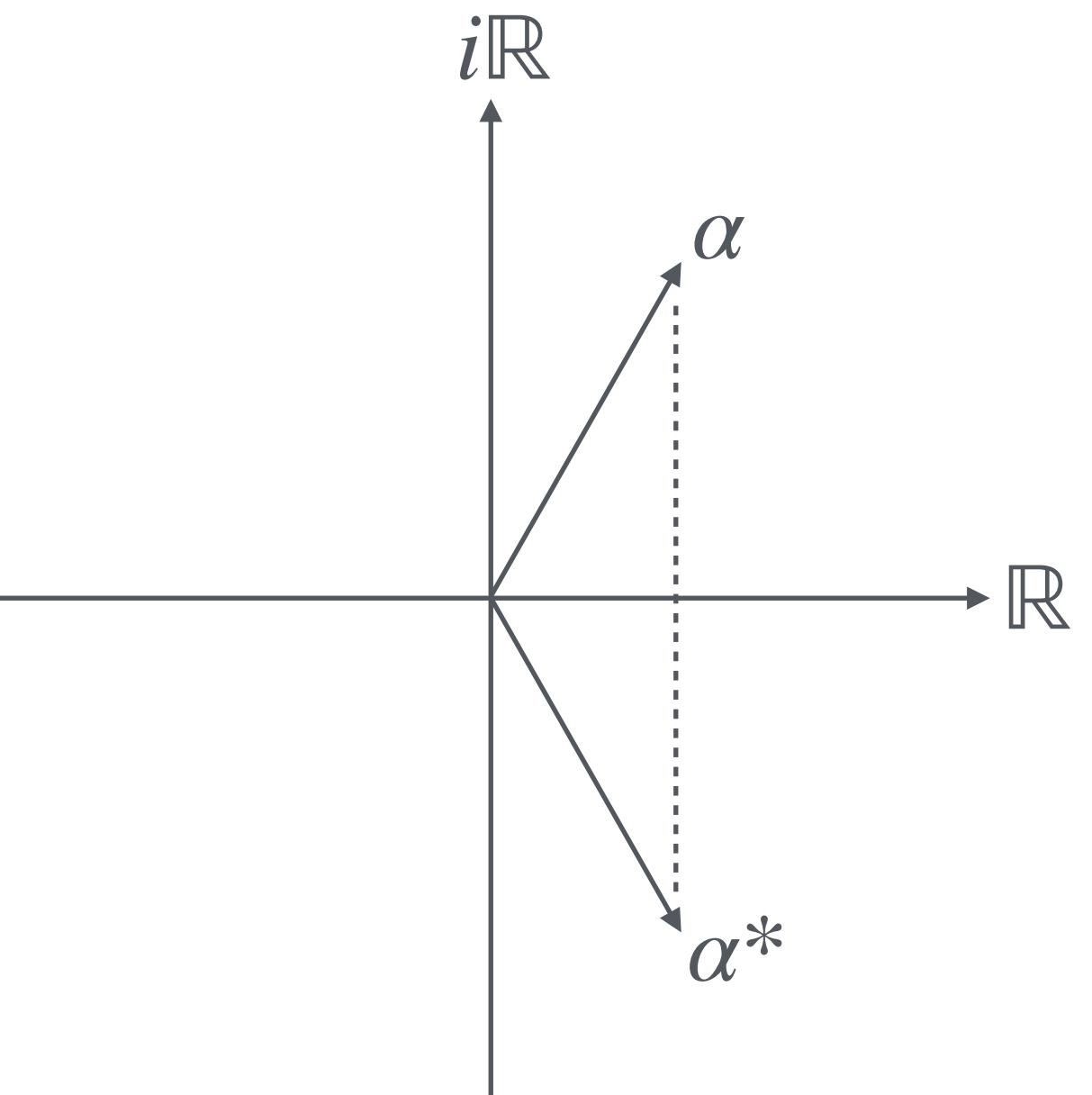
# Linear Algebra Review

- A complex number  $\alpha \in \mathbb{C}$  is expressed as

$$\alpha = a + ib$$

$$a, b \in \mathbb{R}$$

- Conjugate:  $\alpha^* = a - ib$
- Norm:  $|\alpha| = \sqrt{a^2 + b^2}$



The Basic Unit of Information

# The Basic Unit of Information

# The Basic Unit of Information

- A **qubit** is a unit vector in  $\mathbb{C}^2$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

# The Basic Unit of Information

- A **qubit** is a unit vector in  $\mathbb{C}^2$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Without loss of generality, I can write a qubit as:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\begin{aligned} \alpha, \beta \in \mathbb{C} \\ |\alpha|^2 + |\beta|^2 = 1 \end{aligned}$$

# The Basic Unit of Information

- A **qubit** is a unit vector in  $\mathbb{C}^2$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Without loss of generality, I can write a qubit as:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\begin{aligned} \alpha, \beta \in \mathbb{C} \\ |\alpha|^2 + |\beta|^2 = 1 \end{aligned}$$

- If both **amplitudes** are non-zero, then we say that the qubit is in superposition

# The Basic Unit of Information

# The Basic Unit of Information

- A qubit is a unit vector in  $\mathbb{C}^2$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\begin{aligned}\alpha, \beta \in \mathbb{C} \\ |\alpha|^2 + |\beta|^2 = 1\end{aligned}$$

# The Basic Unit of Information

- A qubit is a unit vector in  $\mathbb{C}^2$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\begin{aligned}\alpha, \beta \in \mathbb{C} \\ |\alpha|^2 + |\beta|^2 = 1\end{aligned}$$

- A bit is a variable  $b \in \{0,1\}$

# The Basic Unit of Information

- A qubit is a unit vector in  $\mathbb{C}^2$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\begin{aligned}\alpha, \beta \in \mathbb{C} \\ |\alpha|^2 + |\beta|^2 = 1\end{aligned}$$

- A bit is a variable  $b \in \{0,1\}$
- A binary random variable  $X$  is 0 with probability  $p$  and 1 with probability  $1-p$

$$X = \alpha|0\rangle + \beta|1\rangle$$

$$\begin{aligned}\alpha, \beta \in \mathbb{R}^+ \\ \alpha + \beta = 1\end{aligned}$$

# The Basic Unit of Information

- A qubit is a unit vector in  $\mathbb{C}^2$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$\begin{aligned}\alpha, \beta \in \mathbb{C} \\ |\alpha|^2 + |\beta|^2 = 1\end{aligned}$$

- A bit is a variable  $b \in \{0,1\}$
- A binary random variable  $X$  is 0 with probability  $p$  and 1 with probability  $1-p$

$$X = \alpha|0\rangle + \beta|1\rangle$$

$$\|X\|_1 = 1$$

$$\begin{aligned}\alpha, \beta \in \mathbb{R}^+ \\ \alpha + \beta = 1\end{aligned}$$

# The Basic Unit of Information

# The Basic Unit of Information

- Take two qubits

$$|\psi_0\rangle = \alpha_0 |0\rangle + \beta_0 |1\rangle$$

$$|\psi_1\rangle = \alpha_1 |0\rangle + \beta_1 |1\rangle$$

# The Basic Unit of Information

- Take two qubits

$$|\psi_0\rangle = \alpha_0 |0\rangle + \beta_0 |1\rangle$$

$$|\psi_1\rangle = \alpha_1 |0\rangle + \beta_1 |1\rangle$$

- To describe the joint state of the system we need to expand the space to  $\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$

# The Basic Unit of Information

- Take two qubits

$$|\psi_0\rangle = \alpha_0|0\rangle + \beta_0|1\rangle$$

$$|\psi_1\rangle = \alpha_1|0\rangle + \beta_1|1\rangle$$

- To describe the joint state of the system we need to expand the space to  $\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$
- The description of the joint state is obtained by:

$$|\psi_0\rangle \otimes |\psi_1\rangle = |\psi_0\rangle |\psi_1\rangle = |\psi_0, \psi_1\rangle$$

# The Basic Unit of Information

- Take two qubits

$$|\psi_0\rangle = \alpha_0|0\rangle + \beta_0|1\rangle$$

$$|\psi_1\rangle = \alpha_1|0\rangle + \beta_1|1\rangle$$

- To describe the joint state of the system we need to expand the space to  $\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$
- The description of the joint state is obtained by:

$$|\psi_0\rangle \otimes |\psi_1\rangle = |\psi_0\rangle |\psi_1\rangle = |\psi_0, \psi_1\rangle$$

- We can think of a qubit as being physically located in a **register** and the act of adjoining two registers is equivalent to taking the *tensor product* of the two states

# The Basic Unit of Information

- Take two qubits

$$|\psi_0\rangle = \alpha_0|0\rangle + \beta_0|1\rangle$$

$$|\psi_1\rangle = \alpha_1|0\rangle + \beta_1|1\rangle$$

- To describe the joint state of the system we need to expand the space to  $\mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$
- The description of the joint state is obtained by:

$$|\psi_0\rangle \otimes |\psi_1\rangle = |\psi_0\rangle |\psi_1\rangle = |\psi_0, \psi_1\rangle$$

- We can think of a qubit as being physically located in a **register** and the act of adjoining two registers is equivalent to taking the *tensor product* of the two states
- Of course nothing stops us from introducing more qubits to the system...

# Quantum States

# Quantum States

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space  $\mathcal{H} \cong \mathbb{C}^N$

# Quantum States

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space  $\mathcal{H} \cong \mathbb{C}^N$
- For instance an  $n$ -qubit state lives in an  $N = 2^n$  dimensional space

# Quantum States

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space  $\mathcal{H} \cong \mathbb{C}^N$
- For instance an  $n$ -qubit state lives in an  $N = 2^n$  dimensional space
- To represent such vector, we can use any basis of  $\mathbb{C}^N$ , the canonical choice is the standard/computational basis:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \dots \quad |N-1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

# Quantum States

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space  $\mathcal{H} \cong \mathbb{C}^N$
- For instance an  $n$ -qubit state lives in an  $N = 2^n$  dimensional space
- To represent such vector, we can use any basis of  $\mathbb{C}^N$ , the canonical choice is the standard/computational basis:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \dots \quad |N-1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

- Any (pure) quantum state can be written as:

$$|\psi\rangle = \sum_x \alpha_x |x\rangle$$

$$\sum_x |\alpha_x|^2 = 1$$

# Entanglement

# Entanglement

- We have just seen that we can always compose quantum states in a joint system by taking their tensor product

# Entanglement

- We have just seen that we can always compose quantum states in a joint system by taking their tensor product
  - The result is another quantum state in a larger Hilbert space

# Entanglement

- We have just seen that we can always compose quantum states in a joint system by taking their tensor product
  - The result is another quantum state in a larger Hilbert space
  - What about the reverse operation?

# Entanglement

- We have just seen that we can always compose quantum states in a joint system by taking their tensor product
  - The result is another quantum state in a larger Hilbert space
- What about the reverse operation?
  - It turns out that we cannot always decompose a quantum state into a tensor product of states in smaller Hilbert spaces

# Entanglement

- We have just seen that we can always compose quantum states in a joint system by taking their tensor product
  - The result is another quantum state in a larger Hilbert space
- What about the reverse operation?
  - It turns out that we cannot always decompose a quantum state into a tensor product of states in smaller Hilbert spaces
  - States that cannot be decomposed into tensors are called **entangled**

# Examples

# Examples

- Some examples of single-qubit states:

# Examples

- Some examples of single-qubit states:

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

# Examples

- Some examples of single-qubit states:

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

# Examples

- Some examples of single-qubit states:

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

- Some examples of two-qubit states:

# Examples

- Some examples of single-qubit states:

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

- Some examples of two-qubit states:

$$\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) = |+\rangle \otimes |+\rangle$$

# Examples

- Some examples of single-qubit states:

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

- Some examples of two-qubit states:

$$\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) = |+\rangle \otimes |+\rangle$$

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |EPR\rangle$$

# Some Remarks on Notation

# Some Remarks on Notation

- The notation  $|\psi\rangle$  for a column vector is called a “ket”

# Some Remarks on Notation

- The notation  $|\psi\rangle$  for a column vector is called a “ket”
- Its conjugate transpose is denoted by the “bra”  $\langle\psi|$

# Some Remarks on Notation

- The notation  $|\psi\rangle$  for a column vector is called a “ket”
- Its conjugate transpose is denoted by the “bra”  $\langle\psi|$
- So the “bra-ket” is actually the inner product

$$\langle\psi|\psi\rangle = \sum_i \psi_i^* \cdot \psi_i = 1$$

# Some Remarks on Notation

- The notation  $|\psi\rangle$  for a column vector is called a “ket”
- Its conjugate transpose is denoted by the “bra”  $\langle\psi|$
- So the “bra-ket” is actually the inner product

$$\langle\psi|\psi\rangle = \sum_i \psi_i^* \cdot \psi_i = 1$$

- Besides “pure” quantum states, one can also consider (classical) probability distributions over quantum states

# Some Remarks on Notation

- The notation  $|\psi\rangle$  for a column vector is called a “ket”
- Its conjugate transpose is denoted by the “bra”  $\langle\psi|$
- So the “bra-ket” is actually the inner product

$$\langle\psi|\psi\rangle = \sum_i \psi_i^* \cdot \psi_i = 1$$

- Besides “pure” quantum states, one can also consider (classical) probability distributions over quantum states
  - This is called a “mixed” state

# Manipulating Quantum States

# The Schrödinger Equation

# The Schrödinger Equation

- Similarly to how we operate on classical variables, we can also manipulate quantum states

# The Schrödinger Equation

- Similarly to how we operate on classical variables, we can also manipulate quantum states
  - The rules are different though, are we need to define what are the legal operations

# The Schrödinger Equation

- Similarly to how we operate on classical variables, we can also manipulate quantum states
  - The rules are different though, are we need to define what are the legal operations
- POSTULATE #2: Quantum states evolve according to the Schrödinger equation

$$|\psi_t\rangle = e^{-iHt} |\psi_0\rangle$$

# The Schrödinger Equation

- Similarly to how we operate on classical variables, we can also manipulate quantum states
  - The rules are different though, are we need to define what are the legal operations
- POSTULATE #2: Quantum states evolve according to the Schrödinger equation

$$|\psi_t\rangle = e^{-iHt} |\psi_0\rangle$$

- $H$  is a Hermitian matrix (called the Hamiltonian) describing the evolution of the system

# The Schrödinger Equation

- Similarly to how we operate on classical variables, we can also manipulate quantum states
  - The rules are different though, are we need to define what are the legal operations
- POSTULATE #2: Quantum states evolve according to the Schrödinger equation

$$|\psi_t\rangle = e^{-iHt} |\psi_0\rangle$$

- $H$  is a Hermitian matrix (called the Hamiltonian) describing the evolution of the system
- For convenience, we have set the Planck constant to 1

# Unitary Evolution

# Unitary Evolution

- From a computing perspective, working with the Schrödinger equation is cumbersome

# Unitary Evolution

- From a computing perspective, working with the Schrödinger equation is cumbersome
  - By “discretizing” the passage of time, we can restate the axiom in a more convenient (but completely equivalent) form

# Unitary Evolution

- From a computing perspective, working with the Schrödinger equation is cumbersome
  - By “discretizing” the passage of time, we can restate the axiom in a more convenient (but completely equivalent) form
- POSTULATE #2: Quantum states evolve according to unitary operations

# Unitary Evolution

- From a computing perspective, working with the Schrödinger equation is cumbersome
  - By “discretizing” the passage of time, we can restate the axiom in a more convenient (but completely equivalent) form
- POSTULATE #2: Quantum states evolve according to unitary operations
- A matrix  $U$  is unitary if  $U^\dagger U = I$

# Unitary Evolution

- From a computing perspective, working with the Schrödinger equation is cumbersome
  - By “discretizing” the passage of time, we can restate the axiom in a more convenient (but completely equivalent) form
- POSTULATE #2: Quantum states evolve according to unitary operations
  - A matrix  $U$  is unitary if  $U^\dagger U = I$
  - A unitary matrix preserves norms, and thus it maps quantum states to quantum states

$$\|U\psi\|^2 = \langle U\psi | U\psi \rangle = \langle \psi | U^\dagger U | \psi \rangle = \langle \psi | \psi \rangle = 1$$

# The Measurement

# The Measurement

- Sadly, we are classical beings (= not quantum states) so we need a way to read classical information off a quantum state

# The Measurement

- Sadly, we are classical beings (= not quantum states) so we need a way to read classical information off a quantum state
- Fortunately, quantum mechanics has a rule that determines what happens when a quantum state is measured by a classical observer

# The Measurement

- Sadly, we are classical beings (= not quantum states) so we need a way to read classical information off a quantum state
- Fortunately, quantum mechanics has a rule that determines what happens when a quantum state is *measured* by a classical observer
  - This connects quantum states to good-old classical probability distributions

# The Measurement

- Sadly, we are classical beings (= not quantum states) so we need a way to read classical information off a quantum state
- Fortunately, quantum mechanics has a rule that determines what happens when a quantum state is *measured* by a classical observer
  - This connects quantum states to good-old classical probability distributions
  - POSTULATE #3: The probability that measuring a quantum state yields a given result is described by the Born rule

# The Measurement

- Sadly, we are classical beings (= not quantum states) so we need a way to read classical information off a quantum state
- Fortunately, quantum mechanics has a rule that determines what happens when a quantum state is measured by a classical observer
  - This connects quantum states to good-old classical probability distributions
  - POSTULATE #3: The probability that measuring a quantum state yields a given result is described by the Born rule
  - Any measurement will also change the quantum state in some way

# The Measurement

- Sadly, we are classical beings (= not quantum states) so we need a way to read classical information off a quantum state
- Fortunately, quantum mechanics has a rule that determines what happens when a quantum state is *measured* by a classical observer
  - This connects quantum states to good-old classical probability distributions
  - POSTULATE #3: The probability that measuring a quantum state yields a given result is described by the Born rule
    - Any measurement will also change the quantum state in some way
    - There is no notion of passive observer

# The Born Rule (By Example)

# The Born Rule (By Example)

- Measuring a qubit  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$  yields

# The Born Rule (By Example)

- Measuring a qubit  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$  yields
  - 0 with probability  $|\alpha|^2$  and the state collapses to  $|0\rangle$

# The Born Rule (By Example)

- Measuring a qubit  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$  yields
  - 0 with probability  $|\alpha|^2$  and the state collapses to  $|0\rangle$
  - 1 with probability  $|\beta|^2$  and the state collapses to  $|1\rangle$

# The Born Rule (By Example)

- Measuring a qubit  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$  yields
  - 0 with probability  $|\alpha|^2$  and the state collapses to  $|0\rangle$
  - 1 with probability  $|\beta|^2$  and the state collapses to  $|1\rangle$
- Performing the measurement again, will yield the same output, since the state is now collapsed to a basis state (one of the amplitudes = 1)

# The Born Rule (By Example)

- Measuring a qubit  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$  yields
  - 0 with probability  $|\alpha|^2$  and the state collapses to  $|0\rangle$
  - 1 with probability  $|\beta|^2$  and the state collapses to  $|1\rangle$
- Performing the measurement again, will yield the same output, since the state is now collapsed to a basis state (one of the amplitudes = 1)
- By default, measurements are done in the computational basis and the outcomes are defined by their basis states

# The Born Rule (By Example)

- Measuring a qubit  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$  yields
  - 0 with probability  $|\alpha|^2$  and the state collapses to  $|0\rangle$
  - 1 with probability  $|\beta|^2$  and the state collapses to  $|1\rangle$
- Performing the measurement again, will yield the same output, since the state is now collapsed to a basis state (one of the amplitudes = 1)
- By default, measurements are done in the computational basis and the outcomes are defined by their basis states
- This is WLOG, since a basis change is a unitary operation

# The Born Rule (By Example)

# The Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states

# The Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
  - The residual state collapses to all basis states “consistent” with the outcome

# The Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
  - The residual state collapses to all basis states “consistent” with the outcome
  - Amplitudes are normalized so that it is still a unit

# The Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
  - The residual state collapses to all basis states “consistent” with the outcome
  - Amplitudes are normalized so that it is still a unit
- Measuring the first qubit of  $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$

# The Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
  - The residual state collapses to all basis states “consistent” with the outcome
  - Amplitudes are normalized so that it is still a unit
- Measuring the first qubit of  $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$ 
  - 0 with probability  $\|\alpha_{00}\|^2 + \|\alpha_{01}\|^2$

The state collapses to 
$$\frac{\alpha_{00}|00\rangle + \alpha_{01}|01\rangle}{\sqrt{\|\alpha_{00}\|^2 + \|\alpha_{01}\|^2}}$$

# The Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
  - The residual state collapses to all basis states “consistent” with the outcome
  - Amplitudes are normalized so that it is still a unit
- Measuring the first qubit of  $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$ 
  - 1 with probability  $\|\alpha_{10}\|^2 + \|\alpha_{11}\|^2$

The state collapses to 
$$\frac{\alpha_{10}|10\rangle + \alpha_{11}|11\rangle}{\sqrt{\|\alpha_{10}\|^2 + \|\alpha_{11}\|^2}}$$

# The No-Cloning Theorem

# The No-Cloning Theorem

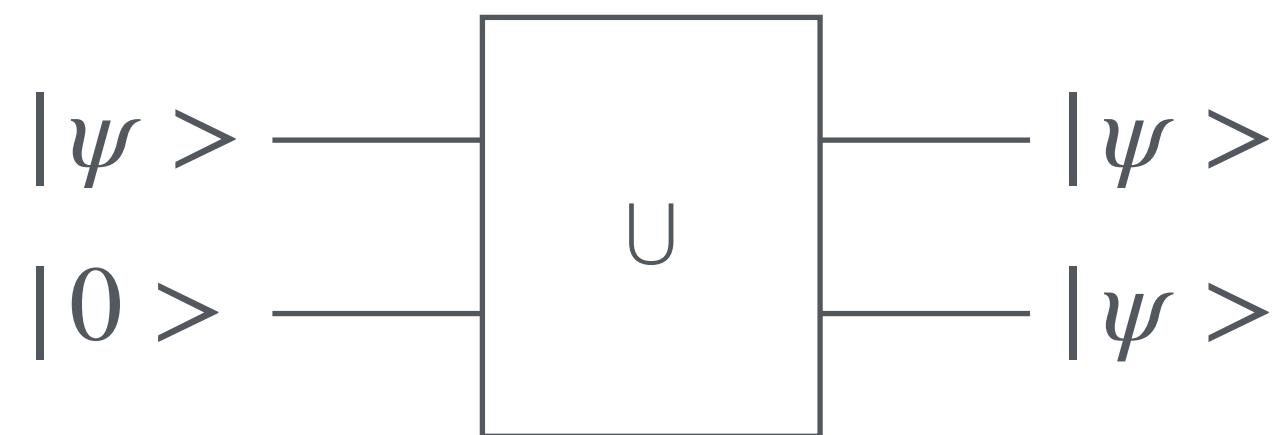
- An interesting consequence of the rules of quantum mechanics, is that it is in general impossible to create perfect copies of a given quantum state

# The No-Cloning Theorem

- An interesting consequence of the rules of quantum mechanics, is that it is in general impossible to create perfect copies of a given quantum state
  - This is different from classical information, where it is easy to copy variables (cmd + C)

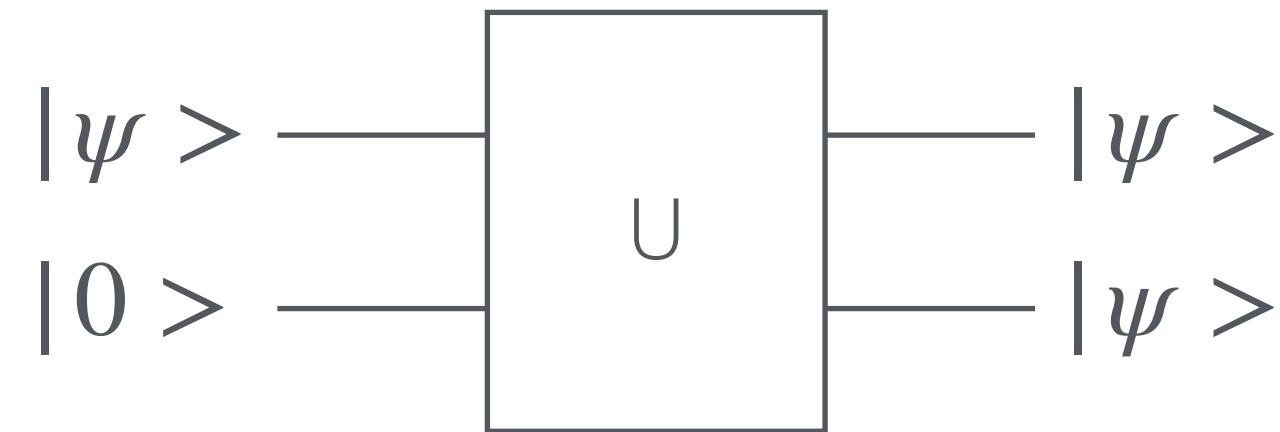
# The No-Cloning Theorem

- An interesting consequence of the rules of quantum mechanics, is that it is in general impossible to create perfect copies of a given quantum state
  - This is different from classical information, where it is easy to copy variables (cmd + C)
- To see why, consider an ideal cloner



# The No-Cloning Theorem

- An interesting consequence of the rules of quantum mechanics, is that it is in general impossible to create perfect copies of a given quantum state
  - This is different from classical information, where it is easy to copy variables (cmd + C)
- To see why, consider an ideal cloner



- This implements the mapping

$$\begin{aligned} U(\alpha|0> + \beta|1>) \otimes |0> &= (\alpha|0> + \beta|1>) \otimes (\alpha|0> + \beta|1>) \\ &= \alpha^2|00> + \alpha\beta|01> + \alpha\beta|10> + \beta^2|11> \end{aligned}$$

which is not linear, and in particular not unitary

# Computing with Quantum States

# Recap of the Axioms

# Recap of the Axioms

- Let us summarize what we have seen so far

# Recap of the Axioms

- Let us summarize what we have seen so far
  - POSTULATE #1: A quantum state is a unit vector in a Hilbert space  $\mathcal{H} \cong \mathbb{C}^N$

# Recap of the Axioms

- Let us summarize what we have seen so far
  - POSTULATE #1: A quantum state is a unit vector in a Hilbert space  $\mathcal{H} \cong \mathbb{C}^N$
  - POSTULATE #2: Quantum states evolve according to unitary operations

# Recap of the Axioms

- Let us summarize what we have seen so far
  - POSTULATE #1: A quantum state is a unit vector in a Hilbert space  $\mathcal{H} \cong \mathbb{C}^N$
  - POSTULATE #2: Quantum states evolve according to unitary operations
  - POSTULATE #3: The probability that measuring a quantum state yields a given result is described by the Born rule

# Recap of the Axioms

- Let us summarize what we have seen so far
  - POSTULATE #1: A quantum state is a unit vector in a Hilbert space  $\mathcal{H} \cong \mathbb{C}^N$
  - POSTULATE #2: Quantum states evolve according to unitary operations
  - POSTULATE #3: The probability that measuring a quantum state yields a given result is described by the Born rule
- Now that we know the rules, let us see how/what we can compute in this model

# Warm Up: Computing Classical Functions

# Warm Up: Computing Classical Functions

- Say that we want to compute a function  $f: \{0,1\}^n \rightarrow \{0,1\}^n$  using the axioms of quantum mechanics

# Warm Up: Computing Classical Functions

- Say that we want to compute a function  $f: \{0,1\}^n \rightarrow \{0,1\}^n$  using the axioms of quantum mechanics
- In quantum terms, we want to find a unitary  $U$  such that

$$U|x> = |f(x)>$$

# Warm Up: Computing Classical Functions

- Say that we want to compute a function  $f: \{0,1\}^n \rightarrow \{0,1\}^n$  using the axioms of quantum mechanics
- In quantum terms, we want to find a unitary  $U$  such that

$$U|x\rangle = |f(x)\rangle$$

- It can be shown that, in order for such a unitary to exist,  $f$  has to be a bijection

# Warm Up: Computing Classical Functions

- Say that we want to compute a function  $f: \{0,1\}^n \rightarrow \{0,1\}^n$  using the axioms of quantum mechanics
- In quantum terms, we want to find a unitary  $U$  such that

$$U|x\rangle = |f(x)\rangle$$

- It can be shown that, in order for such a unitary to exist,  $f$  has to be a bijection
  - If  $U$  has collisions, it is not full rank, and thus it does not have an inverse ( $\Rightarrow$  not unitary)

# Warm Up: Computing Classical Functions

- Say that we want to compute a function  $f: \{0,1\}^n \rightarrow \{0,1\}^n$  using the axioms of quantum mechanics
- In quantum terms, we want to find a unitary  $U$  such that

$$U|x\rangle = |f(x)\rangle$$

- It can be shown that, in order for such a unitary to exist,  $f$  has to be a bijection
  - If  $U$  has collisions, it is not full rank, and thus it does not have an inverse ( $\Rightarrow$  not unitary)
  - The converse is also true

# Warm Up: Computing Classical Functions

- Say that we want to compute a function  $f: \{0,1\}^n \rightarrow \{0,1\}^n$  using the axioms of quantum mechanics
- In quantum terms, we want to find a unitary  $U$  such that

$$U|x\rangle = |f(x)\rangle$$

- It can be shown that, in order for such a unitary to exist,  $f$  has to be a bijection
  - If  $U$  has collisions, it is not full rank, and thus it does not have an inverse ( $\Rightarrow$  not unitary)
  - The converse is also true
- So the question is, what kind of functions admit a “reversible” implementation?

# Warm Up: Computing Classical Functions

# Warm Up: Computing Classical Functions

- Clearly not all functions are reversible (think of the AND/XOR/OR functions) but some are (e.g. the NOT gate)

# Warm Up: Computing Classical Functions

- Clearly not all functions are reversible (think of the AND/XOR/OR functions) but some are (e.g. the NOT gate)
- However, all logical gates can be “compiled” into a reversible gate

# Warm Up: Computing Classical Functions

- Clearly not all functions are reversible (think of the AND/XOR/OR functions) but some are (e.g. the NOT gate)
- However, all logical gates can be “compiled” into a reversible gate
- The Toffoli gate is a reversible implementation of NAND (setting  $c = 1$ )

$$(a, b, c) \xrightarrow{\text{Toffoli}} (a, b, c \oplus a \wedge b)$$

the Toffoli gate it is its own inverse and thus can be implemented as a unitary

# Warm Up: Computing Classical Functions

- Clearly not all functions are reversible (think of the AND/XOR/OR functions) but some are (e.g. the NOT gate)
- However, all logical gates can be “compiled” into a reversible gate
- The Toffoli gate is a reversible implementation of NAND (setting  $c = 1$ )

$$(a, b, c) \xrightarrow{\text{Toffoli}} (a, b, c \oplus a \wedge b)$$

the Toffoli gate it is its own inverse and thus can be implemented as a unitary

- THEOREM: If  $f$  can be implemented using  $s$ -many NAND gates, it can be implemented using  $O(s)$ -many Toffoli gates

# Warm Up: Computing Classical Functions

# Warm Up: Computing Classical Functions

- COROLLARY: Any classical function  $f$  admits a unitary implementation  $U_f$  and furthermore if  $f$  is efficiently computable, then so is  $U_f$

$$U_f |x\rangle |0\dots 0\rangle = |x\rangle |f(x)\rangle$$

# Warm Up: Computing Classical Functions

- COROLLARY: Any classical function  $f$  admits a unitary implementation  $U_f$  and furthermore if  $f$  is efficiently computable, then so is  $U_f$

$$U_f |x\rangle |0\dots 0\rangle = |x\rangle |f(x)\rangle$$

- To make the transformation unitary, we had to add an extra state to the input  $|0\dots 0\rangle$  which is referred to as the **ancilla**

# Warm Up: Computing Classical Functions

- COROLLARY: Any classical function  $f$  admits a unitary implementation  $U_f$  and furthermore if  $f$  is efficiently computable, then so is  $U_f$

$$U_f |x\rangle |0\dots 0\rangle = |x\rangle |f(x)\rangle$$

- To make the transformation unitary, we had to add an extra state to the input  $|0\dots 0\rangle$  which is referred to as the **ancilla**
  - There is nothing special about  $0\dots 0$  you can use your favourite basis state and obtain

$$U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$$

# Warm Up: Computing Classical Functions

- COROLLARY: Any classical function  $f$  admits a unitary implementation  $U_f$  and furthermore if  $f$  is efficiently computable, then so is  $U_f$

$$U_f |x\rangle |0\dots 0\rangle = |x\rangle |f(x)\rangle$$

- To make the transformation unitary, we had to add an extra state to the input  $|0\dots 0\rangle$  which is referred to as the **ancilla**
  - There is nothing special about  $0\dots 0$  you can use your favourite basis state and obtain
- $U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$
- In complexity theory terms:  $P \subseteq BQP$

# Beyond Classical Functions?

# Beyond Classical Functions?

- One may be tempted to believe that no classical computer can simulate a quantum process

# Beyond Classical Functions?

- One may be tempted to believe that no classical computer can simulate a quantum process
- Sadly, this is not true. We know that  $\text{BQP} \subseteq \text{PSPACE}$

# Beyond Classical Functions?

- One may be tempted to believe that no classical computer can simulate a quantum process
- Sadly, this is not true. We know that  $\text{BQP} \subseteq \text{PSPACE}$ 
  - Proof Sketch: Keep track of the evolution of the amplitudes. To make the space polynomial, use Feynman path integrals!

# Beyond Classical Functions?

- One may be tempted to believe that no classical computer can simulate a quantum process
- Sadly, this is not true. We know that  $\text{BQP} \subseteq \text{PSPACE}$ 
  - Proof Sketch: Keep track of the evolution of the amplitudes. To make the space polynomial, use Feynman path integrals!
- The catch of course is that this simulation is *inefficient*

# Beyond Classical Functions?

- One may be tempted to believe that no classical computer can simulate a quantum process
- Sadly, this is not true. We know that  $\text{BQP} \subseteq \text{PSPACE}$ 
  - Proof Sketch: Keep track of the evolution of the amplitudes. To make the space polynomial, use Feynman path integrals!
- The catch of course is that this simulation is *inefficient*
- The question to ask is: Are there quantum computations that we cannot simulate *efficiently* with classical computers?

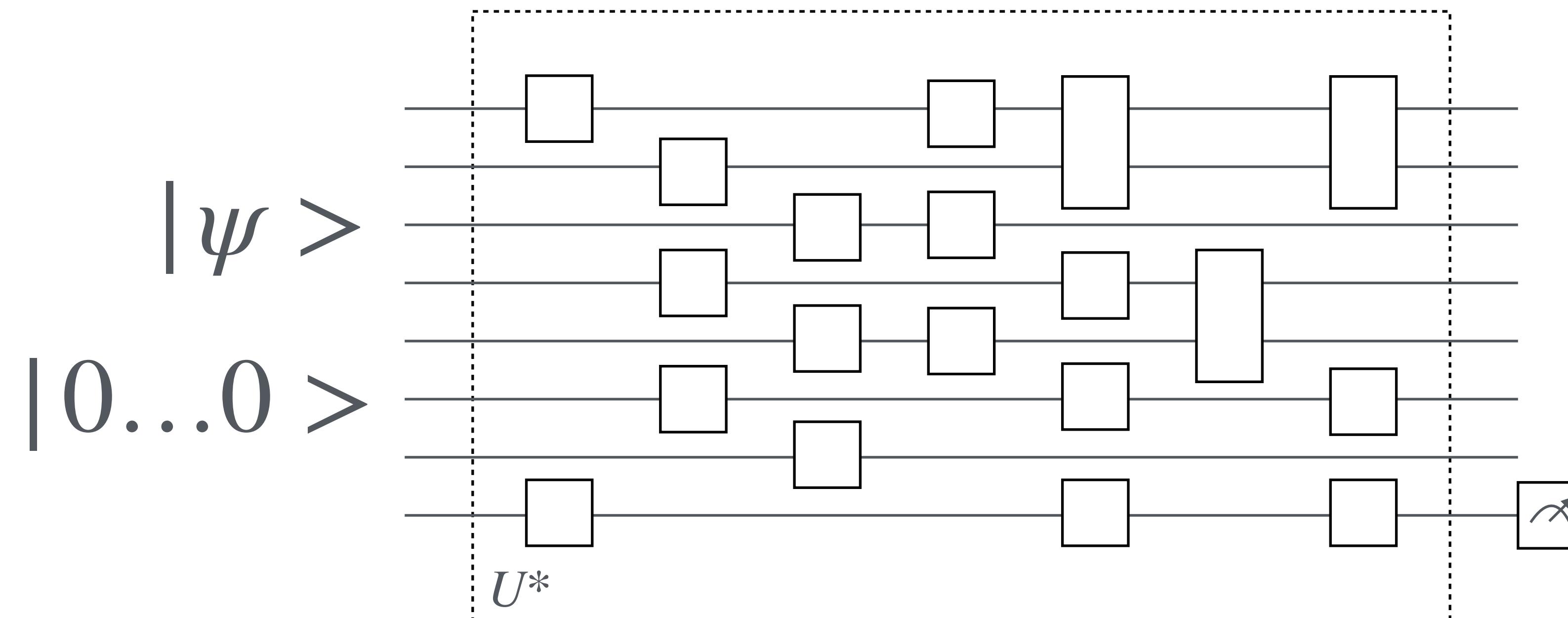
# Quantum Circuits

# Quantum Circuits

- Much like classical circuits, quantum circuits consist of collections of constant-size unitaries that together form a larger unitary

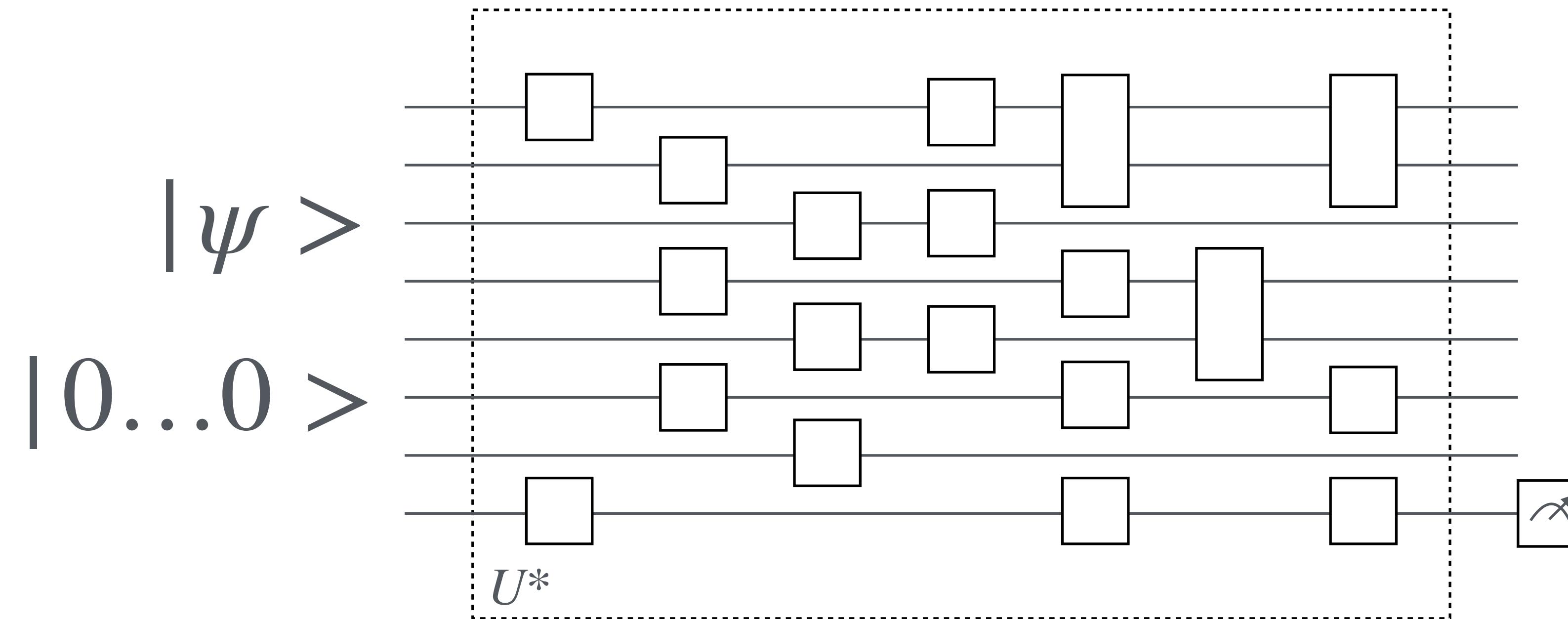
# Quantum Circuits

- Much like classical circuits, quantum circuits consist of collections of constant-size unitaries that together form a larger unitary



# Quantum Circuits

- Much like classical circuits, quantum circuits consist of collections of constant-size unitaries that together form a larger unitary



- Efficiency is measured in terms of number of gates (assuming each gate is a constant-size unitary)

# Quantum Circuits

# Quantum Circuits

- Also similarly to classical circuits, we can define sets of universal gates that allow us to approximate any unitary, with  $\epsilon$  precision

# Quantum Circuits

- Also similarly to classical circuits, we can define sets of universal gates that allow us to approximate any unitary, with  $\epsilon$  precision

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$H|b\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^b|1\rangle)$$

$$T|b\rangle = e^{b \cdot i\pi/4}|b\rangle$$

$$CNOT|a, b\rangle = |a, a \oplus b\rangle$$

# Quantum Circuits

- Also similarly to classical circuits, we can define sets of universal gates that allow us to approximate any unitary, with  $\epsilon$  precision

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$H|b\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^b|1\rangle)$$

$$T|b\rangle = e^{b \cdot i\pi/4}|b\rangle$$

$$CNOT|a, b\rangle = |a, a \oplus b\rangle$$

- The Solovay-Kitaev theorem bounds the number of gates (for any universal gate set) needed to approximate any (constant-dimension) unitary up to  $\epsilon$  precision, by  $\text{poly-log}(1/\epsilon)$

# Quantum Fourier Transform

# Quantum Fourier Transform

- A recurring example of an operation that we believe is *not* simulatable classically is the Quantum Fourier Transform (QFT)

# Quantum Fourier Transform

- A recurring example of an operation that we believe is *not* simulatable classically is the Quantum Fourier Transform (QFT)
- A special case of QFT ( $\mathbb{F}_2^n$ ) is easily implemented with the Hadamard transform

$$H^{\otimes n} |x\rangle = \frac{1}{\sqrt{N}} \sum_y (-1)^{x \cdot y} |y\rangle$$

# Quantum Fourier Transform

- A recurring example of an operation that we believe is *not* simulatable classically is the Quantum Fourier Transform (QFT)
- A special case of QFT ( $\mathbb{F}_2^n$ ) is easily implemented with the Hadamard transform

$$H^{\otimes n} |x\rangle = \frac{1}{\sqrt{N}} \sum_y (-1)^{x \cdot y} |y\rangle$$

- The more general q-ary QFT is also efficiently computable, where  $\omega_q = e^{2\pi i/q}$  is the q-th root of unity

$$QFT_q |x\rangle = \frac{1}{\sqrt{N}} \sum_y \omega_q^{x \cdot y} |y\rangle$$

# Bonus: The CHSH Game

# The EPR Paradox

# The EPR Paradox

- A famous paper by Einstein-Podolski-Rosen considers the following scenario

# The EPR Paradox

- A famous paper by Einstein-Podolski-Rosen considers the following scenario
- Prepare the 2-qubit state:

$$|EPR\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

# The EPR Paradox

- A famous paper by Einstein-Podolski-Rosen considers the following scenario
- Prepare the 2-qubit state:

$$|EPR\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

- Send one qubit to Alice and the other to Bob (sitting at opposite sides of the universe)

# The EPR Paradox

- A famous paper by Einstein-Podolski-Rosen considers the following scenario
- Prepare the 2-qubit state:

$$|EPR\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

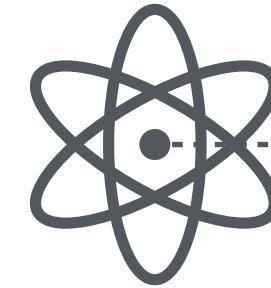
- Send one qubit to Alice and the other to Bob (sitting at opposite sides of the universe)



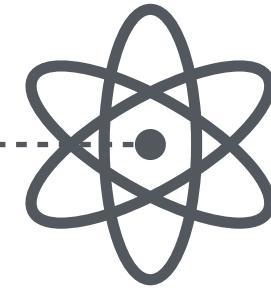
# The EPR Paradox

# The EPR Paradox

Alice

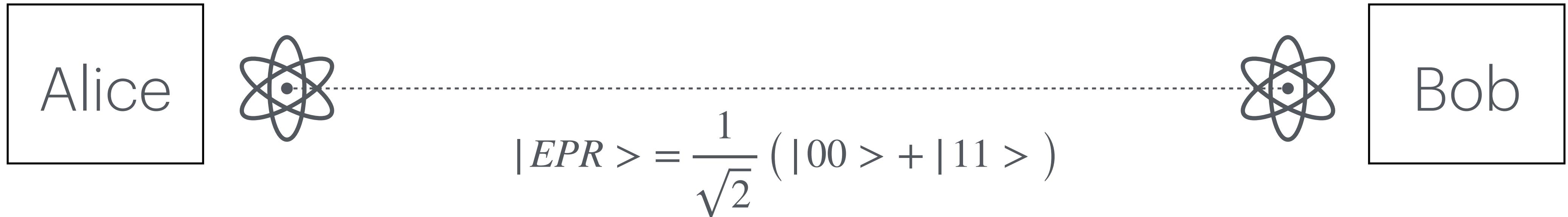


$$|EPR\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$



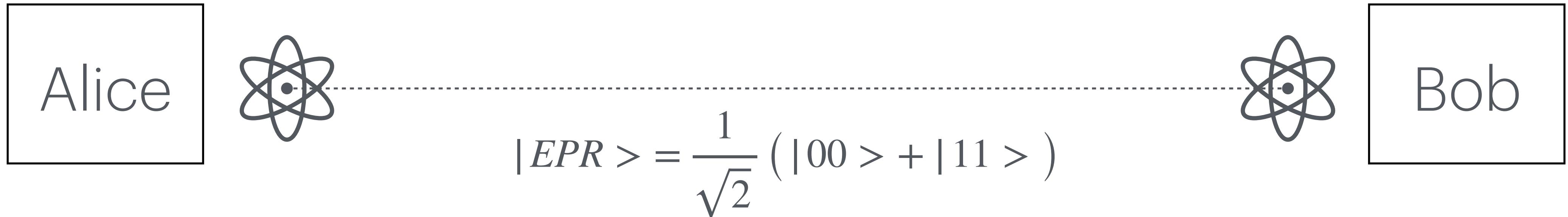
Bob

# The EPR Paradox



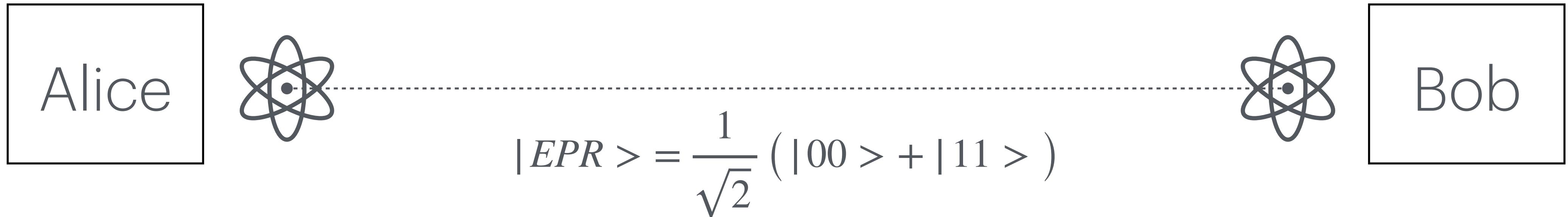
- Measuring the qubits in the computational basis yields:

# The EPR Paradox



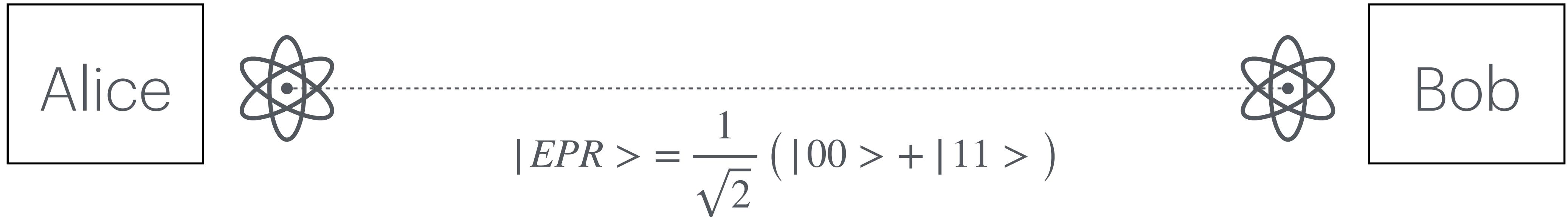
- Measuring the qubits in the computational basis yields:
  - With prob 1/2 Alice obtains 0 and Bob obtains 0

# The EPR Paradox



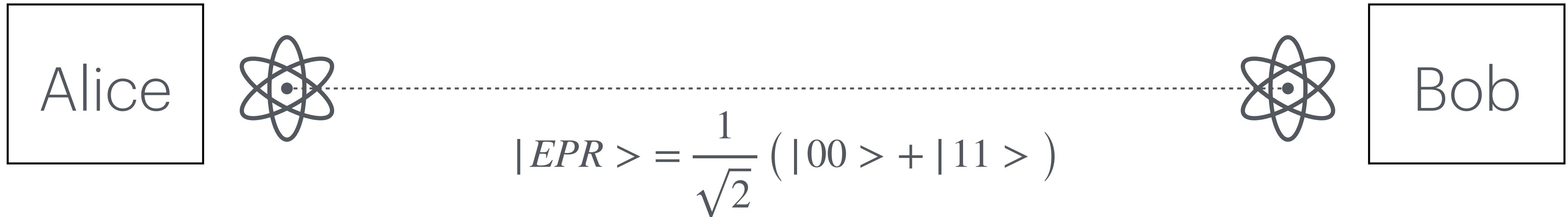
- Measuring the qubits in the computational basis yields:
  - With prob 1/2 Alice obtains 0 and Bob obtains 0
  - With prob 1/2 Alice obtains 1 and Bob obtains 1

# The EPR Paradox



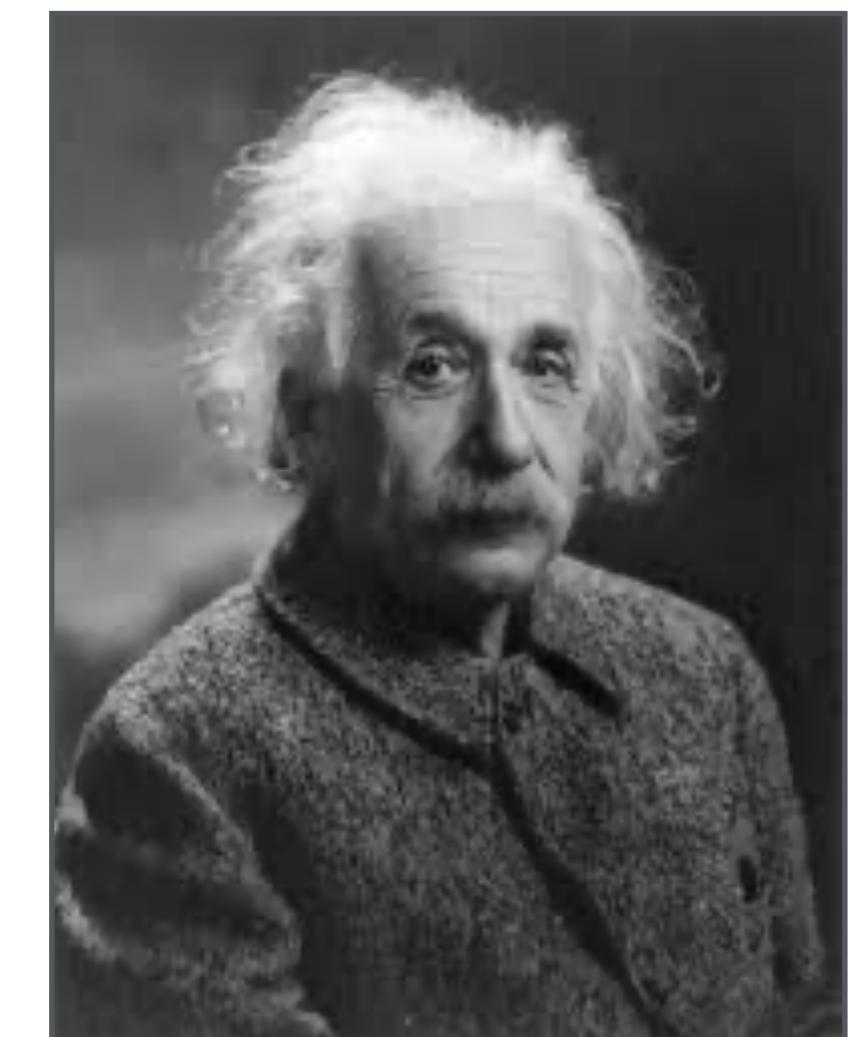
- Measuring the qubits in the computational basis yields:
  - With prob 1/2 Alice obtains 0 and Bob obtains 0
  - With prob 1/2 Alice obtains 1 and Bob obtains 1
- Perfect correlation without communication!

# The EPR Paradox

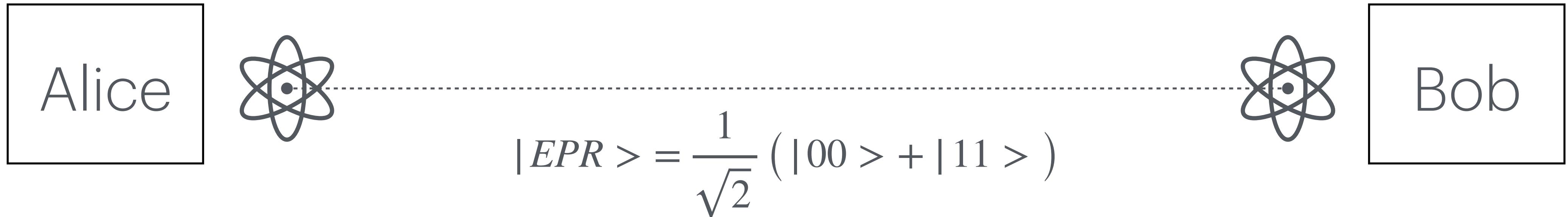


- Measuring the qubits in the computational basis yields:
  - With prob 1/2 Alice obtains 0 and Bob obtains 0
  - With prob 1/2 Alice obtains 1 and Bob obtains 1
- Perfect correlation without communication!

Spooky Action  
at a distance!

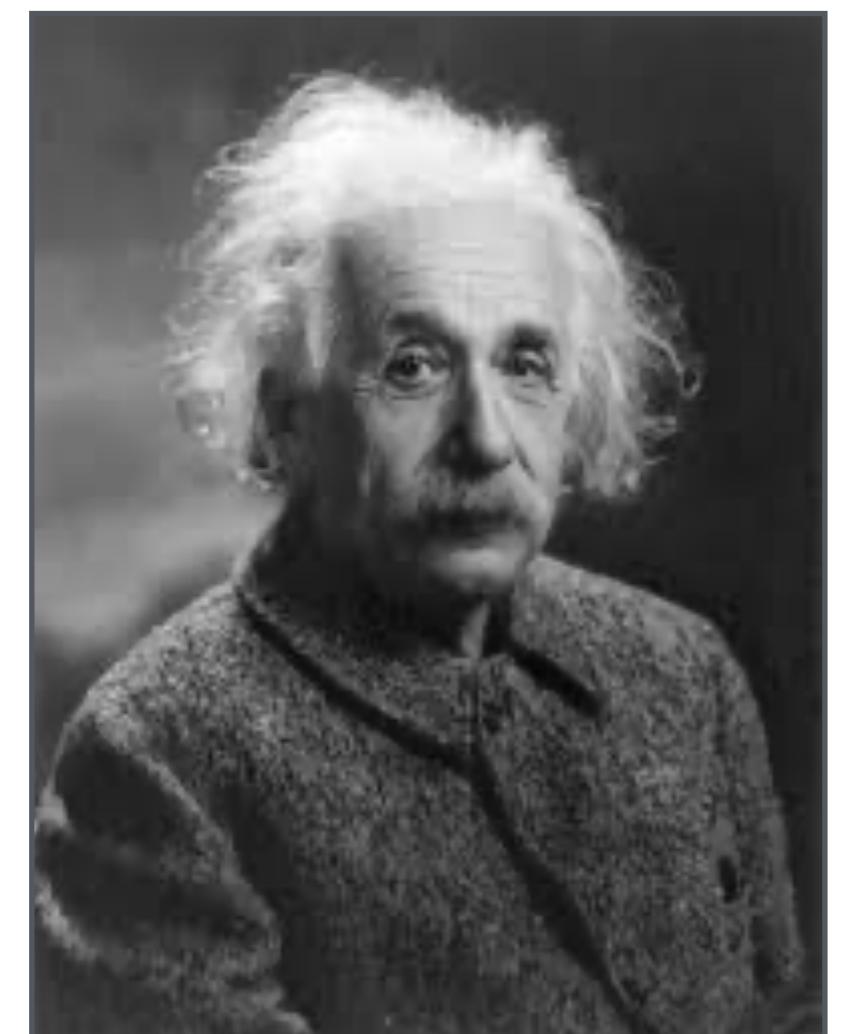


# The EPR Paradox



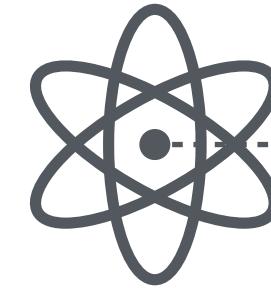
- Measuring the qubits in the computational basis yields:
  - With prob 1/2 Alice obtains 0 and Bob obtains 0
  - With prob 1/2 Alice obtains 1 and Bob obtains 1
- Perfect correlation without communication!
  - (Cannot be used to transmit information)

Spooky Action  
at a distance!

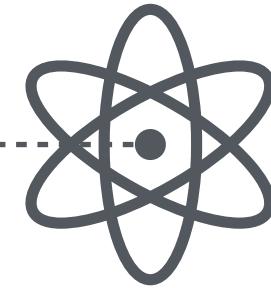


# The EPR Paradox

Alice



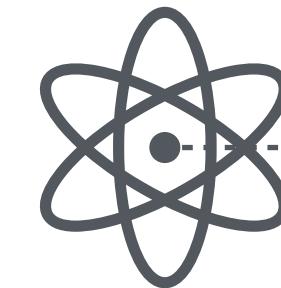
$$|EPR\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$



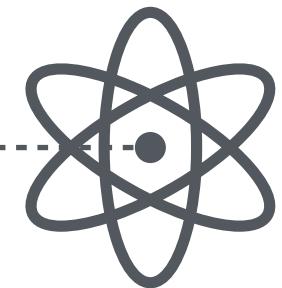
Bob

# The EPR Paradox

Alice



$$|EPR\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

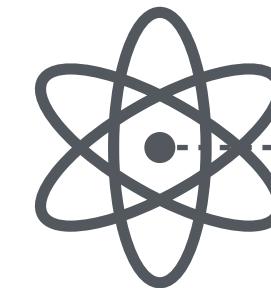


Bob

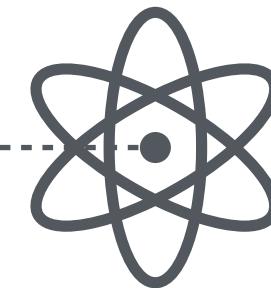
Quantum Mechanics

---

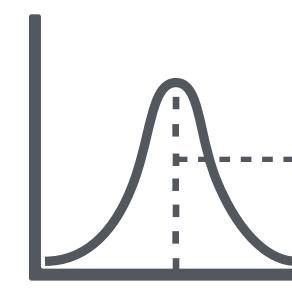
# The EPR Paradox



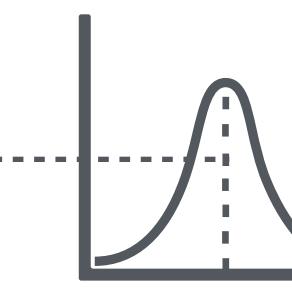
$$|EPR\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$



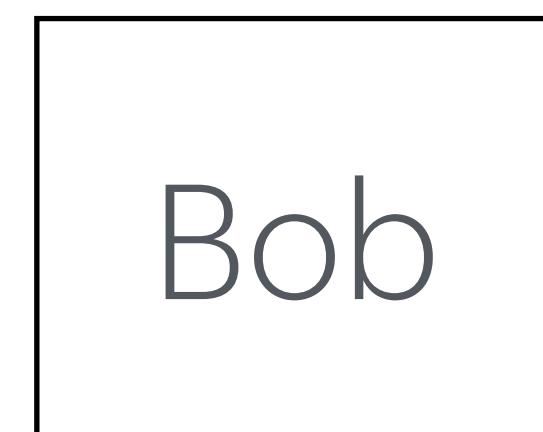
Quantum Mechanics



Local Hidden Variables

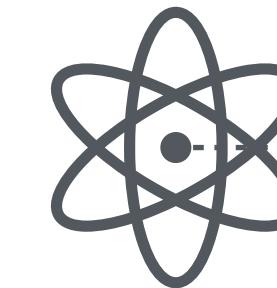


00 with prob 1/2 and 11 with prob 1/2

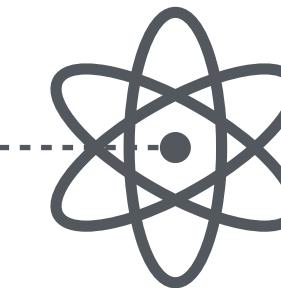


# The EPR Paradox

Alice



$$|EPR\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

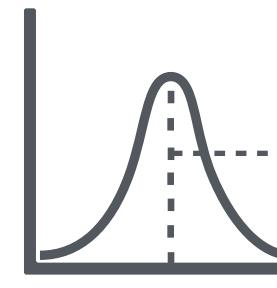


Bob

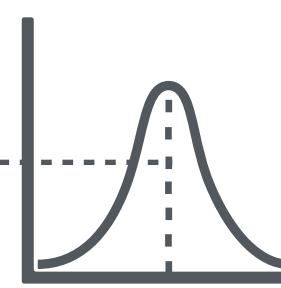
Quantum Mechanics

Local Hidden Variables

Alice



00 with prob 1/2 and 11 with prob 1/2



Bob

- PROBLEM: The probabilities are identical in both cases!

# Testing Quantum Mechanics

# Testing Quantum Mechanics

- Turns out, you can actually tell these two scenarios apart!

# Testing Quantum Mechanics

- Turns out, you can actually tell these two scenarios apart!
  - The catch is to measure the state in a different basis

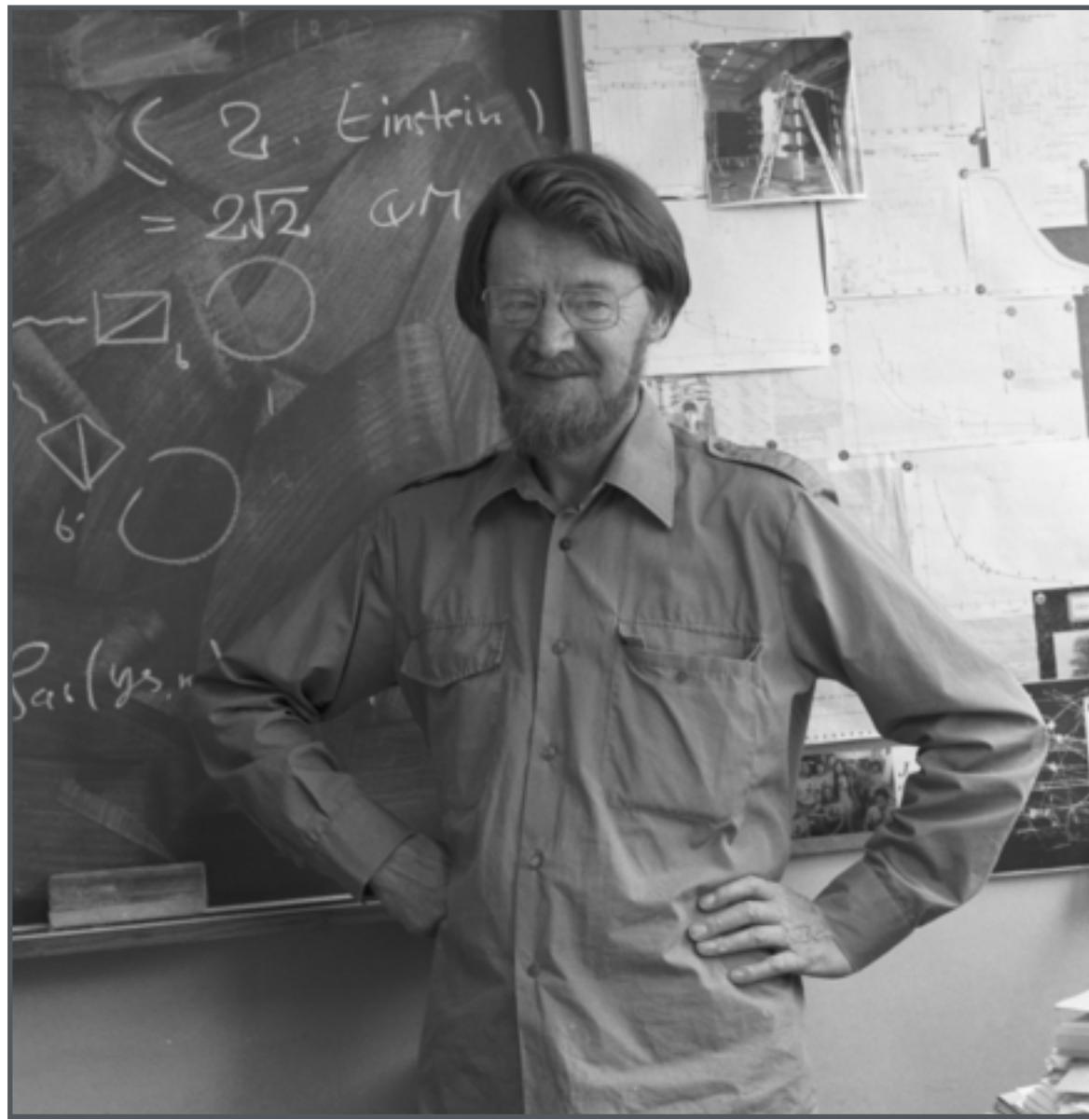
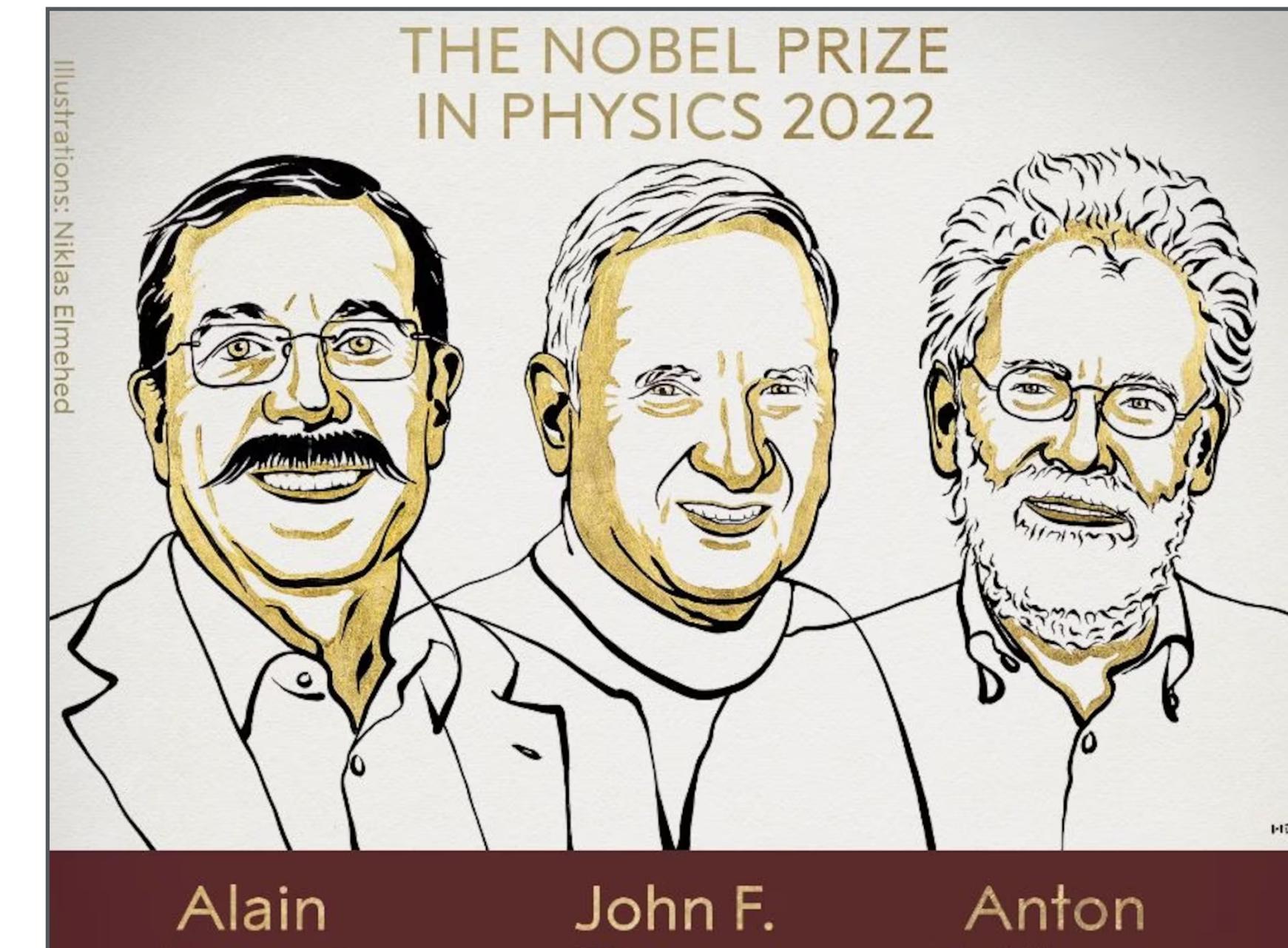
# Testing Quantum Mechanics

- Turns out, you can actually tell these two scenarios apart!
  - The catch is to measure the state in a different basis

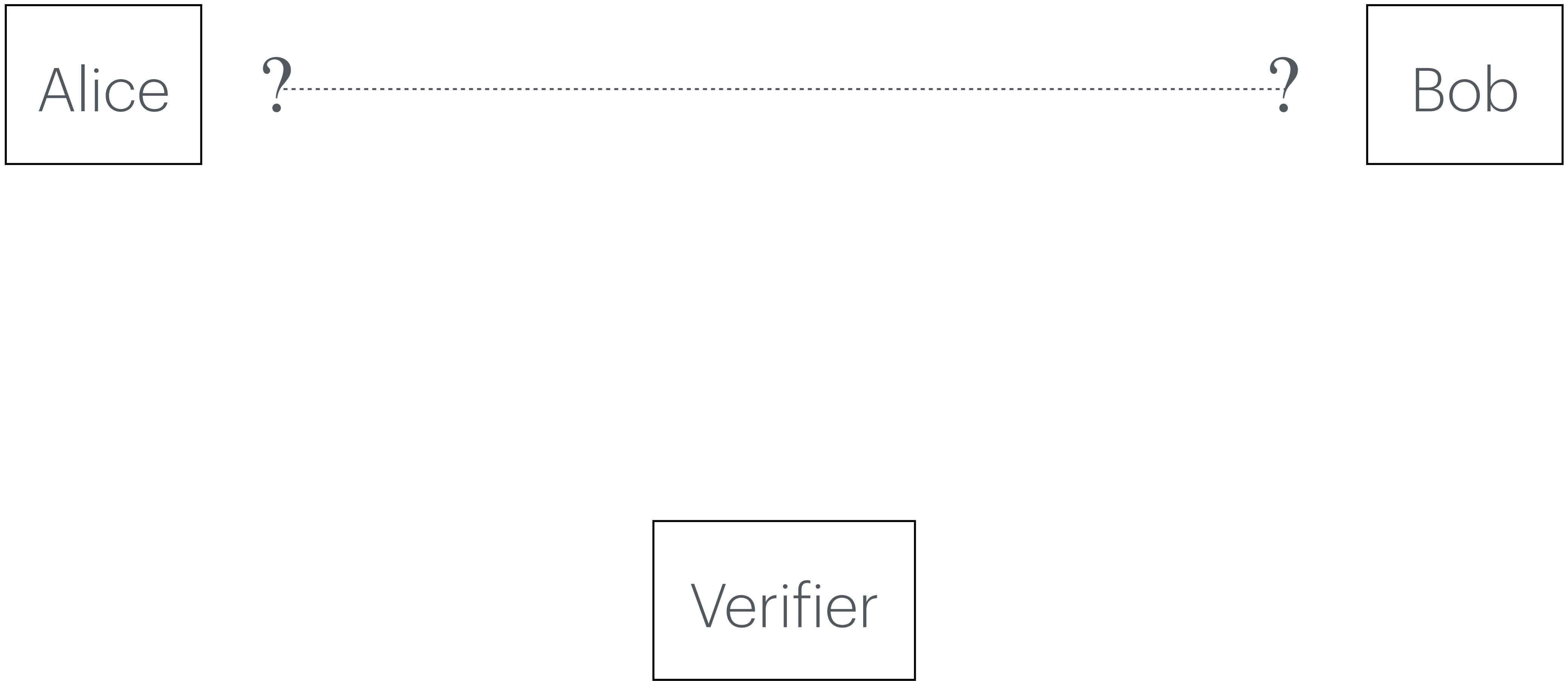


# Testing Quantum Mechanics

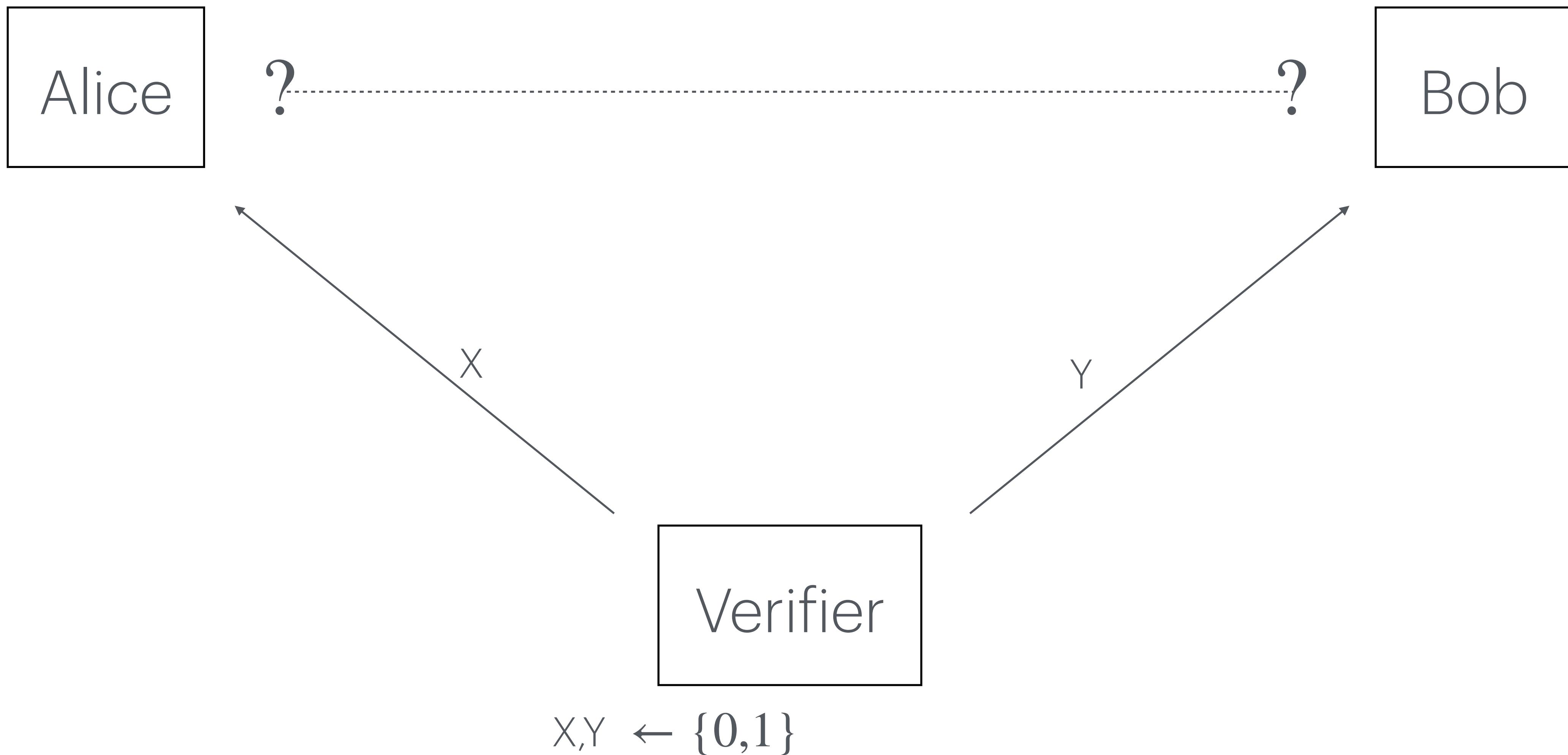
- Turns out, you can actually tell these two scenarios apart!
  - The catch is to measure the state in a different basis



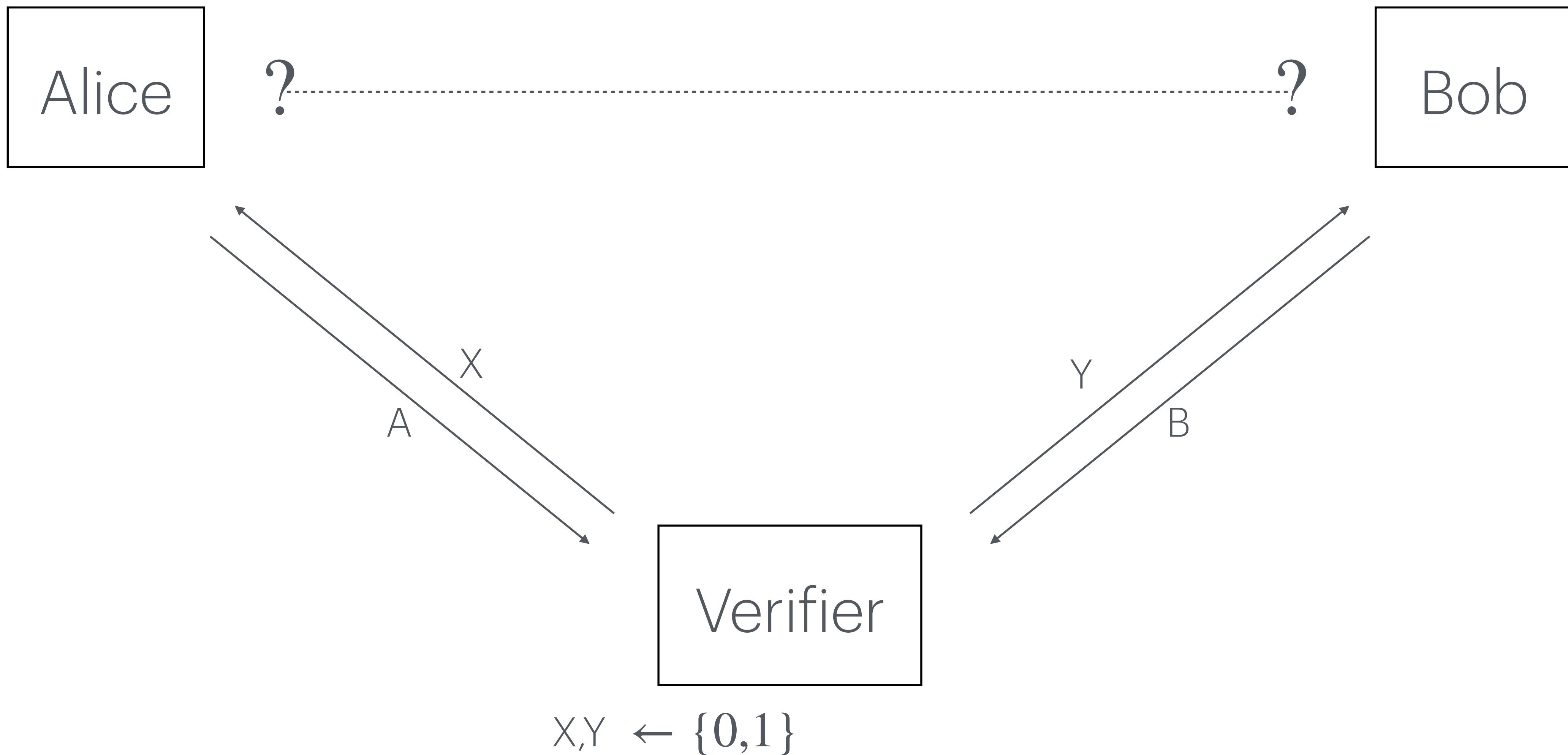
# The CHSH Game



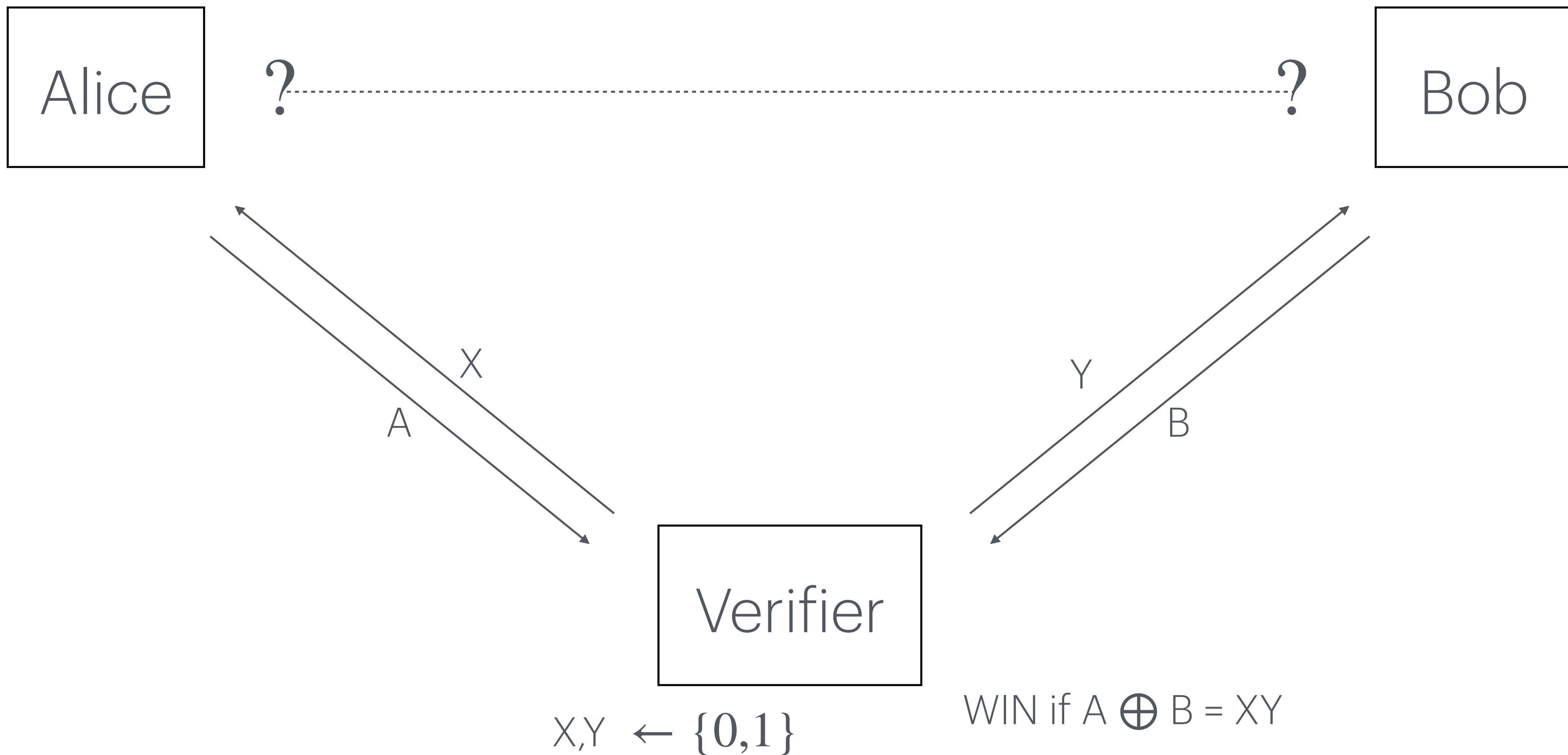
# The CHSH Game



# The CHSH Game



# The CHSH Game



# The CHSH Game

# The CHSH Game

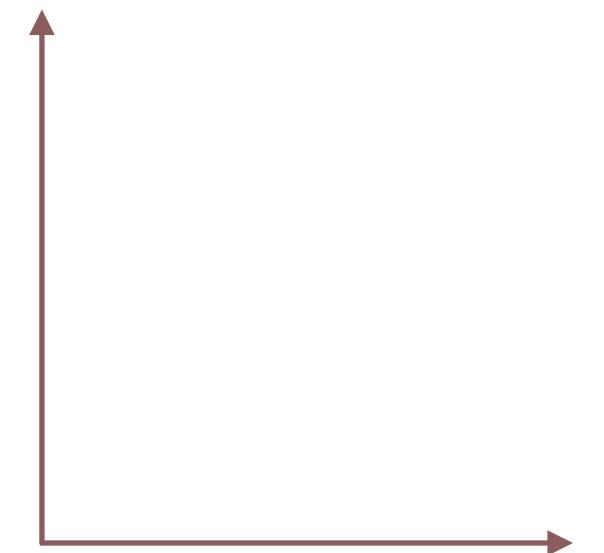
- It can be shown that for any classical strategy (where Alice and Bob share classical random variables) the best success rate is 75%

# The CHSH Game

- It can be shown that for any classical strategy (where Alice and Bob share classical random variables) the best success rate is 75%
- On the other hand, if Alice and Bob share an EPR pair, they can win the game ~85% of the times with the following strategy:

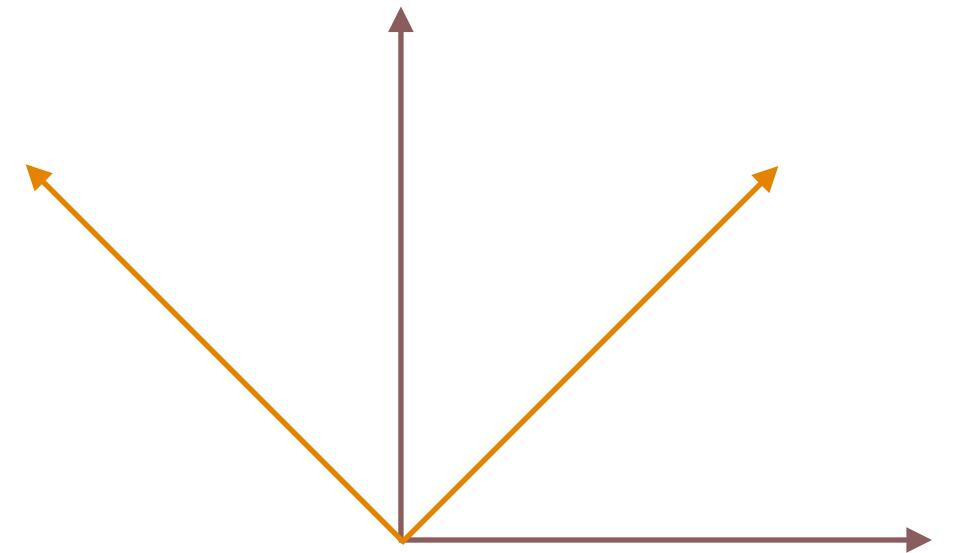
# The CHSH Game

- It can be shown that for any classical strategy (where Alice and Bob share classical random variables) the best success rate is 75%
- On the other hand, if Alice and Bob share an EPR pair, they can win the game ~85% of the times with the following strategy:
  - If  $X = 0$  Alice measures her qubit in the **computational basis**



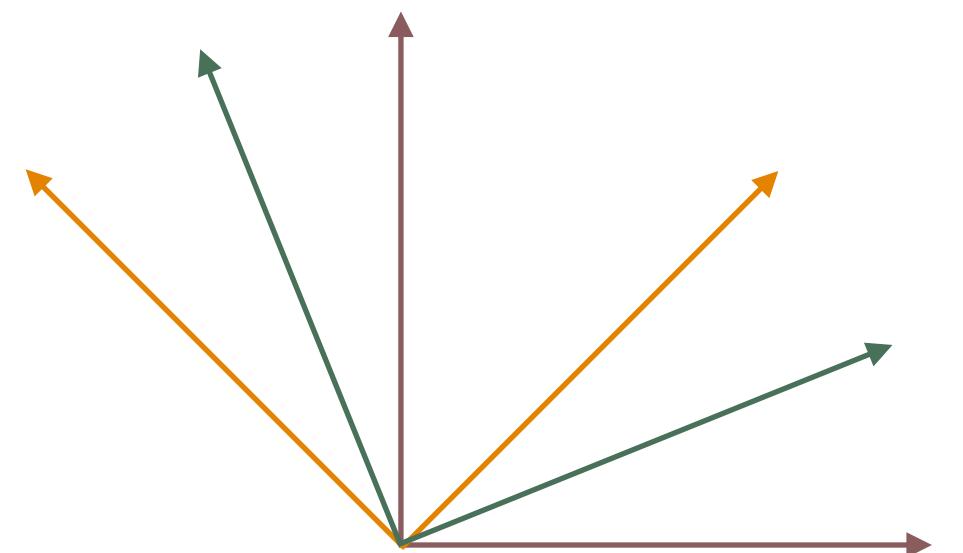
# The CHSH Game

- It can be shown that for any classical strategy (where Alice and Bob share classical random variables) the best success rate is 75%
- On the other hand, if Alice and Bob share an EPR pair, they can win the game ~85% of the times with the following strategy:
  - If  $X = 0$  Alice measures her qubit in the computational basis
  - If  $X = 1$  Alice measures her qubit in the  $|+>$ ,  $|->$  basis



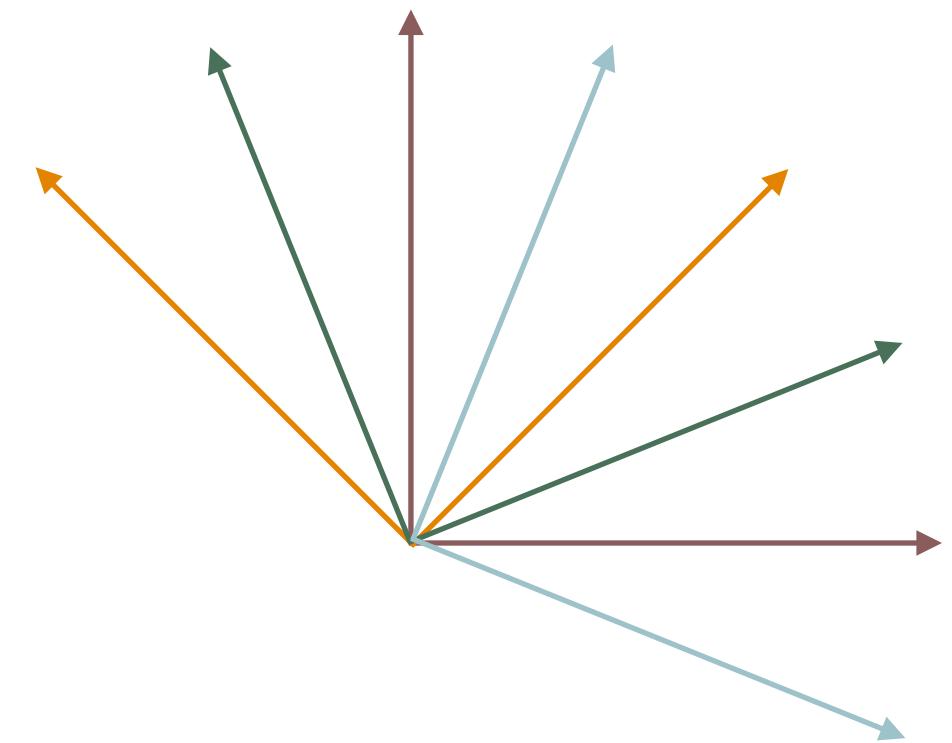
# The CHSH Game

- It can be shown that for any classical strategy (where Alice and Bob share classical random variables) the best success rate is 75%
- On the other hand, if Alice and Bob share an EPR pair, they can win the game ~85% of the times with the following strategy:
  - If  $X = 0$  Alice measures her qubit in the computational basis
  - If  $X = 1$  Alice measures her qubit in the  $|+>$ ,  $|->$  basis
  - If  $Y = 0$  Bob measures his qubit in the comp. basis rotated by  $\pi/8$



# The CHSH Game

- It can be shown that for any classical strategy (where Alice and Bob share classical random variables) the best success rate is 75%
- On the other hand, if Alice and Bob share an EPR pair, they can win the game ~85% of the times with the following strategy:
  - If  $X = 0$  Alice measures her qubit in the computational basis
  - If  $X = 1$  Alice measures her qubit in the  $|+>$ ,  $|->$  basis
  - If  $Y = 0$  Bob measures his qubit in the comp. basis rotated by  $\pi/8$
  - If  $Y = 1$  Bob measures his qubit in the comp. basis rotated by  $-\pi/8$



Thank you!