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The Basic Unit of Information

. A qubit is a unit vector in C?

() ()

- Without loss of generality, | can write a qubit as:

>=al0>+ 41> a,p €L
|y | Pl PP

. |t both amplitudes are non-zero, then we say that the qubit is in superposition
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. A bitis avariable b € {0,1}

. A binary random variable X is O with probability p and 1 with probability 1-p

X=a|0>+/F]|1>
X1 =1
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The Basic Unit of Information

- Take two qubits
[wo > =ag|0 >+ |1 > ly; >=0[0>+ |1 >
. To describe the joint state of the system we need to expand the space to C* = C? ® C?

- The description of the joint state is obtained by:

lwo > Q@ lyy > = |y > |y > = |y, g >

- We can think of a qubit as being physically located in a register and the act of adjoining two
registers is equivalent to taking the tensor product of the two states

- Of course nothing stops us from introducing more qubits to the system...
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Quantum States

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space # = cV

- For instance an n-qubit state lives in an N = 2" dimensional space

O represent such vector, we can use any basis of C" the canonical choice is the standard/
computational basis:

| 0 0
0 | 0
0>=| 0 [1>=|0 IN—-1>=]0
0 0 |

- Any (pure) guantum state can be written as:

h//>=2ax\x> Z\ax\zz
X

X
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- We nhave just see

their tensor

Nrod

cement

N that we can always compose quantum states in a joint system by taking

UCT

- The result is another guantum state in a larger Hilbert space

What about the reverse operation?

. |t turns out that we cannot always decompose a guantum state into a tensor product of
states in smaller Hilbert spaces

. States that cannot be decomposed into tensors are called entangled
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- Some examples of single-qubit states:

\+>=L(\O>+\1>) | — > =
\V/2

(10>—]1>)

b
V2

- Some examples of two-qubit states:

1

5(\00>+\01>+\10>+\11>)=\+>®\+>

|
— (|00 >+ |11 > ) =|EPR >
7 |
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Some Remarks on Notation

. The notation [y > for a column vector is called a “ket”

- Its conjugate transpose is denoted by the “bra” < y/|

- So the “bra-ket” is actually the inner product

<yly>=) yry=1

- Besides “pure” guantum states, one can also consider (classical) probability distributions
over guantum states

« This is called a “mixed” state
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The Schrodinger Equation

- Similarly to how we operate on classical variables, we can also manipulate guantum states
- The rules are different though, are we need to define what are the legal operations

- POSTULATE #2: Quantum states evolve according to the Schrodinger equation
_ _—IiHt
[y, >=e" |y >

- His a Hermitian matrix (called the Hamiltonian) describing the evolution of the system

- For convenience, we have set the Planck constantto 1
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Unitary Evolution

- From a computing perspective, working with the Schrodinger equation is cumbersome

- By C

1ISC

CcOm

e
nlet

e

tizing” the

v equivale

nassage of time, we can restate the axiom in a more convenient (but

Nt) form

- POSTULATE #2: Quantum states evolve according to unitary operations

. Amatrix Uis unitary if UTU = 1

. A unitary matrix preserves norms, and thus it maps quantum states to quantum states

|Uy||> = < Uy | Uy > = <y|U'U|y>=<yly>=1
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T'he Measurement

- Sadly, we are classical beings (= not quantum states) so we need a way to read classical
information off a quantum state

- Fortunately, guantum mechanics has a rule that determines what happens when a guantum
state is measured by a classical observer

- This connects quantum states to good-old classical probability distributions

- POSTULATE #3: The probability that measuring a guantum state yields a given result is
described by the Born rule

- Any measurement will also change the quantum state in some way

- There is N0 notion of passive observer
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T'he Born Rule (By Example)

.+ Measuring a qubit |y > =a|0 >+ /|1 > yields
. 0 with probability |a |* and the state collapses to |0 >

. 1 with probability \ﬂ\z and the state collapsesto |1 >

- Performing the measurement again, will yield the same output, since the state is now
collapsed to a basis state (one of the amplitudes = 1)

- By default, measurements are done in the computational basis and the outcomes are
defined by their basis states

his is WLOG, since a basis change is a unitary operation



T'he Born

Rl

Exampl




T'he Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states



T'he Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states

- The residual state collapses to all basis states “consistent” with the outcome



T'he Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
- The residual state collapses to all basis states “consistent” with the outcome

- Amplitudes are normalized so that it is still a unit



T'he Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
- The residual state collapses to all basis states “consistent” with the outcome

- Amplitudes are normalized so that it is still a unit

. Measuring the first qubit of |y > = ayy| 00 > + a5, |01 > + ;| 10 > + ;| 11 >



T'he Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
- The residual state collapses to all basis states “consistent” with the outcome

- Amplitudes are normalized so that it is still a unit

. Measuring the first qubit of |y > = ayy| 00 > + a5, |01 > + ;| 10 > + ;| 11 >

. O with probability H%o”z T H%l”z

/ool + llzg I

The state collapses to



T'he Born Rule (By Example)

- We can also perform partial measurements on multi-qubit states
- The residual state collapses to all basis states “consistent” with the outcome

- Amplitudes are normalized so that it is still a unit

. Measuring the first qubit of |y > = ayy| 00 > + a5, |01 > + ;| 10 > + ;| 11 >

. 1 with probability ||a;oll* + |l |17

aipl 10> +a |11 >

Vol + lla 1

The state collapses to
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The No-Cloning Theorem

- An interesting consequence of the rules of quantum mechanics, is that it is in general
impossible to create perfect copies of a given quantum state

- This is different from classical information, where it is easy to copy variables (cmd + C)

- To see why, consider an ideal cloner

|y > |y >
10 > ly >

- This implements the mapping

Ua|0O>4+0|1>)Q|0> =((@|0>+F|1>)Q(@|0>+F|1>)
= a%|00 > + afB|01 > +ap|10 > + %11 >

which is not linear, and in particular not unitary



Computing with Quantum
otates



“the AXIomsS

Rrecap o




Recap of the Axioms

. Let us summarize what we have seen so far



Recap of the Axioms

. Let us summarize what we have seen so far

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space # = cV



Recap of the Axioms

. Let us summarize what we have seen so far

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space # = cV

- POSTULATE #2: Quantum states evolve according to unitary operations



Recap O

“the AXIomsS

. Let us summarize what we have seen so far

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space # = cV

- POSTULATE #2: Quantum states evolve according to unitary operations

« POSTULAT
described

- #3: The pro

oy the Born r

oability that measuring a quantum state yields a given result is

Ule



Recap O

“the AXIomsS

. Let us summarize what we have seen so far

- POSTULATE #1: A quantum state is a unit vector in a Hilbert space # = cV

- POSTULATE #2: Quantum states evolve according to unitary operations

« POSTULAT
described

- #3: The pro

oy the Born r

oability that measuring a quantum state yields a given result is

Ule

- Now that we know the rules, let us see how/what we can compute in this model
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. Say that we want to compute a function f: {0,1}" — {0,1}" using the axioms of quantum
MecnanIics

. In guantum terms, we want to find a unitary U such that
Ulx > =|f(x) >
. It can be shown that, in order for such a unitary to exist, f has to be a bijection

. If U has collisions, it is not full rank, and thus it does not have an inverse (=> not unitary)

. The converse is also true

- SO the question is, what kind of functions admit a “reversible” implementation?
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- Clearly not all functions are reversible (think of the AND/XOR/OR functions) but some are
(e.g. the NOT gate)

- However, all logical gates can be ‘compiled” into a reversible gate

- The Toffoli gate is a reversible implementation of NAND (setting ¢ = 1)

(a,b,c)TO—ﬁOU(a,b,ceBa/\b)

the Toffoli gate it is its own inverse and thus can be implemented as a unitary

.+ THEOREM: If f can be implemented using s-many NAND gates, it can be implemented using
O(s)-many Toffoli gates
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. COROLLARY: Any classical function f admits a unitary implementation Ufomol furthermore if
1 is efficiently computable, then so is Uf

Ul x > 10...0 > =[x > [f(x) >

. To make the transformation unitary, we had to add an extra state to the input [0...0 >
which is referred to as the ancilla

- There is nothing special about 0...0 you can use your favourite basis state and obtain
Uelx > |y >=1[x>]yDflx) >

. In complexity theory terms: P € BQP
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Beyond Classica

- One may be tempted to believe that no classical computer can simulate a guantum process

- Sadly, this is not true. We know that BQP € PSPACE

- Proof Sketch: Keep track of the evolution of the amplitudes. To make the space polynomial,
use Feynman path integrals!

. The catch of course is that this simulation is inefficient

- The question to ask is: Are there guantum computations that we cannot simulate efficiently

with classical computers?
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Quantum Circuits

- Much like classical circuits, guantum circuits consist of collections of constant-size unitaries
that together form a larger unitary

|y >
10...0 >

fficiency is measured in terms of number of gates (assuming each gate is a constant-size
itary)
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Quantum Fouriler lranstorm

. A recurring example of an operation that we believe is not simulatable classically is the
Quantum Fourier Transform (QFT)

. A special case of QF ([Fg) s easily implemented with the Hadamard transtform

1
H®|x>=—=) (=1)™|y>
VN 5

. The more general g-ary QFT is also efficiently computable, where @, = e*™4 is the g-th root

q
of unity

1 .
QFT, | x > =—Za)gy\y>
Ny
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V2

- Measuring the qubits in the computational basis vields:
- With prob 1/2 Alice obtains O and Bob obtains O
- With prob 1/2 Alice obtains 1T and Bob obtains 1

- Perfect correlation without communication!

» (Cannot be used to transmit information)

\EPR>=L(\OO>+\11>)

Spooky Action
at a distance! J>

Bob
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- PROBLEM: The probabilities are identical in both cases!
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- |t can be shown that for any classical strategy (where Alice and Bob share classical random
variables) the best success rate is 75%

- On the other hand, it Alice and Bob share an EPR pair, they can win the game ~85% of the
times with the following strategy:

. |f X =0 Alice measures her qubit in the computational basis i

. If X=1Alice measures her qubitinthe | + >, | — > basis %

. If Y =0 Bob measures his qubit in the comp. basis rotated by /8

. If Y =1Bob measures his qubit in the comp. basis
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