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• Norm: 

α ∈ ℂ

α* = a − ib

|α | = a2 + b2

α = a + ib a, b ∈ ℝ
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The Basic Unit of Information

• A qubit is a unit vector in  
 
 
 

ℂ2

• A bit is a variable b ∈ {0,1}

• A binary random variable  is 0 with probability p and 1 with probability 1-p 
 
 
 

X

|ψ > = α |0 > + β |1 > α, β ∈ ℂ
|α |2 + |β |2 = 1

X = α |0 > + β |1 > α, β ∈ ℝ+

α + β = 1
∥X∥1 = 1
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The Basic Unit of Information
• Take two qubits 

 

• To describe the joint state of the system we need to expand the space to ℂ4 = ℂ2 ⊗ ℂ2

• The description of the joint state is obtained by: 
 

• We can think of a qubit as being physically located in a register and the act of adjoining two 
registers is equivalent to taking the tensor product of the two states

• Of course nothing stops us from introducing more qubits to the system…

|ψ0 > = α0 |0 > + β0 |1 > |ψ1 > = α1 |0 > + β1 |1 >

|ψ0 > ⊗ |ψ1 > = |ψ0 > |ψ1 > = |ψ0, ψ1 >
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Quantum States

• POSTULATE #1: A quantum state is a unit vector in a Hilbert space  ℋ ≅ ℂN

• For instance an -qubit state lives in an  dimensional spacen N = 2n

• To represent such vector, we can use any basis of , the canonical choice is the standard/
computational basis: 
 
 
 

ℂN

• Any (pure) quantum state can be written as:

|0 > =

1
0
0
⋮
0

|1 > =

0
1
0
⋮
0

|N − 1 > =

0
0
0
⋮
1

…

|ψ > = ∑
x

αx |x > ∑
x

|αx |2 = 1
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Entanglement
• We have just seen that we can always compose quantum states in a joint system by taking 

their tensor product

• The result is another quantum state in a larger Hilbert space

• What about the reverse operation?

• It turns out that we cannot always decompose a quantum state into a tensor product of 
states in smaller Hilbert spaces

• States that cannot be decomposed into tensors are called entangled
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Examples
• Some examples of single-qubit states: 

 
 
 
 

• Some examples of two-qubit states:

| + > =
1

2
( |0 > + |1 > ) | − > =

1

2
( |0 > − |1 > )

1
2 ( |00 > + |01 > + |10 > + |11 > ) = | + > ⊗ | + >

1

2
( |00 > + |11 > ) = |EPR >
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Some Remarks on Notation

• The notation for a column vector is called a “ket”|ψ >

• Its conjugate transpose is denoted by the “bra” < ψ |

• So the “bra-ket” is actually the inner product 
 
 
 

• Besides “pure” quantum states, one can also consider (classical) probability distributions 
over quantum states

• This is called a “mixed” state

< ψ |ψ > = ∑
i

ψ*i ⋅ ψi = 1
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The Schrödinger Equation
• Similarly to how we operate on classical variables, we can also manipulate quantum states

• The rules are different though, are we need to define what are the legal operations

• POSTULATE #2: Quantum states evolve according to the Schrödinger equation 
 
 
 

• H is a Hermitian matrix (called the Hamiltonian) describing the evolution of the system

• For convenience, we have set the Planck constant to 1

|ψt > = e−iHt |ψ0 >
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Unitary Evolution
• From a computing perspective, working with the Schrödinger equation is cumbersome

• By “discretizing” the passage of time, we can restate the axiom in a more convenient (but 
completely equivalent) form 

• POSTULATE #2: Quantum states evolve according to unitary operations

• A matrix  is unitary if  U U†U = I

• A unitary matrix preserves norms, and thus it maps quantum states to quantum states

∥Uψ∥2 = < Uψ |Uψ > = < ψ |U†U |ψ > = < ψ |ψ > = 1
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The Measurement
• Sadly, we are classical beings (= not quantum states) so we need a way to read classical 

information off a quantum state

• Fortunately, quantum mechanics has a rule that determines what happens when a quantum 
state is measured by a classical observer

• This connects quantum states to good-old classical probability distributions

• POSTULATE #3: The probability that measuring a quantum state yields a given result is 
described by the Born rule

• Any measurement will also change the quantum state in some way

• There is no notion of passive observer
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The Born Rule (By Example)

• Measuring a qubit yields|ψ > = α |0 > + β |1 >

• 0 with probability  and the state collapses to |α |2 |0 >

• 1 with probability  and the state collapses to |β |2 |1 >

• Performing the measurement again, will yield the same output, since the state is now 
collapsed to a basis state (one of the amplitudes = 1)

• By default, measurements are done in the computational basis and the outcomes are 
defined by their basis states

• This is WLOG, since a basis change is a unitary operation
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• The residual state collapses to all basis states “consistent” with the outcome

• Amplitudes are normalized so that it is still a unit
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The Born Rule (By Example)
• We can also perform partial measurements on multi-qubit states


• The residual state collapses to all basis states “consistent” with the outcome


• Amplitudes are normalized so that it is still a unit


• Measuring the first qubit of 


• 1 with probability  
 

The state collapses to 

|ψ > = α00 |00 > + α01 |01 > + α10 |10 > + α11 |11 >

∥α10∥2 + ∥α11∥2

α10 |10 > + α11 |11 >

∥α10∥2 + ∥α11∥2
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The No-Cloning Theorem
• An interesting consequence of the rules of quantum mechanics, is that it is in general 

impossible to create perfect copies of a given quantum state

• This is different from classical information, where it is easy to copy variables (cmd + C)

• To see why, consider an ideal cloner 
 
 

• This implements the mapping 
 
 
 
which is not linear, and in particular not unitary

U
|ψ > |ψ >

|ψ >|0 >

U(α |0 > + β |1 > ) ⊗ |0 > = (α |0 > + β |1 > ) ⊗ (α |0 > + β |1 > )
= α2 |00 > + αβ |01 > + αβ |10 > + β2 |11 >
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Recap of the Axioms
• Let us summarize what we have seen so far

• POSTULATE #1: A quantum state is a unit vector in a Hilbert space ℋ ≅ ℂN

• POSTULATE #2: Quantum states evolve according to unitary operations

• POSTULATE #3: The probability that measuring a quantum state yields a given result is 
described by the Born rule

• Now that we know the rules, let us see how/what we can compute in this model
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Warm Up: Computing Classical Functions

• Say that we want to compute a function  using the axioms of quantum 
mechanics

f : {0,1}n → {0,1}n

• In quantum terms, we want to find a unitary  such that  
 

U

• It can be shown that, in order for such a unitary to exist,  has to be a bijectionf

• If  has collisions, it is not full rank, and thus it does not have an inverse (=> not unitary)U

• The converse is also true

• So the question is, what kind of functions admit a “reversible” implementation?

U |x > = | f(x) >
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• Clearly not all functions are reversible (think of the AND/XOR/OR functions) but some are 
(e.g. the NOT gate)

• However, all logical gates can be “compiled” into a reversible gate

• The Toffoli gate is a reversible implementation of NAND (setting c = 1) 
 
 
 
the Toffoli gate it is its own inverse and thus can be implemented as a unitary

• THEOREM: If  can be implemented using s-many NAND gates, it can be implemented using 
O(s)-many Toffoli gates

f

(a, b, c) Toffoli (a, b, c ⊕ a ∧ b)
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f Uf

f Uf

• To make the transformation unitary, we had to add an extra state to the input 
which is referred to as the ancilla

|0…0 >

• There is nothing special about  you can use your favourite basis state and obtain 0…0
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f Uf

f Uf

• To make the transformation unitary, we had to add an extra state to the input 
which is referred to as the ancilla

|0…0 >

• There is nothing special about  you can use your favourite basis state and obtain 0…0
Uf |x > |y > = |x > |y ⊕ f(x) >

• In complexity theory terms: P ⊆ BQP

Uf |x > |0…0 > = |x > | f(x) >
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Beyond Classical Functions?
• One may be tempted to believe that no classical computer can simulate a quantum process

• Sadly, this is not true. We know that BQP ⊆ PSPACE

• Proof Sketch: Keep track of the evolution of the amplitudes. To make the space polynomial, 
use Feynman path integrals!

• The catch of course is that this simulation is inefficient

• The question to ask is: Are there quantum computations that we cannot simulate efficiently 
with classical computers?
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• Much like classical circuits, quantum circuits consist of collections of constant-size unitaries 
that together form a larger unitary 
 
 
 
 
 
 
 
 

• Efficiency is measured in terms of number of gates (assuming each gate is a constant-size 
unitary)

Quantum Circuits
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• Also similarly to classical circuits, we can define sets of universal gates that allow us to 
approximate any unitary, with  precision 
 
 
 
 
 
 
 
 

ε

• The Solovay-Kitaev theorem bounds the number of gates (for any universal gate set) needed 
to approximate any (constant-dimension) unitary up to  precision, by ε poly-log(1/ε)

Quantum Circuits

H =
1

2 (1 1
1 −1)

T = (1 0
0 eiπ/4)

CNOT =
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0 1 0 0
0 0 0 1
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H |b > =
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2
( |0 > + (−1)b |1 > )

T |b > = eb⋅iπ/4 |b >

CNOT |a, b > = |a, a ⊕ b >



Quantum Fourier Transform



Quantum Fourier Transform
• A recurring example of an operation that we believe is not simulatable classically is the 

Quantum Fourier Transform (QFT)



Quantum Fourier Transform
• A recurring example of an operation that we believe is not simulatable classically is the 

Quantum Fourier Transform (QFT)

• A special case of QFT ( ) is easily implemented with the Hadamard transform 
 
 
 

𝔽n
2

H⊗n |x > =
1

N ∑
y

(−1)x⋅y |y >



Quantum Fourier Transform
• A recurring example of an operation that we believe is not simulatable classically is the 

Quantum Fourier Transform (QFT)

• A special case of QFT ( ) is easily implemented with the Hadamard transform 
 
 
 

𝔽n
2

• The more general q-ary QFT is also efficiently computable, where  is the q-th root 
of unity

ωq = e2πi/q

H⊗n |x > =
1

N ∑
y

(−1)x⋅y |y >

QFTq |x > =
1

N ∑
y

ωx⋅y
q |y >
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The EPR Paradox

• Measuring the qubits in the computational basis yields:

• With prob 1/2 Alice obtains 0 and Bob obtains 0

• With prob 1/2 Alice obtains 1 and Bob obtains 1

• Perfect correlation without communication!

• (Cannot be used to transmit information)

Alice Bob
|EPR > =

1

2
( |00 > + |11 > )

Spooky Action 
at a distance!
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The EPR Paradox

Alice Bob
|EPR > =

1

2
( |00 > + |11 > )

Quantum Mechanics

Alice Bob
00 with prob 1/2 and 11 with prob 1/2

Local Hidden Variables

• PROBLEM: The probabilities are identical in both cases!
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The CHSH Game

Alice Bob

Verifier

? ?

X Y
A B

WIN if A  B = XY⊕X,Y ← {0,1}
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The CHSH Game
• It can be shown that for any classical strategy (where Alice and Bob share classical random 

variables) the best success rate is 75%

• On the other hand, if Alice and Bob share an EPR pair, they can win the game ~85% of the 
times with the following strategy:

• If X = 0 Alice measures her qubit in the computational basis

• If X = 1 Alice measures her qubit in the basis| + > , | − >

• If Y = 0 Bob measures his qubit in the comp. basis rotated by π/8

• If Y = 1 Bob measures his qubit in the comp. basis rotated by −π/8



Thank you!


