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So far...

Approximate [Lyu09,Lyul2?]:

Lattice-based cryptograpny

* We only prove that we know
short s and short ¢ such that
As = cu.

As =u
f ™.

N

N Equation over
/" \ector § has ring R,

polynomials with

* This is enough for
identification schemes and
signatures like CRYSTALS-
Dilithium.

* Small proof sizes (= 3KB).

Denote

Sg={x € Ry ||x|| < B} small
coefficients

\__eq. {-1,01} /




But we wanted more!

Lattice-based cryptographny Exact:

As = u * We prove exactly that s is

. within specified range and
As = u (mod q) .

\{Equaton over} * This is crucial for building

ring Zg more advanced privacy-
preserving primitives, e.g.
verifiable encryption.

/\/ector S has\
small
coefficients

.eg {-1,0,1} * Much bigger proof sizes.




The main focus of this talk:

As =u (mod q) and s € {0,1}'"

Later on: e ™
O Quiz .
d Applicuations Equat|0n
L Obtaining succinct proofs over ring Zq
- /




Overview

As = u (mod q) s € {0,1}""

Lemma: Let s € Z™. Then, s € {0,1}™ if and only if

(s,s—1)=0.

Proof: Suppose (s,s — 1) = 0. This means that

m
ZSi(Si — 1) =0.
i=1
However, since each s; is an integer, we have
Si(si — 1) =0

Hence, the sum is equal to zero if each of the
inequalities is an equality, i.e. s; € {0,1}.




Overview

As = u (mod q) (s,s —1) =0.

U

(s,s —1) =0 (mod q)

and

Isll < q




Overview

As=u(modq) (s,s—1)=0(modq) ]| < g

Inner product Approximate

Linear proof

proof range proof




Overview

Is]] < g
 If | take a random short vector b,
then clearly
(b, s)
is short.
Approximate
* But if | am given a large vector s, range proof
then what’s the probability that
(b, s)
is short?




Overview + ZK

 If | take a random short vector b,
add a short mask y then clearly
y + (b, s)
is short.

e Butif | am given a large vector s
and vy, then what’s the probability
that

y + (b, s)
is short?

|Isll < q

Approximate

range proof




Approximate range proof lemma

|Isll < q

Lemma:

1
— <
b{0, 1}m[|<b s)+ | <3 -|Is|]] < 1/2.

Proof: Let s; = ||s|| for some i. Approximate
Then, we can write (b, s) + y = b;s; + . range proof

By the triangle inequality, at least one of {r, s; + r} has to

1
have norm at least 3 ||s]]-

The probability of hitting that value is at least V4.




Overview

Lemma:

B<—{0 1y

1
HIBs + yll <= lIsll] < 1/2%.

Proof: By amplification.

|Isll < q

Approximate

range proof




Intuition

+

s € {0,1}™

y < [—Gf, Gf]

|Isl] < q

Hence, the verifier is convinced
that [|s|| < 2||y + Bs|| <

2(aa — m)
(with high probability).

B < {0,1}*™

Check |[|z]| £ a—m

Z=7Yy+ Bs
If ||z|| > a —m, reject

Z=Yy+ Bs



$

t = Com(m;r)

\

Message m

Binding: | | Hiding:

It's hard to ﬂnc,l two different openings The adversary can't learn any information
(m,r) and (m',r") such that about (m,r) from t

Com(m;r) = Com(m';r").



Attempt 2

b+

s € {0,1}™

|Is]] < q

y < [~a,a]t t, = Com(y;r),ts := Com(s;T)
r <y
B
Z=vy+ Bs m
Z\y,s,T
N

B < {0,1}*™

Check ||z|]| £ a—m
Z=Yy+Bs

t, = Com(y;r),ty = Com(s; 1)



Attempt 2

|Isl] < q

Instead of sending the
openings, we

of them

B « {O'l}lxm

Z=Y+ Bs ‘ Zm Check ||z]| £ a—m
If ||z|| > a — m, reject Y5 . Z=y+ Bs

t, = Com(y;r),t; = Com(s;T)




Approximate range proof

~

)/WL\‘

|Is]] < q

A

(

b+

s € {0,1}™

y < |—a,a] ty = Com(y;r),t, .= Com(s; 1)

r <y
B « {0,1}™
B {0,1}
Z=YyY+Bs 5
................................................................................................................ Check [[z]| =a—m
 Prove knowledge t, = Com(y;T)

! Z=Yy+Bs
; Ofy; S, Trs.t. ts — COm(S; ,r) < >




Overview

AS = U (mod q) (S, S — 1) — O (mod q) Approximate range proof

lIsl] «< q /Dﬁ
r 3
s e {01 )‘P
s\

y & [-a,a]? t, = Com(y;r),t; == Com(s;T)
rey 5 B « {0‘1}Axm
Z=y+ Bs 2

If||z]] > @ —m, reject

. Check|lz]|<a—-m

"P_rt;\.;e_k_rﬁ).\_n;'i-e_dﬁém_ -“:;-:-.&(;7;6:_,;].“ e

i zZ=Yy+Bs
ofy, st ts = Com(s;7) Y )

Inner product

Linear proof

t, = Com(y;r)

Z=Yy+ Bs
t; = Com(s;r)

proof

Linear proof




Overview

AS = U (mod q) (S, S — 1) — O (mOd q) Approximate range proof

o /:%
s
se{o1m ) ‘t
any

y & [-a,a]? t, = Com(y;r),t; == Com(s;T)
rey 5 B « {0,1}Axm
Z=y+ Bs 2

If [|z]| > @ —m, reject

. Check||z|]|[ sa—-m

f'P-rt;\.t_e_k_rla\_ﬁie_dEé.m - _‘._._:_.&(;T;_(;’_,:_r_}._._ e

! ¥ z=y+Bs
ot ysTst. £, = Com(s;7) ” )

Inner product Inner product t, = Com(y;r)

ty = Com(s;r)

proof

Z=Yy+ Bs

proof

Inner product

proof




Next step: inner products over Z,

* We want to prove inner products (either between two committed
messages, or between one secret and one public vector)

* Working natively over integers will result with bad soundness error
(see previous lecture)

* We need to translate the inner products into relations over the
polynomial ring R,



Setup

* Consider the standard polynomial ring R, = Z, [X]/(X? + 1) where
d is a power-of-two.

* Fori € Z3,, let us denote 0;: R; = R to be the automorphism
defined by g;(X) = X*.

* Let 0 := 0_,.Seems irrelevant now but it will be useful later!

* For x € R, we denote ct(x) = x, its constant coefficient/term.



The key ingredient

Lemma: Let u == Y% Ly, X and v i= Y4 v, X1 be ring

elements in R, . Then, the constant coefficient of the

polynomial uo_, (v) € R is Yi=o w;v;.

Proof: By definition,

uo_,(v) = (ZuiXi)a<2vX‘> = (EuX )(ZvX“) —Zu v]Xl J

iL,j

Therefore, the constant term is indeed uyvy + u v + -+ Ug_1Vg_1-



The key ingredient

Lemma: Let u == Y% Ly, X and v i= Y4 v, X1 be ring

elements in R;. Then, the constant coefﬂuent of the

polynomial uo_, (v) € R is Yi=o w;v;.

As an application of this lemma, we know a vector s € Z¢ satisfies (s, s — 1) = 0 (mod q) if and only if

~—— [
wheres == Y& s, xt.



The key ingredient

Lemma: Let u == Y% u; X and v i= Y4 v X be ring

elements in R;. Then, the constant coefﬂuent of the

polynomial uo_, (v) € R is Yi=o w;v;.

As an application of this lemma, we know a vector s = (s, ..., Sjn/q) € Z™ satisfies (s,s — 1) = 0 (mod q)

if and only if
/ d—1
(B2 o)

M

— yd-1 i
where s; == ),;2g Sj.a+iX -



Back to overview

As = u (mod q)

N

Vi, ct(fi(s)) =0

(s,s —1) =0 (mod q)

m/d d-1
ct Sj — X! -a(sj) =0
j=1 i=0

Approximate range proof

\ [Is]] «< g > )
? | 5
s € {01} Jr
l‘ AN

y « [—a,a]? t, == Com(y; '), ts := Com(s; 1)
’1—X 1
B 0,1}Axm
B < {0,1}
=y +Bs 2
If || 2] reject
R Check J|z|| s & —m
knowledge =
.57 5. L Cominr T=Y*B  —

t, = Com(y;r)
t, = Com(s;1)

\ 4

t, = Com(y;r)
ty, = Com(s;r)

Z=y+Bs

Vi, ct(gi(s,¥)) =0



So far so good

As = u (mod q)

Vi, ct(fi(s)) =0

(s,s —1) =0 (mod q)

Approximate range proof

. |Is]l < q 520
Q 5
o I
[ an
¥+ [-a.a] t, = Com(y; '), t, = Com(s;r)
e B« [0,1)
B
+ Bs
- z
.............................................................. Check ||z|| s a-m
...... . n
ty = Com(y;T) Z=7y+Bs

t; = Com(s;r)

$

t, = Com(y;T)
t, = Com(s;1)

Vi, ct(gi(s,¥)) = 0

t, = Com(y;r)
ty = Com(s;r)

Vi, ct(fi(s,y)) = 0

where f; are public quadratic
functions (with o)



Proving constant coefficients

* We want to prove that Vi, ct(f;(s,y)) =0

* Clearly, for any u, ..., Uy € Zg we have
K

k
ct (z K -fi(s,y)) = ZM -ct(fi(s,¥)) =0.
i=1 =1



Proving constant coefficients

* We want to prove that Vi, ct(f;(s,y)) = 0

* Clearly, for any u;, ..., ux € Z,; we have
k

k
ct| D wifilsy) | = ) i ct(fils,)) =0.
i=1 =1

But what happens if for some i, ct(f;(s,y)) # 0?

Then, with prob. é, we have ct(Zé‘zlui - 1 (s, y)) = (. Repeat L times.



Adding zero-knowledge

. 1; - fi(s,y) potentially leaks information about s, y



Adding zero-knowledge

“ . 1; - fi(s,y) potentially leaks information about s,y

* Sample and commit to random polynomials gy, ..., g, < {x € Rg:ct(x) = 0}.

* Given challenges Wity s Uk forj =1, ..,L, compute
k

hi=g;+ ) Wi fi(s )
i=1

Hence, ct(h;) = 0 and h; hides info about other coeffs of 1", i ; - fi(s, ¥)



t, = Com(y;r)

Vi, ct(fi(s,y)) =0
 tg = Com(s;r) '

-
______

S,y

t, = Com(g;T)
gL < {x € Ry:ct(x) = 0}
1 wee»

U : , — LXKk
'],l _];l

k ) | hl)'";hL
Vi hi= g5+ )ty fils,y
g : i=1

Check v/, ct(hj) =0




Overview

Approximate range proof

As=u (de Q) (S,S — 1) =0 (mod Q) ﬁ lsll < q
sE[01)™ A\i
r-r |I- I.-.;-I‘ ‘ by c-----u.-';:. Comi s F) -
-......,..... " - ' - UETE
rarra ftemizn Y G—
m/d d-1
Vi, ct(fi(s)) =0 ct si— ) Xt -o(s~)) =0
(;(J ; ) J ty = Com(y;T) Z=y+Bs

ty = Com(s; 1)

$

ty = Com(y;r)
ty = Com(s;T)

i, ct[g;(s, y)) =0

t, = Com(y;r)

. B where f; are public quadratic
t, = Com(s;r) voct(fi(sy) =0

functions (with o)

k
t, = Com(y;T) ty = Com(g;T) Vj hj=gj+ Z Hji fi(s,y)
t, = Com(s;r) =1



In other words

As = u (mod q) (s,s —1) =0 (mod q) ﬁ e

!

m/d d-1
Vi, ct(fi(s)) =0 =y Xt |a(s) |=0
Lot fy ct (Z (sj Zo ) O'(SJ)) ty = Cﬂm(y; r)

ty = Com(s; 1)

$

ty = Com(y;r)
ty = Com(s;T)

—

Z=Yy+Bs

i, ct(g,{s, y)) =0

t, = Com(y;r)

. B where f; are public quadratic
ty = Com(s;r)  Voctli(s3)) =0

functions (with o)

Public quadratic
function (with o)

t, = Com(y;r)

t,=0C ; i Pi(s,y, —
t, = Com(s;T) g = Com(g;T) Vj,Pi(s,y,9) = 0



. Simple exercise

* Discuss with your neighbour (2
minutes):

How to reduce proving multiple
proving multiple quadratic
equations Vj, P;(s,y,g) = O into
one P(s,y,g) = 0?




Slmp/e t, = Com(y; 1) :
amortisation o =Com(s;T) V) Fi(s,y,9) =0 |

.ty = Com(g;T)
3

&

S,y

"Prove that:

[
|
|
|
|
|
|
|



Soundness analysis

* What’s the probability that Z]L'=177j - Pi(s,y,g9) = 0if for some j,
Pi(s,y,g) # 0?

* Consider the standard polynomial ring R, = Z, [X]/(X* + 1) where d is a
power-of-two and g = 5 (mod 8).



Soundness analysis

* What's the probability that Z§=177j - Pi(s,y,g9) = 0 if for some j,
Pi(s,y,g) # 0?

* Consider the standard polynomial ring R, = Z, [X]/(X? + 1) where d is a
power-of-two and g = 5 (mod 8).

d d
e Then, X4 + 1 = (XE — r)(XE + r) factors into two irreducible
polynomials modulo q.

[X]

(x2-rq)  (x

* By CRT, R, is isomorphic to



Soundness analysis

* What’s the probability that Z§=177j - Pi(s,y,9) = 0 if for some j,
Pi(s,y,9) # 07?

* Consider the standard polynomial ring R, = Z,, [X]/(X* + 1) whered is a
power-of-two and g = 5 (mod 8).

d d
* Then, X¢ +1 = (XE — r)(XE + r) factors into two irreducible polynomials
modulo q.

[X]

Z Z
(x2-rq) ~ (x2-rq)

* By CRT, R, is isomorphic to

— e e e e — e — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —



As=u (mod q) (S,S - 1} =0 (modf q) a I = 9 E\
h ol

! !

m/i d-1 o
Wi et(fi(s)) = 0 ct i 5= Z xtl-a(s) =0
=1 =i ty = Com{y;T) Z=y+Bs

t, = Com(s:¥)

4

ty= Comiy:r)
ty = Com(s;T)

Vi, et (s.¥)) =0

ty = Com(y; 1)
Ly = Com(s;T)

where f; are public quadratic

Vi, ct(fi(5,¥)) = 0 functions (with o)

Public quadratic

‘ function (with o)

Ly = Com(g;T)

ty, = Com(y;r)
ts = Com(s;1)

t, = Com(y;r)
t, = Com(s;r)

ty == Com(g;1) Q(s,y,9) =0



| can only do handwaving thus far

IFITS NOT HARD



ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s4,m) € R,

where s4 has small norm (but not necessarily m).

We could treat s{ := s
andm = (y,g).




ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s1,m) € R,

where s1 has small norm (but not necessarily m).

* The ABDLOP commitment under randomness s, € RZInZ is defined as:

) = [0] e+ [g]= + [0



ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s1,m) € R,

where s1 has small norm (but not necessarily m).
* The ABDLOP commitment under randomness s, € RZInZ is defined as:
ol = (0] 51 4[]z #
= s1+ s2+ ||
[tB o[t " IB[7% " |m

If | = 0 then ABDLOP = Ajtai commitment.
If m; = 0 then ABDLOP = BDLOP commitment.



ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s1,m) € R,

where s1 has small norm (but not necessarily m).

* The ABDLOP commitment under randomness s, € RZInZ is defined as:

- 4] 5]+15)

Breaking binding implies finding a MSIS solution to [4; A,].

Security:



ABDLOP commitment (= [Ajt96] + [BDLOP18])

m1+l

* Suppose we want to commit to a polynomial vector (s1,m) € R,

where s4 has small norm (but not necessarily m).

* The ABDLOP commitment under randomness s, € RZInZ is defined as:
tA _ Al AZ O
) = [o]s1+ [ ]s2 # ]

Hiding follows from MLWE since [/ll;] s» looks uniformly random (for

Security:

long enough randomness)



ABDLOP opening proof

fal — 14 A 0 .
[tﬂ = [ 01] §1+ [le Sz + [m] and s, s, have small coefficients

(Al' AZJ B' tA' tB); (31; S2, m)

b+




ABDLOP opening proof

fal — 14 A 0 .
[tﬂ = [ 01] §1+ [BZI Sz + [m] and s, s, have small coefficients

(Al' AZJ B' tA' tB); (31; S2, m)

b+

yi <D™

w=A4,y, + Ay,

z; =Yy +CS;

Z1,Z,

(A1,A;, B, ty, tg)

~

)/Jr\‘

e

c < C

~ Check: i) z,,z, are small
||) A1Z1 + A2Z2 =W+ CtA



Quadratic equations [ ] =[]+ o+ }

* Suppose we want to prove sis; + m'm = 0.



Quadratic equations { o] =]+ 5o+ J

* Suppose we want to prove s1s; + m'm = 0.

2 )

Z; =Y +CSl'




Quadratic equations { o] =]+ 5o+ }

* Suppose we want to prove s; s, + m'm = 0.

(o )
Note that the verifier can compute
21z, = Y1y, +2cyis; +c7sis, w

Z; =Y +CSl'




Quadratic equations

el

* Suppose we want to prove s' s, + m'm = 0.

Note that the verifier can compute
z1z; = y1y1 +2cy18; + 7505,

Moreover, we know tz — Bz, = —By, + cm.
Thus:
(tg — Bz;)" (tp — Bz;)

ABDLOP opening
proof

= (By,)'By, — 2c¢(By,)'m + c*m'm

2

)

zZ, =Y t¢Cs;

<




Quadratic equations

el

* Suppose we want to prove s' s, + m'm = 0.

Then,
21z, + (tg — Bz,)" (tg — Bz;)

= go +cg; +c?(sis; + m'm)
where

Jdo = 3’{7}’1 + (BYZ)TB;}IZ
g1 = 2yis, — 2(By,) ' m.

ABDLOP opening
proof

2

)

Z; =Y +CSi




4 tal [A,]

tg| _| 0

Quadratic equations RN
o

Sl+

Sz+

)

e Suppose we want to prove s| s, + m'm = 0.

Then,
21z, + (tg — Bz,)" (tg — Bz;)
= go +cg; +c?(sis; + m'm)

where
Jdo = 3’{7}’1 + (BYZ)TB;}IZ
g1 = 2yis, — 2(By,) ' m.

Hence, commit to t; :== b}s, + g;.

ABDLOP opening
proof

2

)

zZ, =Y t¢Cs;




ta] [A]

tg| _| 0

Quadratic equations BN
o\_

Sl+

A, 0
B m
S, +
25 I

)

* Suppose we
Appending the ABDLOP

commitment

Then,
21z, + (tg — Bz,)" (tg — Bz;)
= go +cgy + c?(sis; + mi'm)

where
Jdo = J’ITL}H + (BYZ)TB;}IZ
g1 = 2yis, — 2(By,) ' m.

Hence, commit to t; := bls, + g;.

ABDLOP opening
proof

2

)

z,=Y; tcs;




)

)

/ -tA- _Al_ -AZ- [0 ]
. . el ~| O S1+t BT Sz t .
Quadratic equations AR
\
* Suppose we want to prove s! s, + m’m = 0.
proo
T
«zz, + (tg — Bz,)"(ty — Bz,) — (t; — b1z,) =
= go +cg1 — (t1 — b1z,)
= go + b1Y- W
where the right-hand side does not depend on c. c
zZ, =Y t¢Cs;
C.




Proving +m'm=0.

"

&

e

(Al'AZIB' tA' tB); (51:52:7") (Al'AZJB' tA! tB)

)/JF\‘

m;
yi< D
w=Ay, + Ay,

g1 =2yis; — 2(By;)'m
t, = bis, + g

w,t, v
v =yiy; + (By;)" By, + b1y, 1
c c<C
Z,2Z,
> Check: - z4,z, are small
Zl = yl —I— CSl -A1Z1 +A222 =w + CtA

- and:
z1z, + (tg — Bz,)"(ty — Bz,) — (t; — b1z;) = v



Quadratic equations with [ ] = [y + [A2] s, + [°] }
automorphism

e Suppose we want to mix quadratic equations with ABDLOP opening
proof

automorphisms, e.g.

" 7 _ (o )
s10(s1)+m o(m) =0.
If we assume that each challenge ¢ € C is stable under w
the o automorphism, then one can prove the statement
as before! .
zZ, =Y t¢Cs;
< )




Quadratic equations with [ ] = [y + [A2] s, + [°] }
automorphism

e Suppose we want to mix quadratic equations with ABDLOP opening
proof

automorphisms, e.g.
T T _ 0 )
s10(s1)+m o(m) =0.

Then, w

z10(z1) + (ty — Bz,)"o(tz — Bz,) )
=go+cgs +c*(sio(s) +mla(m)) |

where Z, = y; +cs,

Jdo =y10(¥1) + (By,) a(By,)
g1 =yi0(sy) + U(YDS1 — o(By,)'m — (By,)" o(m).

C. Y




Quadratic equations with { ] = [Ar] sy ] 5, 4[] }
automorphism

* Suppose we want to mix quadratic equations with ABDLOP opening
proof

automorphisms, e.g.

sio(sy)+mio(m] 0o E :
Then, w
z'o(z) + (tg — Bz,)"o(tgz — Bz, C
= go + cg1 +c*(si10(s;) + m' o(m)) 4
where z; = y; +cs;
go =¥10(¥1) + (By,) o(By,) ;
g1 =y10(s1) + U(J’D-ﬁ — 0(By,)'m — (By,)"o(m). <




Challenge space

* We need exponentially large challenge space C.
* We wanto(c) = cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.



Challenge space

* We need exponentially large challenge space C.
* Wewanto(c) =cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:
g—1 §+1 d—1
C={cotcX+-+ca Xz —ca_ X2~ == X" i¢; € |—x, x|}

2 2



Challenge space

* We need exponentially large challenge space C.
* We wanto(c) = cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:
g—1 g+1 d—1
C={co+tc X+ +ca X2 —ca X2 —-—c X% ic € [—x,k]}

\/ 2 2

IC| = (2K + 1)4/2,



Challenge space

* We need exponentially large challenge space C.
* We want g(c) = cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:
g—1 §+1 d—1
C={cotcX+-+ea Xz —gca X2~ ==X ¢ € |—x, x|}

2 2



Challenge space

* We need exponentially large challenge space C.
* We wantg(c) = cforanyc € C.
* We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:

d d
C={co+c X+ -+ Cg_1X5_1 —ca Xzt — — X% L € [—k, K]}

2 2

Lemma: Suppose g = 5 (mod 8).If o_{(c) = c and c is non-zero, then ¢
is invertible over R,,.



Soundness analysis

* Since the verification equation is a "quadratic equation”, we actually
need to extract three transcripts (w,c, z), (w,c’,z"), (w,c"”, z'"") with
pairwise differentc,c’,c" € C.

* (Relaxed) Binding from SIS

* Interpolation approach to prove quadratic equations



Soundness analysis

* Since the verification equation is a *quadratic equation”, we actually
need to extract three transcripts (w,c, z), (w,c’,z"), (w,c"”, z'") with
pairwise different ¢, c’,c'’ € C.

* (Relaxed) Binding from SIS
* Interpolation approach to prove quadratic equations

* As before, we extract a witness (division of two
short elements) and m, s.t. and



Extraction - meaning

* From the opening proof, we obtain a , it could be
large (but relaxed binding holds)



Extraction - meaning

* From the opening proof, we obtain a , it could be
large (but relaxed binding holds)

* quadratic equations/proving constant terms make sure that

As =u(modgqg) (5,5—1)=0 (modq)



Extraction - meaning

* From the opening proof, we obtain a , it could be
large (but relaxed binding holds)

* quadratic equations/proving constant terms make sure that
As =u(modgqg) (5,5—1)=0 (modq)

* Approximate range proof makes sure that ||¢|| < g, and we are
done.



Which d to pick - tradeoff

* We want d to be large enough,
so that the challenge space is
exponential-size

Challenge space
* We need exponentially large challenge space C.

* We want g(c) = cforanyc € C.

» We want the difference of any distinct ¢, ¢’ € C to be invertible over R,.

Let us pick:

d
C={co+c X+ -+ Cd_, X2t —cq 1X2+1 — o= X% L € [—K, ]}
v * v 2

IC| = (2K + 1)4/2.

1 gL < {x € Rq:Ct(x) = 0}

k
Vi b= g; +Zuj,z fi(s,¥) hy, .o hy,
i=1

 \We want d to be as small as

possible, since sending ring
elements will be costly

t, = Com(y;1)

| ts = Com(s;T) Vi ct(fi(s,y) = 0

” )ﬂt\l

ty = Com(g;T1)

o) (ji);; < 267"

Check Vj, ct(hj) = 0



Efficiency and
applications




Applications

* Proving knowledge of short s,e s.t. As + e = u.

Stern proofs (e.g. [Ste93,LNSW13]) 3MB
[Beu20] 233KB
[BLS19,YAZ+19] 384KB

Ligero [AHIV17] 157KB

Aurora [BCR+19,BC0OS20] 72KB
[ALS20,ENS20] 47KB

[LNS21] 33KB

[LNP22] 14KB



Applications

verifiable encryption [LNP22] 19KB
integer addition/multiplication [LN22] 12/15KB

group signature [LN22] 20KB

ring signature [LN22] 16KB

blind signature [AKSY22, BLNS23] 44KB/26KB



Quiz

* Please skip "register for credit”

* Put your username if you want to take
part in the competition




What about SNARKs?
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I_a B RA D O R [ BS 2 3] Succinct proof sizes (60KB) but, non-

succinct verification!

Approximate range .
proof ’

~_ -

Generic statement Amortise

Equations over R,

Equations over Z,




Approximate range proof

Linear-sized matrix B

& Is1] < q
&

s €{0,1}™

y < [—a, a]’1 ty = Com(y;r), t; .= Com(s;r)

r<Yx

B « {0’1}/1><m

Z=y+Bs

If ||z]| > & — m, reject

....................................................................................................................................................................

 Prove knowledge t, = Com(y;r)
ofy,s,Tst. ts = Com(s;T)




How to achieve sublinear verification with ARP
e Use a structured tensor-type matrix B [CMNW?24]
 Use LaBRADOR as a subroutine [NS24]

e Just don’t use ARP (and deal with its consequences)

\_(V)_/



Summary

* Linear-sized efficient “exact” ZKP / \ Bt g A

from lattices

» Under standard assumptions: https://eprint.iacr.org/2022/284
MSIS and MLWE

» Transparent setup

> Sizes: ~ 15KB

]
Thank you!

» Can be made non-interactive via
Fiat-Shamir transformation

* “Approximate” proofs more efficient
and have some applications
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