
Lattice-Based
Zero-Knowledge
Proofs (II)
Ngoc Khanh Nguyen

So far…

Approximate [Lyu09,Lyu12]:

• We only prove that we know
short 𝒔 and short 𝑐 such that
𝐴𝒔 = 𝑐𝒖 .

• This is enough for
identification schemes and
signatures like CRYSTALS-
Dilithium.

• Small proof sizes (≈ 3𝐾𝐵).

But we wanted more!

Exact:

• We prove exactly that 𝒔 is
within specified range and
𝐴𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) .

• This is crucial for building
more advanced privacy-
preserving primitives, e.g.
verifiable encryption.

• Much bigger proof sizes.

The main focus of this talk:

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and 𝐬 ∈ 0,1 𝑚

Equation
over ring ℤ𝑞

Later on:
❑ Quiz

❑ Applications
❑ Obtaining succinct proofs

Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔 ∈ {0,1}𝑚

Lemma: Let 𝒔 ∈ ℤ𝒎. Then, 𝒔 ∈ {0,1}𝑚 if and only if
𝒔, 𝒔 − 𝟏 = 0.

Proof: Suppose 𝒔, 𝒔 − 𝟏 = 0. This means that

෍

𝑖=1

𝑚

𝑠𝑖 𝑠𝑖 − 1 = 0 .

However, since each 𝑠𝑖 is an integer, we have
𝑠𝑖 𝑠𝑖 − 1 ≥ 0

Hence, the sum is equal to zero if each of the
inequalities is an equality, i.e. 𝑠𝑖 ∈ {0,1}.

Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0.

𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

||𝒔|| ≪ 𝑞

and

Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞) ||𝒔|| ≪ 𝑞

Linear proof Inner product
proof

Approximate
range proof

Overview

||𝒔|| ≪ 𝑞

Approximate
range proof

• If I take a random short vector 𝒃,
then clearly

𝒃, 𝒔
is short.

• But if I am given a large vector 𝒔,
then what’s the probability that

𝒃, 𝒔
is short?

Overview + ZK

||𝒔|| ≪ 𝑞

Approximate
range proof

• If I take a random short vector 𝒃,
add a short mask 𝑦 then clearly

𝑦 + 𝒃, 𝒔
is short.

• But if I am given a large vector 𝒔
and 𝑦, then what’s the probability
that

𝑦 + 𝒃, 𝒔
is short?

Approximate range proof lemma

||𝒔|| ≪ 𝑞

Approximate
range proof

Lemma:

Pr
𝒃← 0,1 𝑚

| 𝒃, 𝒔 + 𝑦 <
1

2
⋅ ||𝒔||] ≤ 1/2.

Proof: Let 𝑠𝑖 = ||𝒔|| for some 𝑖.
Then, we can write 𝒃, 𝒔 + 𝑦 = 𝑏𝑖𝑠𝑖 + 𝑟.

By the triangle inequality, at least one of {𝑟, 𝑠𝑖 + 𝑟} has to

have norm at least
1

2
⋅ ||𝒔||.

The probability of hitting that value is at least ½.

Overview

||𝒔|| ≪ 𝑞

Approximate
range proof

Lemma:

Pr
𝑩← 0,1 𝜆×𝑚

||𝑩𝒔 + 𝒚| <
1

2
⋅ ||𝒔||] ≤ 1/2𝜆.

Proof: By amplification.

Intuition

𝒔 ∈ 0,1 𝑚

𝑩 ← {0,1}𝜆×𝑚
𝑩

𝒛 = 𝒚 + 𝑩𝒔
𝒛 Check ||𝒛|| ≤ 𝛼 −𝑚

𝒛 = 𝒚 + 𝑩𝒔

||𝒔|| ≪ 𝑞

𝒚 ← −𝛼, 𝛼 𝜆 𝒚, 𝒔

If ||𝒛|| > 𝛼 −𝑚, reject

Hence, the verifier is convinced
that ||𝒔|| ≤ 2||𝒚 + 𝑩𝒔|| ≤

2 𝛼 −𝑚
(with high probability).

Commitments

Message m

𝑡 = 𝐶𝑜𝑚(𝑚; 𝑟)

Binding:
It’s hard to find two different openings
𝑚, 𝑟 and (𝑚′, 𝑟′) such that
𝐶𝑜𝑚 𝑚; 𝑟 = 𝐶𝑜𝑚 𝑚′; 𝑟′ .

Hiding:
The adversary can’t learn any information
about (𝑚, 𝑟) from 𝑡

Attempt 2

𝒔 ∈ 0,1 𝑚

𝑩 ← {0,1}𝜆×𝑚
𝑩

𝒛 = 𝒚 + 𝑩𝒔
𝒛, 𝒚, 𝒔, 𝒓

Check ||𝒛|| ≤ 𝛼 −𝑚
𝒛 = 𝒚 + 𝑩𝒔

||𝒔|| ≪ 𝑞

𝒚 ← −𝛼, 𝛼 𝜆

𝒓 ← 𝜒
𝒕𝒚 ≔ 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 ≔ 𝐶𝑜𝑚(𝒔; 𝒓)

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)

If ||𝒛|| > 𝛼 −𝑚, reject

Attempt 2

𝒔 ∈ 0,1 𝑚

𝑩 ← {0,1}𝜆×𝑚
𝑩

𝒛 = 𝒚 + 𝑩𝒔
𝒛, 𝒚, 𝒔, 𝒓

Check ||𝒛|| ≤ 𝛼 −𝑚
𝒛 = 𝒚 + 𝑩𝒔

||𝒔|| ≪ 𝑞

𝒚 ← −𝛼, 𝛼 𝜆

𝒓 ← 𝜒
𝒕𝒚 ≔ 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 ≔ 𝐶𝑜𝑚(𝒔; 𝒓)

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)

If ||𝒛|| > 𝛼 −𝑚, reject

Instead of sending the
openings, we prove
Knowledge of them

Approximate range proof

𝒔 ∈ 0,1 𝑚

𝑩 ← {0,1}𝜆×𝑚
𝑩

𝒛 = 𝒚 + 𝑩𝒔
𝒛

Check ||𝒛|| ≤ 𝛼 −𝑚

||𝒔|| ≪ 𝑞

𝒚 ← −𝛼, 𝛼 𝜆

𝒓 ← 𝜒
𝒕𝒚 ≔ 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 ≔ 𝐶𝑜𝑚(𝒔; 𝒓)

If ||𝒛|| > 𝛼 −𝑚, reject

Prove knowledge
of 𝒚, 𝒔, 𝒓 s.t.

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒛 = 𝒚 + 𝑩𝒔

Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

Linear proof Inner product
proof

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒛 = 𝒚 + 𝑩𝒔

Linear proof

Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒛 = 𝒚 + 𝑩𝒔

Inner product
proof

Inner product
proof

Inner product
proof

Next step: inner products over ℤ𝑞

• We want to prove inner products (either between two committed
messages, or between one secret and one public vector)

• Working natively over integers will result with bad soundness error
(see previous lecture)

• We need to translate the inner products into relations over the
polynomial ring 𝑅𝑞

Setup

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where
𝑑 is a power-of-two.

• For 𝑖 ∈ ℤ2𝑑
× , let us denote 𝜎𝑖: 𝑅𝑞 ↦ 𝑅𝑞 to be the automorphism

defined by 𝜎𝑖 𝑋 = 𝑋𝑖.

• Let 𝜎 ≔ 𝜎−1. Seems irrelevant now but it will be useful later!

• For 𝑥 ∈ 𝑅𝑞, we denote 𝑐𝑡 𝑥 = 𝑥0 its constant coefficient/term.

The key ingredient

Lemma: Let u ≔ σ𝑖=0
𝑑−1𝑢𝑖𝑋

𝑖 and v ≔ σ𝑖=0
𝑑−1𝑣𝑖𝑋

𝑖 be ring
elements in 𝑅𝑞. Then, the constant coefficient of the

polynomial 𝑢𝜎−1 𝑣 ∈ 𝑅𝑞 is σ𝑖=0
𝑑−1𝑢𝑖𝑣𝑖.

Proof: By definition,

𝑢𝜎−1 𝑣 = (෍

𝑖=0

𝑑−1

𝑢𝑖𝑋
𝑖)𝜎 ෍

𝑖=0

𝑑−1

𝑣𝑖𝑋
𝑖 = (෍

𝑖=0

𝑑−1

𝑢𝑖𝑋
𝑖) ෍

𝑖=0

𝑑−1

𝑣𝑖𝑋
−𝑖 =෍

𝑖,𝑗

𝑢𝑖𝑣𝑗𝑋
𝑖−𝑗 .

Therefore, the constant term is indeed 𝑢0𝑣0 + 𝑢1𝑣1 +⋯+ 𝑢𝑑−1𝑣𝑑−1.

The key ingredient

Lemma: Let u ≔ σ𝑖=0
𝑑−1𝑢𝑖𝑋

𝑖 and v ≔ σ𝑖=0
𝑑−1𝑣𝑖𝑋

𝑖 be ring
elements in 𝑅𝑞. Then, the constant coefficient of the

polynomial 𝑢𝜎−1 𝑣 ∈ 𝑅𝑞 is σ𝑖=0
𝑑−1𝑢𝑖𝑣𝑖.

As an application of this lemma, we know a vector 𝒔 ∈ ℤ𝑑 satisfies 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞) if and only if

𝑐𝑡 𝑠 −෍

𝑖=0

𝑑−1

𝑋𝑖 ⋅ 𝜎 𝑠 = 0

where s ≔ σ𝑖=0
𝑑−1 𝑠𝑖𝑋

𝑖.

The key ingredient

Lemma: Let u ≔ σ𝑖=0
𝑑−1𝑢𝑖𝑋

𝑖 and v ≔ σ𝑖=0
𝑑−1 𝑣𝑖𝑋

𝑖 be ring
elements in 𝑅𝑞. Then, the constant coefficient of the

polynomial 𝑢𝜎−1 𝑣 ∈ 𝑅𝑞 is σ𝑖=0
𝑑−1𝑢𝑖𝑣𝑖.

As an application of this lemma, we know a vector 𝒔 = (𝒔𝟏, … , 𝒔𝒎/𝒅) ∈ ℤ𝑚 satisfies 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

if and only if

𝑐𝑡 ෍

𝑗=1

𝑚/𝑑

𝑠𝑗 −෍

𝑖=0

𝑑−1

𝑋𝑖 ⋅ 𝜎 𝑠𝑗 = 0

where sj ≔ σ𝑖=0
𝑑−1 𝑠𝑗⋅𝑑+𝑖𝑋

𝑖.

Back to overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒛 = 𝒚 + 𝑩𝒔

𝑐𝑡 ෍

𝑗=1

𝑚/𝑑

𝑠𝑗 −෍

𝑖=0

𝑑−1

𝑋𝑖 ⋅ 𝜎 𝑠𝑗 = 0∀𝑖, 𝑐𝑡 𝑓𝑖(𝒔) = 0

∀𝑖, 𝑐𝑡 𝑔𝒊(𝒔, 𝒚) = 0
𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)

So far so good

∀𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0
𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝑤ℎ𝑒𝑟𝑒 𝑓𝑖 are public quadratic
functions (with 𝜎)

Proving constant coefficients

• We want to prove that ∀𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0

• Clearly, for any 𝜇1, … , 𝜇𝑘 ∈ ℤ𝑞 we have

𝑐𝑡 ෍

𝑖=1

𝑘

𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) =෍

𝑖=1

𝑘

𝜇𝑖 ⋅ 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0 .

Proving constant coefficients

• We want to prove that ∀𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0

• Clearly, for any 𝜇1, … , 𝜇𝑘 ∈ ℤ𝑞 we have

𝑐𝑡 ෍

𝑖=1

𝑘

𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) =෍

𝑖=1

𝑘

𝜇𝑖 ⋅ 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0 .

But what happens if for some 𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) ≠ 0?

Then, with prob.
1

𝑞
, we have 𝑐𝑡 σ𝑖=1

𝑘 𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) = 0. Repeat L times.

Adding zero-knowledge

• σ𝑖=1
𝑘 𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) potentially leaks information about 𝒔, 𝒚

Adding zero-knowledge

• σ𝑖=1
𝑘 𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) potentially leaks information about 𝒔, 𝒚

• Sample and commit to random polynomials 𝑔1, … , 𝑔𝐿 ← {𝑥 ∈ 𝑅𝑞: 𝑐𝑡 𝑥 = 0}.

• Given challenges 𝜇𝑗,1, … , 𝜇𝑗,𝑘 for 𝑗 = 1,… , 𝐿, compute

ℎ𝑗: = 𝑔𝑗 +෍

𝑖=1

𝑘

𝜇𝑗,𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚)

Hence, 𝑐𝑡 ℎ𝑗 = 0 and ℎ𝑗 hides info about other coeffs of σ𝑖=1
𝑘 𝜇𝑗,𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚)

𝒔, 𝒚

∀𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0
𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)

𝑔1, … , 𝑔𝐿 ← {𝑥 ∈ 𝑅𝑞: 𝑐𝑡 𝑥 = 0}
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓)

𝜇𝑗,𝑖 𝑗,𝑖
← ℤ𝑞

𝐿×𝑘

∀𝑗, ℎ𝑗: = 𝑔𝑗 +෍

𝑖=1

𝑘

𝜇𝑗,𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚)

𝜇𝑗,𝑖 𝑗,𝑖

ℎ1, … , ℎ𝐿
Check ∀𝑗, 𝑐𝑡 ℎ𝑗 = 0

Overview

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓) ∀𝑗, ℎ𝑗 = 𝑔𝑗 +෍

𝑖=1

𝑘

𝜇𝑗,𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚)

In other words

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓) ∀𝑗, 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0

Public quadratic
function (with 𝜎)

Simple exercise

• Discuss with your neighbour (2
minutes):

How to reduce proving multiple
proving multiple quadratic
equations ∀𝑗, 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0 into
one 𝑃 𝒔, 𝒚, 𝒈 = 0?

𝒔, 𝒚

𝜂𝑖 ← 𝑅𝑞
𝐿

෍

𝑗=1

𝐿

𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0

𝜂1, … , 𝜂𝐿

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓)

∀𝑗, 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0

Simple
amortisation

Prove that:

Soundness analysis

• What’s the probability that σ𝑗=1
𝐿 𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0 if for some 𝑗,

𝑃𝑗 𝒔, 𝒚, 𝒈 ≠ 0?

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where 𝑑 is a
power-of-two and 𝑞 = 5 (𝑚𝑜𝑑 8).

Soundness analysis

• What’s the probability that σ𝑗=1
𝐿 𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0 if for some 𝑗,

𝑃𝑗 𝒔, 𝒚, 𝒈 ≠ 0?

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where 𝑑 is a
power-of-two and 𝑞 = 5 (𝑚𝑜𝑑 8).

• Then, 𝑋𝑑 + 1 = 𝑋
𝑑

2 − 𝑟 𝑋
𝑑

2 + 𝑟 factors into two irreducible
polynomials modulo 𝑞.

• By CRT, 𝑅𝑞 is isomorphic to
ℤ 𝑋

𝑋
𝑑
2−𝑟,𝑞

×
ℤ 𝑋

𝑋
𝑑
2−𝑟,𝑞

.

Soundness analysis

• What’s the probability that σ𝑗=1
𝐿 𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0 if for some 𝑗,

𝑃𝑗 𝒔, 𝒚, 𝒈 ≠ 0?

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where 𝑑 is a
power-of-two and 𝑞 = 5 (𝑚𝑜𝑑 8).

• Then, 𝑋𝑑 + 1 = 𝑋
𝑑

2 − 𝑟 𝑋
𝑑

2 + 𝑟 factors into two irreducible polynomials
modulo 𝑞.

• By CRT, 𝑅𝑞 is isomorphic to
ℤ 𝑋

𝑋
𝑑
2−𝑟,𝑞

×
ℤ 𝑋

𝑋
𝑑
2−𝑟,𝑞

.

• Hence the probability that 𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 𝑥 is at most 𝑞−𝑑/2.

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓) 𝑄 𝒔, 𝒚, 𝒈 = 0

I can only do handwaving thus far

ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

We could treat 𝒔𝟏 ≔ 𝒔
and 𝒎≔ (𝒚,𝒈).

ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

• The ABDLOP commitment under randomness 𝒔2 ∈ 𝑅𝑞
𝑚2 is defined as:

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

.

ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

• The ABDLOP commitment under randomness 𝒔2 ∈ 𝑅𝑞
𝑚2 is defined as:

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

.

If 𝑙 = 0 then ABDLOP = Ajtai commitment.

If 𝑚1 = 0 then ABDLOP = BDLOP commitment.

ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

• The ABDLOP commitment under randomness 𝒔2 ∈ 𝑅𝑞
𝑚2 is defined as:

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

.

Security:

Breaking binding implies finding a MSIS solution to 𝑨1 𝑨2 .

ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

• The ABDLOP commitment under randomness 𝒔2 ∈ 𝑅𝑞
𝑚2 is defined as:

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

.

Security:

Hiding follows from MLWE since
𝑨2
𝑩

𝒔𝟐 looks uniformly random (for

long enough randomness)

ABDLOP opening proof

45

(𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩), (𝒔1, 𝒔2,𝒎) (𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩)

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

and 𝒔1, 𝒔2 have small coefficients

ABDLOP opening proof

46

(𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩), (𝒔1, 𝒔2,𝒎) (𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩)

𝒚𝑖 ← 𝐷
𝑚𝑖

𝒘 = 𝑨1𝒚1 + 𝑨2𝒚2

𝒘

𝑐 ← 𝓒
𝑐

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖
𝒛1, 𝒛2 Check: i) 𝒛1, 𝒛2 are small

ii) 𝑨1𝒛1 + 𝑨2𝒛2 = 𝒘+ 𝑐𝒕𝐴

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

and 𝒔1, 𝒔2 have small coefficients

Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Note that the verifier can compute
𝒛1
𝑇𝒛1 = 𝒚1

𝑇𝒚1 + 2𝑐𝒚1
𝑇𝒔1 + 𝑐2𝒔1

𝑇𝒔1

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Note that the verifier can compute
𝒛1
𝑇𝒛1 = 𝒚1

𝑇𝒚1 + 2𝑐𝒚1
𝑇𝒔1 + 𝑐2𝒔1

𝑇𝒔1

Moreover, we know 𝒕𝐵 − 𝑩𝒛2 = −𝑩𝒚2 + 𝑐𝒎.

Thus:

𝒕𝐵 −𝑩𝒛2
𝑇 𝒕𝐵 − 𝑩𝒛2

= 𝑩𝒚2
𝑇𝑩𝒚2 − 2𝑐 𝑩𝒚2

𝑇𝒎+ 𝑐2𝒎𝑇𝒎

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Then,

𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝒔1 +𝒎𝑇𝒎)

where
𝑔0 = 𝒚1

𝑇𝒚1 + 𝑩𝒚2
𝑇𝑩𝒚2

𝑔1 = 2𝒚1
𝑇𝒔1 − 2 𝑩𝒚2

𝑇𝒎.
𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Then,

𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝒔1 +𝒎𝑇𝒎)

where
𝑔0 = 𝒚1

𝑇𝒚1 + 𝑩𝒚2
𝑇𝑩𝒚2

𝑔1 = 2𝒚1
𝑇𝒔1 − 2 𝑩𝒚2

𝑇𝒎.

Hence, commit to 𝑡1 ≔ 𝒃0
𝑻𝒔2 + 𝑔1.

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵
𝑡1

=

𝑨1
𝟎
𝟎

𝒔𝟏 +

𝑨2
𝑩
𝒃𝟏
𝑇 𝒔𝟐 +

𝟎
𝒎
𝑔1

Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Then,

𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝒔1 +𝒎𝑇𝒎)

where
𝑔0 = 𝒚1

𝑇𝒚1 + 𝑩𝒚2
𝑇𝑩𝒚2

𝑔1 = 2𝒚1
𝑇𝒔1 − 2 𝑩𝒚2

𝑇𝒎.

Hence, commit to 𝑡1 ≔ 𝒃0
𝑻𝒔2 + 𝑔1.

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵
𝑡1

=

𝑨1
𝟎
𝟎

𝒔𝟏 +

𝑨2
𝑩
𝒃𝟏
𝑇 𝒔𝟐 +

𝟎
𝒎
𝑔1

Appending the ABDLOP
commitment

Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

• 𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2 − (𝑡1 − 𝒃𝟏
𝑇𝒛2)

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening
proof

= 𝑔0 + 𝒃𝟏
𝑇𝒚2

where the right-hand side does not depend on 𝑐.

𝒕𝐴
𝒕𝐵
𝑡1

=

𝑨1
𝟎
𝟎

𝒔𝟏 +

𝑨2
𝑩
𝒃𝟏
𝑇 𝒔𝟐 +

𝟎
𝒎
𝑔1

= 𝑔0 + 𝑐𝑔1 − (𝑡1 − 𝒃𝟏
𝑇𝒛2)

Proving 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

(𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩), (𝒔1, 𝒔2,𝒎) (𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩)

𝒚𝑖 ← 𝐷
𝑚𝑖

𝒘 = 𝑨1𝒚1 + 𝑨2𝒚2

𝒘, 𝑡1, 𝑣

𝑐 ← 𝓒𝑐

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒛1, 𝒛2
Check: - 𝒛1, 𝒛2 are small
- 𝑨1𝒛1 + 𝑨2𝒛2 = 𝒘+ 𝑐𝒕𝐴
- and:

𝑔1 = 2𝒚1
𝑇𝒔1 − 2 𝑩𝒚2

𝑇𝒎
𝑡1 ≔ 𝒃1

𝑇𝒔2 + 𝑔1
𝑣 ≔ 𝒚1

𝑇𝒚1 + 𝑩𝒚2
𝑇𝑩𝒚2 + 𝒃𝟏

𝑇𝒚2

𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2 − (𝑡1 − 𝒃𝟏
𝑇𝒛2) = 𝑣

Quadratic equations with
automorphism
• Suppose we want to mix quadratic equations with

automorphisms, e.g.

𝒔1
𝑇𝜎(𝒔1) +𝒎𝑇𝜎(𝒎) = 𝟎.

If we assume that each challenge 𝑐 ∈ 𝐶 is stable under
the 𝜎 automorphism, then one can prove the statement
as before!

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

Quadratic equations with
automorphism
• Suppose we want to mix quadratic equations with

automorphisms, e.g.

𝒔1
𝑇𝜎(𝒔1) +𝒎𝑇𝜎(𝒎) = 𝟎.

Then,

𝒛1
𝑇𝜎(𝒛1) + 𝒕𝐵 − 𝑩𝒛2

𝑇𝜎 𝒕𝐵 −𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝜎(𝒔1) +𝒎𝑇𝝈(𝒎))

where
𝑔0 = 𝒚1

𝑇𝜎(𝒚1) + 𝑩𝒚2
𝑇𝜎(𝑩𝒚2)

𝑔1 = 𝒚1
𝑇𝜎 𝒔1 + 𝜎 𝒚1

𝑇 𝒔1 − 𝜎 𝑩𝒚2
𝑇𝒎− 𝑩𝒚2

𝑇𝜎(𝒎).

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

Quadratic equations with
automorphism
• Suppose we want to mix quadratic equations with

automorphisms, e.g.

𝒔1
𝑇𝜎(𝒔1) +𝒎𝑇𝜎(𝒎) = 𝟎.

Then,

𝒛1
𝑇𝜎(𝒛1) + 𝒕𝐵 − 𝑩𝒛2

𝑇𝜎 𝒕𝐵 −𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝜎(𝒔1) +𝒎𝑇𝝈(𝒎))

where
𝑔0 = 𝒚1

𝑇𝜎(𝒚1) + 𝑩𝒚2
𝑇𝜎(𝑩𝒚2)

𝑔1 = 𝒚1
𝑇𝜎 𝒔1 + 𝜎 𝒚1

𝑇 𝒔1 − 𝜎 𝑩𝒚2
𝑇𝒎− 𝑩𝒚2

𝑇𝜎(𝒎).

ABDLOP opening
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

We assumed 𝜎 𝑐 = 𝑐.

Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Let us pick:

𝐶 = {𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑑
2
−1
𝑋
𝑑

2
−1 − 𝑐𝑑

2
−1
𝑋
𝑑

2
+1 −⋯− 𝑐1𝑋

𝑑−1: 𝑐𝑖 ∈ −𝜅, 𝜅 }.

Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Let us pick:

𝐶 = {𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑑
2
−1
𝑋
𝑑

2
−1 − 𝑐𝑑

2
−1
𝑋
𝑑

2
+1 −⋯− 𝑐1𝑋

𝑑−1: 𝑐𝑖 ∈ −𝜅, 𝜅 }.

𝐶 = 2𝜅 + 1 𝑑/2.

Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Let us pick:

𝐶 = {𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑑
2
−1
𝑋
𝑑

2
−1 − 𝑐𝑑

2
−1
𝑋
𝑑

2
+1 −⋯− 𝑐1𝑋

𝑑−1: 𝑐𝑖 ∈ −𝜅, 𝜅 }.

Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Let us pick:

𝐶 = {𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑑
2
−1
𝑋
𝑑

2
−1 − 𝑐𝑑

2
−1
𝑋
𝑑

2
+1 −⋯− 𝑐1𝑋

𝑑−1: 𝑐𝑖 ∈ −𝜅, 𝜅 }.

Lemma: Suppose 𝑞 ≡ 5 (𝑚𝑜𝑑 8). If 𝜎−1 𝑐 = 𝑐 and 𝑐 is non-zero, then 𝑐
is invertible over 𝑅𝑞 .

Soundness analysis

• Since the verification equation is a ``quadratic equation’’, we actually
need to extract three transcripts 𝒘, 𝑐, 𝒛 , 𝒘, 𝑐′, 𝒛′ , (𝒘, 𝑐′′, 𝒛′′) with
pairwise different 𝑐, 𝑐′, 𝑐′′ ∈ 𝐶.

• (Relaxed) Binding from SIS

• Interpolation approach to prove quadratic equations

Soundness analysis

• Since the verification equation is a ``quadratic equation’’, we actually
need to extract three transcripts 𝒘, 𝑐, 𝒛 , 𝒘, 𝑐′, 𝒛′ , (𝒘, 𝑐′′, 𝒛′′) with
pairwise different 𝑐, 𝑐′, 𝑐′′ ∈ 𝐶.

• (Relaxed) Binding from SIS

• Interpolation approach to prove quadratic equations

• As before, we extract a candidate witness 𝒔𝑖 ≔ 𝒔𝑖
∗/𝑐∗ (division of two

short elements) and 𝒎, s.t. 𝑨1𝒔1 + 𝑨2𝒔2 = 𝒕𝑨 and 𝑩𝒔𝟐 +𝒎 = 𝒕𝑩.

Extraction - meaning

• From the opening proof, we obtain a candidate witness 𝒔 , it could be
large (but relaxed binding holds)

Extraction - meaning

• From the opening proof, we obtain a candidate witness 𝒔 , it could be
large (but relaxed binding holds)

• quadratic equations/proving constant terms make sure that

𝑨𝒔 = 𝒖 (mod 𝑞) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

Extraction - meaning

• From the opening proof, we obtain a candidate witness 𝒔 , it could be
large (but relaxed binding holds)

• quadratic equations/proving constant terms make sure that

• Approximate range proof makes sure that ||𝒔|| ≪ 𝑞, and we are
done.

𝑨𝒔 = 𝒖 (mod 𝑞) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

Which 𝑑 to pick - tradeoff

• We want 𝑑 to be large enough,
so that the challenge space is
exponential-size

• We want 𝑑 to be as small as
possible, since sending ring
elements will be costly

Efficiency and
applications

Applications

• Proving knowledge of short 𝒔, 𝒆 s.t. 𝑨𝒔 + 𝒆 = 𝒖.

Scheme Proof size

Stern proofs (e.g. [Ste93,LNSW13]) 3MB

[Beu20] 233KB

[BLS19,YAZ+19] 384KB

Ligero [AHIV17] 157KB

Aurora [BCR+19,BCOS20] 72KB

[ALS20,ENS20] 47KB

[LNS21] 33KB

[LNP22] 14KB

Applications

Constructions Proof/Signature size

verifiable encryption [LNP22] 19KB

integer addition/multiplication [LN22] 12/15KB

group signature [LN22] 20KB

ring signature [LN22] 16KB

blind signature [AKSY22, BLNS23] 44KB/26KB

Quiz

• Please skip ``register for credit’’

• Put your username if you want to take
part in the competition

What about SNARKs?

LaBRADOR [BS23]

Generic statement

Approximate range
proof

Equations over ℤ𝑞

Equations over 𝑅𝑞 Amortise

Succinct proof sizes (60KB) but, non-
succinct verification!

Linear-sized matrix 𝑩

How to achieve sublinear verification with ARP

• Use a structured tensor-type matrix 𝑩 [CMNW24]

• Use LaBRADOR as a subroutine [NS24]

• Just don’t use ARP (and deal with its consequences)

Summary
• Linear-sized efficient ``exact’’ ZKP

from lattices

➢ Under standard assumptions:
MSIS and MLWE

➢ Transparent setup

➢ Sizes: ≈ 15KB

➢ Can be made non-interactive via
Fiat-Shamir transformation

• ``Approximate’’ proofs more efficient
and have some applications

Thank you!

https://eprint.iacr.org/2022/284

References

[Ajt96] Miklós Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract).In STOC 1996.

[ACLMT22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, Sri AravindaKrishnan Thyagarajan. Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable.
In CRYPTO 2022.

[AL21] Martin R. Albrecht and Russell W. F. Lai. Subtractive Sets over Cyclotomic Rings: Limits of Schnorr-like Arguments over Lattices. In CRYPTO 2021.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted setup. In ACM CCS 2017.

[ACK21] A Compressed Σ-Protocol Theory for Lattices. Thomas Attema, Ronald Cramer, and Lisa Kohl. In CRYPTO 2021.

[AKSY21] Shweta Agrawal and Elena Kirshanova and Damien Stehle and Anshu Yadav. Practical, Round-Optimal Lattice-Based Blind Signatures. IACR Cryptol. ePrint Arch., 2021:1565

[BCOS20] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner . Efficient Post-Quantum SNARKs for RSIS and RLWE and their Applications to Privacy. In PQCrypto 2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT 2019.

[Beu20] Ward Beullens. Sigma protocols for mq, PKP and sis, and fishy signature schemes. In EUROCRYPT 2020.

[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. A non-PCP
approach to succinct quantum-safe zero-knowledge. In CRYPTO 2020.

[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) exact lattice- based zero-knowledge proofs. In CRYPTO 2019.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive proofs from holography. In EUROCRYPT 2020.

[ISW21] Yuval Ishai and Hang Su and David J. Wu. Shorter and Faster Post-Quantum Designated-Verifier zkSNARKs from Lattices. In ACM CCS 2021.

[LN22] Vadim Lyubashevsky and Ngoc Khanh Nguyen. BLOOM: Bimodal Lattice One-Out-of-Many Proofs and Applications. In submission.

[LNP22] Vadim Lyubashevsky Ngoc Khanh Nguyen and Maxime Plancon. Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General. In CRYPTO 2022.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehle, and Huaxiong Wang. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In PKC 2013.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In ASIACRYPT 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012.

[NS22] Ngoc Khanh Nguyen and Gregor Seiler. Practical Sublinear Proofs for R1CS from Lattices. In CRYPTO 2022.

[Sta21] StarkWare Team. ethSTARK documentation. IACR Cryptol. ePrint Arch., 2021:582, 2021

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding. In CRYPTO 1993.

[YAZ+19] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William Whyte. Efficient lattice- based zero-knowledge arguments with standard soundness: Construction and
applications. In CRYPTO 2019.

	Slide 1: Lattice-Based Zero-Knowledge Proofs (II)
	Slide 2: So far…
	Slide 3: But we wanted more!
	Slide 4: The main focus of this talk:
	Slide 5: Overview
	Slide 6: Overview
	Slide 7: Overview
	Slide 8: Overview
	Slide 9: Overview + ZK
	Slide 10: Approximate range proof lemma
	Slide 11: Overview
	Slide 12: Intuition
	Slide 13: Commitments
	Slide 14: Attempt 2
	Slide 15: Attempt 2
	Slide 16: Approximate range proof
	Slide 17: Overview
	Slide 18: Overview
	Slide 19: Next step: inner products over double-struck cap Z sub q
	Slide 20: Setup
	Slide 21: The key ingredient
	Slide 22: The key ingredient
	Slide 23: The key ingredient
	Slide 24: Back to overview
	Slide 25: So far so good
	Slide 26: Proving constant coefficients
	Slide 27: Proving constant coefficients
	Slide 28: Adding zero-knowledge
	Slide 29: Adding zero-knowledge
	Slide 30
	Slide 31: Overview
	Slide 32: In other words
	Slide 33: Simple exercise
	Slide 34
	Slide 35: Soundness analysis
	Slide 36: Soundness analysis
	Slide 37: Soundness analysis
	Slide 38
	Slide 39: I can only do handwaving thus far
	Slide 40: ABDLOP commitment (= [Ajt96] + [BDLOP18])
	Slide 41: ABDLOP commitment (= [Ajt96] + [BDLOP18])
	Slide 42: ABDLOP commitment (= [Ajt96] + [BDLOP18])
	Slide 43: ABDLOP commitment (= [Ajt96] + [BDLOP18])
	Slide 44: ABDLOP commitment (= [Ajt96] + [BDLOP18])
	Slide 45: ABDLOP opening proof
	Slide 46: ABDLOP opening proof
	Slide 47: Quadratic equations
	Slide 48: Quadratic equations
	Slide 49: Quadratic equations
	Slide 50: Quadratic equations
	Slide 51: Quadratic equations
	Slide 52: Quadratic equations
	Slide 53: Quadratic equations
	Slide 54: Quadratic equations
	Slide 55: Proving bold italic s sub 1 to the cap T , bold italic s sub 1 plus bold italic m to the cap T , bold italic m equals bold 0 .
	Slide 56: Quadratic equations with automorphism
	Slide 57: Quadratic equations with automorphism
	Slide 58: Quadratic equations with automorphism
	Slide 59: Challenge space
	Slide 60: Challenge space
	Slide 61: Challenge space
	Slide 62: Challenge space
	Slide 63: Challenge space
	Slide 64: Soundness analysis
	Slide 65: Soundness analysis
	Slide 66: Extraction - meaning
	Slide 67: Extraction - meaning
	Slide 68: Extraction - meaning
	Slide 69: Which d to pick - tradeoff
	Slide 70: Efficiency and applications
	Slide 71: Applications
	Slide 72: Applications
	Slide 73: Quiz
	Slide 74: What about SNARKs?
	Slide 75: LaBRADOR [BS23]
	Slide 76
	Slide 77: How to achieve sublinear verification with ARP
	Slide 78: Summary
	Slide 79: References

