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So far…

Approximate [Lyu09,Lyu12]:

• We only prove that we know 
short 𝒔 and short 𝑐 such that 
𝐴𝒔 = 𝑐𝒖 .

• This is enough for 
identification schemes and 
signatures like CRYSTALS-
Dilithium.

• Small proof sizes (≈ 3𝐾𝐵).



But we wanted more!

Exact:

• We prove exactly that 𝒔 is 
within specified range and  
𝐴𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) .

• This is crucial for building 
more advanced privacy-
preserving primitives, e.g. 
verifiable encryption.

• Much bigger proof sizes.



The main focus of this talk:

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and 𝐬 ∈ 0,1 𝑚

Equation 
over ring ℤ𝑞

Later on:
❑ Quiz

❑ Applications
❑ Obtaining succinct proofs



Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔 ∈ {0,1}𝑚

Lemma: Let 𝒔 ∈ ℤ𝒎. Then, 𝒔 ∈ {0,1}𝑚 if and only if 
𝒔, 𝒔 − 𝟏 = 0. 

Proof: Suppose 𝒔, 𝒔 − 𝟏 = 0. This means that

෍

𝑖=1

𝑚

𝑠𝑖 𝑠𝑖 − 1 = 0 .

However, since each 𝑠𝑖 is an integer, we have
𝑠𝑖 𝑠𝑖 − 1 ≥ 0

Hence, the sum is equal to zero if each of the 
inequalities is an equality, i.e. 𝑠𝑖 ∈ {0,1}.



Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0.

𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

||𝒔|| ≪ 𝑞

and



Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞) ||𝒔|| ≪ 𝑞

Linear proof Inner product 
proof

Approximate 
range proof



Overview

||𝒔|| ≪ 𝑞

Approximate 
range proof

• If I take a random short vector 𝒃, 
then clearly 

𝒃, 𝒔
is short.

• But if I am given a large vector 𝒔,
then what’s the probability that

𝒃, 𝒔
is short?



Overview + ZK

||𝒔|| ≪ 𝑞

Approximate 
range proof

• If I take a random short vector 𝒃, 
add a short mask 𝑦 then clearly 

𝑦 + 𝒃, 𝒔
is short.

• But if I am given a large vector 𝒔
and 𝑦, then what’s the probability 
that

𝑦 + 𝒃, 𝒔
is short?



Approximate range proof lemma

||𝒔|| ≪ 𝑞

Approximate 
range proof

Lemma: 

Pr
𝒃← 0,1 𝑚

| 𝒃, 𝒔 + 𝑦 <
1

2
⋅ ||𝒔||] ≤ 1/2.

Proof: Let 𝑠𝑖 = ||𝒔|| for some 𝑖. 
Then, we can write 𝒃, 𝒔 + 𝑦 = 𝑏𝑖𝑠𝑖 + 𝑟.

By the triangle inequality, at least one of {𝑟, 𝑠𝑖 + 𝑟} has to 

have norm at least 
1

2
⋅ ||𝒔||.

The probability of hitting that value is at least ½.



Overview

||𝒔|| ≪ 𝑞

Approximate 
range proof

Lemma: 

Pr
𝑩← 0,1 𝜆×𝑚

||𝑩𝒔 + 𝒚| <
1

2
⋅ ||𝒔||] ≤ 1/2𝜆.

Proof: By amplification.



Intuition

𝒔 ∈ 0,1 𝑚

𝑩 ← {0,1}𝜆×𝑚
𝑩

𝒛 = 𝒚 + 𝑩𝒔
𝒛 Check ||𝒛|| ≤ 𝛼 −𝑚

𝒛 = 𝒚 + 𝑩𝒔

||𝒔|| ≪ 𝑞

𝒚 ← −𝛼, 𝛼 𝜆 𝒚, 𝒔

If ||𝒛|| > 𝛼 −𝑚, reject

Hence, the verifier is convinced 
that ||𝒔|| ≤ 2||𝒚 + 𝑩𝒔|| ≤

2 𝛼 −𝑚
(with high probability).



Commitments

Message m

𝑡 = 𝐶𝑜𝑚(𝑚; 𝑟)

Binding: 
It’s hard to find two different openings 
𝑚, 𝑟 and (𝑚′, 𝑟′) such that 
𝐶𝑜𝑚 𝑚; 𝑟 = 𝐶𝑜𝑚 𝑚′; 𝑟′ .

Hiding: 
The adversary can’t learn any information 
about (𝑚, 𝑟) from 𝑡



Attempt 2

𝒔 ∈ 0,1 𝑚

𝑩 ← {0,1}𝜆×𝑚
𝑩

𝒛 = 𝒚 + 𝑩𝒔
𝒛, 𝒚, 𝒔, 𝒓

Check ||𝒛|| ≤ 𝛼 −𝑚
𝒛 = 𝒚 + 𝑩𝒔

||𝒔|| ≪ 𝑞

𝒚 ← −𝛼, 𝛼 𝜆

𝒓 ← 𝜒
𝒕𝒚 ≔ 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 ≔ 𝐶𝑜𝑚(𝒔; 𝒓)

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)

If ||𝒛|| > 𝛼 −𝑚, reject



Attempt 2

𝒔 ∈ 0,1 𝑚

𝑩 ← {0,1}𝜆×𝑚
𝑩

𝒛 = 𝒚 + 𝑩𝒔
𝒛, 𝒚, 𝒔, 𝒓

Check ||𝒛|| ≤ 𝛼 −𝑚
𝒛 = 𝒚 + 𝑩𝒔

||𝒔|| ≪ 𝑞

𝒚 ← −𝛼, 𝛼 𝜆

𝒓 ← 𝜒
𝒕𝒚 ≔ 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 ≔ 𝐶𝑜𝑚(𝒔; 𝒓)

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)

If ||𝒛|| > 𝛼 −𝑚, reject

Instead of sending the 
openings, we prove
Knowledge of them



Approximate range proof

𝒔 ∈ 0,1 𝑚

𝑩 ← {0,1}𝜆×𝑚
𝑩

𝒛 = 𝒚 + 𝑩𝒔
𝒛

Check ||𝒛|| ≤ 𝛼 −𝑚

||𝒔|| ≪ 𝑞

𝒚 ← −𝛼, 𝛼 𝜆

𝒓 ← 𝜒
𝒕𝒚 ≔ 𝐶𝑜𝑚 𝒚; 𝒓 , 𝒕𝒔 ≔ 𝐶𝑜𝑚(𝒔; 𝒓)

If ||𝒛|| > 𝛼 −𝑚, reject

Prove knowledge 
of 𝒚, 𝒔, 𝒓 s.t.

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒛 = 𝒚 + 𝑩𝒔



Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

Linear proof Inner product 
proof

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒛 = 𝒚 + 𝑩𝒔

Linear proof



Overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒛 = 𝒚 + 𝑩𝒔

Inner product 
proof

Inner product 
proof

Inner product 
proof



Next step: inner products over ℤ𝑞

• We want to prove inner products (either between two committed 
messages, or between one secret and one public vector)

• Working natively over integers will result with bad soundness error 
(see previous lecture)

• We need to translate the inner products into relations over the 
polynomial ring 𝑅𝑞



Setup

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where 
𝑑 is a power-of-two.

• For 𝑖 ∈ ℤ2𝑑
× , let us denote 𝜎𝑖: 𝑅𝑞 ↦ 𝑅𝑞 to be the automorphism 

defined by 𝜎𝑖 𝑋 = 𝑋𝑖.

• Let 𝜎 ≔ 𝜎−1. Seems irrelevant now but it will be useful later!

• For 𝑥 ∈ 𝑅𝑞, we denote 𝑐𝑡 𝑥 = 𝑥0 its constant coefficient/term.



The key ingredient

Lemma: Let u ≔ σ𝑖=0
𝑑−1𝑢𝑖𝑋

𝑖 and v ≔ σ𝑖=0
𝑑−1𝑣𝑖𝑋

𝑖 be ring 
elements in 𝑅𝑞. Then, the constant coefficient of the 

polynomial 𝑢𝜎−1 𝑣 ∈ 𝑅𝑞 is σ𝑖=0
𝑑−1𝑢𝑖𝑣𝑖.

Proof: By definition,

𝑢𝜎−1 𝑣 = (෍

𝑖=0

𝑑−1

𝑢𝑖𝑋
𝑖)𝜎 ෍

𝑖=0

𝑑−1

𝑣𝑖𝑋
𝑖 = (෍

𝑖=0

𝑑−1

𝑢𝑖𝑋
𝑖) ෍

𝑖=0

𝑑−1

𝑣𝑖𝑋
−𝑖 =෍

𝑖,𝑗

𝑢𝑖𝑣𝑗𝑋
𝑖−𝑗 .

Therefore, the constant term is indeed 𝑢0𝑣0 + 𝑢1𝑣1 +⋯+ 𝑢𝑑−1𝑣𝑑−1.



The key ingredient

Lemma: Let u ≔ σ𝑖=0
𝑑−1𝑢𝑖𝑋

𝑖 and v ≔ σ𝑖=0
𝑑−1𝑣𝑖𝑋

𝑖 be ring 
elements in 𝑅𝑞. Then, the constant coefficient of the 

polynomial 𝑢𝜎−1 𝑣 ∈ 𝑅𝑞 is σ𝑖=0
𝑑−1𝑢𝑖𝑣𝑖.

As an application of this lemma, we know a vector 𝒔 ∈ ℤ𝑑 satisfies 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞) if and only if

𝑐𝑡 𝑠 −෍

𝑖=0

𝑑−1

𝑋𝑖 ⋅ 𝜎 𝑠 = 0

where s ≔ σ𝑖=0
𝑑−1 𝑠𝑖𝑋

𝑖.



The key ingredient

Lemma: Let u ≔ σ𝑖=0
𝑑−1𝑢𝑖𝑋

𝑖 and v ≔ σ𝑖=0
𝑑−1 𝑣𝑖𝑋

𝑖 be ring 
elements in 𝑅𝑞. Then, the constant coefficient of the 

polynomial 𝑢𝜎−1 𝑣 ∈ 𝑅𝑞 is σ𝑖=0
𝑑−1𝑢𝑖𝑣𝑖.

As an application of this lemma, we know a vector 𝒔 = (𝒔𝟏, … , 𝒔𝒎/𝒅) ∈ ℤ𝑚 satisfies 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

if and only if

𝑐𝑡 ෍

𝑗=1

𝑚/𝑑

𝑠𝑗 −෍

𝑖=0

𝑑−1

𝑋𝑖 ⋅ 𝜎 𝑠𝑗 = 0

where sj ≔ σ𝑖=0
𝑑−1 𝑠𝑗⋅𝑑+𝑖𝑋

𝑖.



Back to overview

𝑨𝒔 = 𝒖 (mod q) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒛 = 𝒚 + 𝑩𝒔

𝑐𝑡 ෍

𝑗=1

𝑚/𝑑

𝑠𝑗 −෍

𝑖=0

𝑑−1

𝑋𝑖 ⋅ 𝜎 𝑠𝑗 = 0∀𝑖, 𝑐𝑡 𝑓𝑖(𝒔) = 0

∀𝑖, 𝑐𝑡 𝑔𝒊(𝒔, 𝒚) = 0
𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)



So far so good

∀𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0
𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝑤ℎ𝑒𝑟𝑒 𝑓𝑖 are public quadratic 
functions (with 𝜎)



Proving constant coefficients

• We want to prove that ∀𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0

• Clearly, for any 𝜇1, … , 𝜇𝑘 ∈ ℤ𝑞 we have 

𝑐𝑡 ෍

𝑖=1

𝑘

𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) =෍

𝑖=1

𝑘

𝜇𝑖 ⋅ 𝑐𝑡 𝑓𝒊(𝒔, 𝒚 ) = 0 .



Proving constant coefficients

• We want to prove that ∀𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0

• Clearly, for any 𝜇1, … , 𝜇𝑘 ∈ ℤ𝑞 we have 

𝑐𝑡 ෍

𝑖=1

𝑘

𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) =෍

𝑖=1

𝑘

𝜇𝑖 ⋅ 𝑐𝑡 𝑓𝒊(𝒔, 𝒚 ) = 0 .

But what happens if for some 𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚 ) ≠ 0?

Then, with prob. 
1

𝑞
, we have 𝑐𝑡 σ𝑖=1

𝑘 𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) = 0. Repeat L times.



Adding zero-knowledge

• σ𝑖=1
𝑘 𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) potentially leaks information about 𝒔, 𝒚



Adding zero-knowledge

• σ𝑖=1
𝑘 𝜇𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚) potentially leaks information about 𝒔, 𝒚

• Sample and commit to random polynomials 𝑔1, … , 𝑔𝐿 ← {𝑥 ∈ 𝑅𝑞: 𝑐𝑡 𝑥 = 0}.

• Given challenges 𝜇𝑗,1, … , 𝜇𝑗,𝑘 for 𝑗 = 1,… , 𝐿, compute

ℎ𝑗: = 𝑔𝑗 +෍

𝑖=1

𝑘

𝜇𝑗,𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚)

Hence, 𝑐𝑡 ℎ𝑗 = 0 and ℎ𝑗 hides info about other coeffs of σ𝑖=1
𝑘 𝜇𝑗,𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚)



𝒔, 𝒚

∀𝑖, 𝑐𝑡 𝑓𝒊(𝒔, 𝒚) = 0
𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)

𝑔1, … , 𝑔𝐿 ← {𝑥 ∈ 𝑅𝑞: 𝑐𝑡 𝑥 = 0}
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓)

𝜇𝑗,𝑖 𝑗,𝑖
← ℤ𝑞

𝐿×𝑘

∀𝑗, ℎ𝑗: = 𝑔𝑗 +෍

𝑖=1

𝑘

𝜇𝑗,𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚)

𝜇𝑗,𝑖 𝑗,𝑖

ℎ1, … , ℎ𝐿
Check ∀𝑗, 𝑐𝑡 ℎ𝑗 = 0



Overview

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓) ∀𝑗, ℎ𝑗 = 𝑔𝑗 +෍

𝑖=1

𝑘

𝜇𝑗,𝑖 ⋅ 𝑓𝒊(𝒔, 𝒚)



In other words

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓) ∀𝑗, 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0

Public quadratic 
function (with 𝜎)



Simple exercise

• Discuss with your neighbour (2 
minutes):

How to reduce proving multiple 
proving multiple quadratic 
equations ∀𝑗, 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0 into 
one 𝑃 𝒔, 𝒚, 𝒈 = 0?



𝒔, 𝒚

𝜂𝑖 ← 𝑅𝑞
𝐿

෍

𝑗=1

𝐿

𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0

𝜂1, … , 𝜂𝐿

𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓)

∀𝑗, 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0

Simple 
amortisation

Prove that:



Soundness analysis

• What’s the probability that σ𝑗=1
𝐿 𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0 if for some 𝑗, 

𝑃𝑗 𝒔, 𝒚, 𝒈 ≠ 0?

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where 𝑑 is a 
power-of-two and 𝑞 = 5 (𝑚𝑜𝑑 8). 



Soundness analysis

• What’s the probability that σ𝑗=1
𝐿 𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0 if for some 𝑗, 

𝑃𝑗 𝒔, 𝒚, 𝒈 ≠ 0?

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where 𝑑 is a 
power-of-two and 𝑞 = 5 (𝑚𝑜𝑑 8). 

• Then, 𝑋𝑑 + 1 = 𝑋
𝑑

2 − 𝑟 𝑋
𝑑

2 + 𝑟 factors into two irreducible 
polynomials modulo 𝑞.

• By CRT, 𝑅𝑞 is isomorphic to 
ℤ 𝑋

𝑋
𝑑
2−𝑟,𝑞

×
ℤ 𝑋

𝑋
𝑑
2−𝑟,𝑞

.



Soundness analysis

• What’s the probability that σ𝑗=1
𝐿 𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 0 if for some 𝑗, 

𝑃𝑗 𝒔, 𝒚, 𝒈 ≠ 0?

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where 𝑑 is a 
power-of-two and 𝑞 = 5 (𝑚𝑜𝑑 8). 

• Then, 𝑋𝑑 + 1 = 𝑋
𝑑

2 − 𝑟 𝑋
𝑑

2 + 𝑟 factors into two irreducible polynomials 
modulo 𝑞.

• By CRT, 𝑅𝑞 is isomorphic to 
ℤ 𝑋

𝑋
𝑑
2−𝑟,𝑞

×
ℤ 𝑋

𝑋
𝑑
2−𝑟,𝑞

.

• Hence the probability that 𝜂𝑗 ⋅ 𝑃𝑗 𝒔, 𝒚, 𝒈 = 𝑥 is at most 𝑞−𝑑/2.  



𝒕𝒚 = 𝐶𝑜𝑚 𝒚; 𝒓

𝒕𝒔 = 𝐶𝑜𝑚(𝒔; 𝒓)
𝒕𝒈 ≔ 𝐶𝑜𝑚(𝒈; 𝒓) 𝑄 𝒔, 𝒚, 𝒈 = 0



I can only do handwaving thus far



ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

We could treat 𝒔𝟏 ≔ 𝒔
and 𝒎≔ (𝒚,𝒈).



ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

• The ABDLOP commitment under randomness 𝒔2 ∈ 𝑅𝑞
𝑚2 is defined as:

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

.



ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

• The ABDLOP commitment under randomness 𝒔2 ∈ 𝑅𝑞
𝑚2 is defined as:

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

.

If 𝑙 = 0 then ABDLOP = Ajtai commitment.

If 𝑚1 = 0 then ABDLOP = BDLOP commitment.



ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

• The ABDLOP commitment under randomness 𝒔2 ∈ 𝑅𝑞
𝑚2 is defined as:

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

.

Security:

Breaking binding implies finding a MSIS solution to 𝑨1 𝑨2 .



ABDLOP commitment (= [Ajt96] + [BDLOP18])

• Suppose we want to commit to a polynomial vector 𝒔𝟏,𝒎 ∈ 𝑅𝑞
𝑚1+𝑙

where 𝒔𝟏 has small norm (but not necessarily 𝒎).

• The ABDLOP commitment under randomness 𝒔2 ∈ 𝑅𝑞
𝑚2 is defined as:

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

.

Security:

Hiding follows from MLWE since 
𝑨2
𝑩

𝒔𝟐 looks uniformly random (for 

long enough randomness)



ABDLOP opening proof

45

(𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩), (𝒔1, 𝒔2,𝒎) (𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩)

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

and 𝒔1, 𝒔2 have small coefficients



ABDLOP opening proof

46

(𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩), (𝒔1, 𝒔2,𝒎) (𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩)

𝒚𝑖 ← 𝐷
𝑚𝑖

𝒘 = 𝑨1𝒚1 + 𝑨2𝒚2

𝒘

𝑐 ← 𝓒
𝑐

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖
𝒛1, 𝒛2 Check: i) 𝒛1, 𝒛2 are small

ii) 𝑨1𝒛1 + 𝑨2𝒛2 = 𝒘+ 𝑐𝒕𝐴

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

and 𝒔1, 𝒔2 have small coefficients



Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎



Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎



Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Note that the verifier can compute
𝒛1
𝑇𝒛1 = 𝒚1

𝑇𝒚1 + 2𝑐𝒚1
𝑇𝒔1 + 𝑐2𝒔1

𝑇𝒔1

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎



Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Note that the verifier can compute
𝒛1
𝑇𝒛1 = 𝒚1

𝑇𝒚1 + 2𝑐𝒚1
𝑇𝒔1 + 𝑐2𝒔1

𝑇𝒔1

Moreover, we know 𝒕𝐵 − 𝑩𝒛2 = −𝑩𝒚2 + 𝑐𝒎.

Thus:

𝒕𝐵 −𝑩𝒛2
𝑇 𝒕𝐵 − 𝑩𝒛2

= 𝑩𝒚2
𝑇𝑩𝒚2 − 2𝑐 𝑩𝒚2

𝑇𝒎+ 𝑐2𝒎𝑇𝒎

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎



Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Then,

𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝒔1 +𝒎𝑇𝒎)

where
𝑔0 = 𝒚1

𝑇𝒚1 + 𝑩𝒚2
𝑇𝑩𝒚2

𝑔1 = 2𝒚1
𝑇𝒔1 − 2 𝑩𝒚2

𝑇𝒎.
𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎



Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Then,

𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝒔1 +𝒎𝑇𝒎)

where
𝑔0 = 𝒚1

𝑇𝒚1 + 𝑩𝒚2
𝑇𝑩𝒚2

𝑔1 = 2𝒚1
𝑇𝒔1 − 2 𝑩𝒚2

𝑇𝒎.

Hence, commit to 𝑡1 ≔ 𝒃0
𝑻𝒔2 + 𝑔1.

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵
𝑡1

=

𝑨1
𝟎
𝟎

𝒔𝟏 +

𝑨2
𝑩
𝒃𝟏
𝑇 𝒔𝟐 +

𝟎
𝒎
𝑔1



Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

Then,

𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝒔1 +𝒎𝑇𝒎)

where
𝑔0 = 𝒚1

𝑇𝒚1 + 𝑩𝒚2
𝑇𝑩𝒚2

𝑔1 = 2𝒚1
𝑇𝒔1 − 2 𝑩𝒚2

𝑇𝒎.

Hence, commit to 𝑡1 ≔ 𝒃0
𝑻𝒔2 + 𝑔1.

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵
𝑡1

=

𝑨1
𝟎
𝟎

𝒔𝟏 +

𝑨2
𝑩
𝒃𝟏
𝑇 𝒔𝟐 +

𝟎
𝒎
𝑔1

Appending the ABDLOP 
commitment



Quadratic equations

• Suppose we want to prove 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

• 𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2 − (𝑡1 − 𝒃𝟏
𝑇𝒛2)

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

ABDLOP opening 
proof

= 𝑔0 + 𝒃𝟏
𝑇𝒚2

where the right-hand side does not depend on 𝑐.

𝒕𝐴
𝒕𝐵
𝑡1

=

𝑨1
𝟎
𝟎

𝒔𝟏 +

𝑨2
𝑩
𝒃𝟏
𝑇 𝒔𝟐 +

𝟎
𝒎
𝑔1

= 𝑔0 + 𝑐𝑔1 − (𝑡1 − 𝒃𝟏
𝑇𝒛2)



Proving 𝒔1
𝑇𝒔1 +𝒎𝑇𝒎 = 𝟎.

(𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩), (𝒔1, 𝒔2,𝒎) (𝑨1, 𝑨2, 𝑩, 𝒕𝐴, 𝒕𝑩)

𝒚𝑖 ← 𝐷
𝑚𝑖

𝒘 = 𝑨1𝒚1 + 𝑨2𝒚2

𝒘, 𝑡1, 𝑣

𝑐 ← 𝓒𝑐

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒛1, 𝒛2
Check: - 𝒛1, 𝒛2 are small
- 𝑨1𝒛1 + 𝑨2𝒛2 = 𝒘+ 𝑐𝒕𝐴
- and:

𝑔1 = 2𝒚1
𝑇𝒔1 − 2 𝑩𝒚2

𝑇𝒎
𝑡1 ≔ 𝒃1

𝑇𝒔2 + 𝑔1
𝑣 ≔ 𝒚1

𝑇𝒚1 + 𝑩𝒚2
𝑇𝑩𝒚2 + 𝒃𝟏

𝑇𝒚2

𝒛1
𝑇𝒛1 + 𝒕𝐵 − 𝑩𝒛2

𝑇 𝒕𝐵 − 𝑩𝒛2 − (𝑡1 − 𝒃𝟏
𝑇𝒛2) = 𝑣



Quadratic equations with 
automorphism 
• Suppose we want to mix quadratic equations with 

automorphisms, e.g. 

𝒔1
𝑇𝜎(𝒔1) +𝒎𝑇𝜎(𝒎) = 𝟎.

If we assume that each challenge 𝑐 ∈ 𝐶 is stable under 
the 𝜎 automorphism, then one can prove the statement 
as before!  

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐



Quadratic equations with 
automorphism 
• Suppose we want to mix quadratic equations with 

automorphisms, e.g. 

𝒔1
𝑇𝜎(𝒔1) +𝒎𝑇𝜎(𝒎) = 𝟎.

Then,

𝒛1
𝑇𝜎(𝒛1) + 𝒕𝐵 − 𝑩𝒛2

𝑇𝜎 𝒕𝐵 −𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝜎(𝒔1) +𝒎𝑇𝝈(𝒎))

where
𝑔0 = 𝒚1

𝑇𝜎(𝒚1) + 𝑩𝒚2
𝑇𝜎(𝑩𝒚2)

𝑔1 = 𝒚1
𝑇𝜎 𝒔1 + 𝜎 𝒚1

𝑇 𝒔1 − 𝜎 𝑩𝒚2
𝑇𝒎− 𝑩𝒚2

𝑇𝜎(𝒎).

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐



Quadratic equations with 
automorphism 
• Suppose we want to mix quadratic equations with 

automorphisms, e.g. 

𝒔1
𝑇𝜎(𝒔1) +𝒎𝑇𝜎(𝒎) = 𝟎.

Then,

𝒛1
𝑇𝜎(𝒛1) + 𝒕𝐵 − 𝑩𝒛2

𝑇𝜎 𝒕𝐵 −𝑩𝒛2
= 𝑔0 + 𝑐𝑔1 + 𝑐2(𝒔1

𝑇𝜎(𝒔1) +𝒎𝑇𝝈(𝒎))

where
𝑔0 = 𝒚1

𝑇𝜎(𝒚1) + 𝑩𝒚2
𝑇𝜎(𝑩𝒚2)

𝑔1 = 𝒚1
𝑇𝜎 𝒔1 + 𝜎 𝒚1

𝑇 𝒔1 − 𝜎 𝑩𝒚2
𝑇𝒎− 𝑩𝒚2

𝑇𝜎(𝒎).

ABDLOP opening 
proof

𝒕𝐴
𝒕𝐵

=
𝑨1
𝟎

𝒔𝟏 +
𝑨2
𝑩

𝒔𝟐 +
𝟎
𝒎

𝒛𝑖 = 𝒚𝑖 + 𝑐𝒔𝑖

𝒘

𝑐

We assumed 𝜎 𝑐 = 𝑐.



Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.



Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Let us pick:

𝐶 = {𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑑
2
−1
𝑋
𝑑

2
−1 − 𝑐𝑑

2
−1
𝑋
𝑑

2
+1 −⋯− 𝑐1𝑋

𝑑−1: 𝑐𝑖 ∈ −𝜅, 𝜅 }.



Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Let us pick:

𝐶 = {𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑑
2
−1
𝑋
𝑑

2
−1 − 𝑐𝑑

2
−1
𝑋
𝑑

2
+1 −⋯− 𝑐1𝑋

𝑑−1: 𝑐𝑖 ∈ −𝜅, 𝜅 }.

𝐶 = 2𝜅 + 1 𝑑/2.



Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Let us pick:

𝐶 = {𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑑
2
−1
𝑋
𝑑

2
−1 − 𝑐𝑑

2
−1
𝑋
𝑑

2
+1 −⋯− 𝑐1𝑋

𝑑−1: 𝑐𝑖 ∈ −𝜅, 𝜅 }.



Challenge space

• We need exponentially large challenge space 𝐶.

• We want 𝜎 𝑐 = 𝑐 for any 𝑐 ∈ 𝐶.

• We want the difference of any distinct 𝑐, 𝑐′ ∈ 𝐶 to be invertible over 𝑅𝑞.

Let us pick:

𝐶 = {𝑐0 + 𝑐1𝑋 +⋯+ 𝑐𝑑
2
−1
𝑋
𝑑

2
−1 − 𝑐𝑑

2
−1
𝑋
𝑑

2
+1 −⋯− 𝑐1𝑋

𝑑−1: 𝑐𝑖 ∈ −𝜅, 𝜅 }.

Lemma: Suppose 𝑞 ≡ 5 (𝑚𝑜𝑑 8). If 𝜎−1 𝑐 = 𝑐 and 𝑐 is non-zero, then 𝑐
is invertible over 𝑅𝑞 .
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• (Relaxed) Binding from SIS

• Interpolation approach to prove quadratic equations



Soundness analysis

• Since the verification equation is a ``quadratic equation’’, we actually 
need to extract three transcripts 𝒘, 𝑐, 𝒛 , 𝒘, 𝑐′, 𝒛′ , (𝒘, 𝑐′′, 𝒛′′) with 
pairwise different 𝑐, 𝑐′, 𝑐′′ ∈ 𝐶.

• (Relaxed) Binding from SIS

• Interpolation approach to prove quadratic equations

• As before, we extract a candidate witness 𝒔𝑖 ≔ 𝒔𝑖
∗/𝑐∗ (division of two 

short elements) and 𝒎, s.t. 𝑨1𝒔1 + 𝑨2𝒔2 = 𝒕𝑨 and 𝑩𝒔𝟐 +𝒎 = 𝒕𝑩. 
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• From the opening proof, we obtain a candidate witness 𝒔 , it could be 
large (but relaxed binding holds)
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Extraction - meaning

• From the opening proof, we obtain a candidate witness 𝒔 , it could be 
large (but relaxed binding holds)

• quadratic equations/proving constant terms make sure that

• Approximate range proof makes sure that ||𝒔|| ≪ 𝑞, and we are 
done.

𝑨𝒔 = 𝒖 (mod 𝑞) 𝒔, 𝒔 − 𝟏 = 0 (𝑚𝑜𝑑 𝑞)



Which 𝑑 to pick - tradeoff

• We want 𝑑 to be large enough, 
so that the challenge space is 
exponential-size

• We want 𝑑 to be as small as 
possible, since sending ring 
elements will be costly



Efficiency and 
applications



Applications

• Proving knowledge of short 𝒔, 𝒆 s.t. 𝑨𝒔 + 𝒆 = 𝒖.

Scheme Proof size

Stern proofs (e.g. [Ste93,LNSW13]) 3MB

[Beu20] 233KB

[BLS19,YAZ+19] 384KB

Ligero [AHIV17] 157KB

Aurora [BCR+19,BCOS20] 72KB

[ALS20,ENS20] 47KB

[LNS21] 33KB

[LNP22] 14KB



Applications

Constructions Proof/Signature size

verifiable encryption [LNP22] 19KB

integer addition/multiplication [LN22] 12/15KB

group signature [LN22] 20KB

ring signature [LN22] 16KB

blind signature [AKSY22, BLNS23] 44KB/26KB



Quiz

• Please skip ``register for credit’’

• Put your username if you want to take 
part in the competition



What about SNARKs?



LaBRADOR [BS23]

Generic statement

Approximate range 
proof

Equations over ℤ𝑞

Equations over 𝑅𝑞 Amortise

Succinct proof sizes (60KB) but, non-
succinct verification! 



Linear-sized matrix 𝑩



How to achieve sublinear verification with ARP

• Use a structured tensor-type matrix 𝑩 [CMNW24]

• Use LaBRADOR as a subroutine [NS24]

• Just don’t use ARP (and deal with its consequences)



Summary
• Linear-sized efficient ``exact’’ ZKP 

from lattices

➢ Under standard assumptions: 
MSIS and MLWE

➢ Transparent setup

➢ Sizes: ≈ 15KB

➢ Can be made non-interactive via 
Fiat-Shamir transformation

• ``Approximate’’ proofs more efficient 
and have some applications

Thank you!

https://eprint.iacr.org/2022/284
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