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Proof
a fact or piece of information that shows that 

something exists or is true



Interactive Proof

𝑥, 𝑤
𝑥

𝑅 𝑥, 𝑤 = 1

/ 

Completeness: 
For an honest prover 
the verifier accepts



Non-Interactive Proof

𝑥, 𝑤
𝑥

𝑅 𝑥, 𝑤 = 1

𝜋

/ 

Completeness: 
For an honest prover 
the verifier accepts



Succinct Non-Interactive Proof

𝑥, 𝑤
𝑥

𝑅 𝑥, 𝑤 = 1

/ 

Succinct: 𝜋 ≪ |𝑤|

𝜋

Completeness: 
For an honest prover 
the verifier accepts



Succinct Non-Interactive Argument of 
Knowledge

𝑥, 𝑤
𝑥

𝑅 𝑥, 𝑤 = 1

/ Succinct: 𝜋 ≪ |𝑤|

Knowledge soundness: If a prover can convince the verifier with high 
probability, then it ``must know 𝑤’’.

Argument: knowledge soundness holds under a computational assumption.

𝜋



Statement

Prover Verifier

/ 



Statement

Prover Verifier

/ 

Ha! I know 
you’re 30 years 
old and you live 

in London



Statement

Prover Verifier

/ 

Ha! I know 
you’re 30 years 
old and you live 

in London

How can we convince the security that we’re over 18 
without revealing sensitive data?



Statement

Prover Verifier

/ 

No secret 
information learnt 
apart from the 

statement

Zero-knowledge proofs



CONFIDENTIAL 
TRANSACTIONS

E-VOTING ANONYMOUS 
CREDENTIALS
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Experiment
Statement: I know how to 

distinguish between Pepsi and 
Coke



Experiment

if 𝑏 = 𝑏′
otherwise

𝑏 ← {0,1}

𝐼𝑓 𝑏 = 0 ∶ =

𝐼𝑓 𝑏 = 1 ∶ =
𝑏′

• Why is it ZK?

• What’s the cheating probability?



We want to build ZKP for meaningful 
statements

• In this presentation, we focus on lattice-related statements.

• They can be further adapted to proving any NP statements.
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𝑨𝒔 = 𝒖

Lattice-based cryptography



Lattice-based cryptography

𝑨𝒔 = 𝒖

Equation over 
ring ℤ𝑞



𝑨𝒔 = 𝒖

Equation over 
ring ℤ𝑞Vector 𝒔 has 

small
coefficients
e.g. {-1,0,1}

Lattice-based cryptography



𝑨𝒔 = 𝒖

Equation over 
ring ℤ𝑞Vector 𝒔 has 

coefficients
e.g. {-1,0,1}

Lattice-based cryptography

Let us prove knowledge of such 𝑠!



Lattices vs discrete log

DLOG

• 𝑥 ∈ ℤ𝑞 is a secret key

• 𝑔𝑥 is a public key

• Given a pk, it is hard to find sk
(DLOG assumption)

• 𝑔𝑥 ⋅ 𝑔𝑦 = 𝑔𝑥+𝑦

• 𝑔𝑥 𝑐 = 𝑔𝑐𝑥

Lattices

• 𝒔 ∈ ℤ𝑞
𝑚 is a secret key

• 𝑨𝒔 is a public key

• Given a pk, it is hard to find sk
((I)SIS assumption)

• 𝑨𝒔 + 𝑨𝒚 = 𝑨(𝒔 + 𝒚)

• 𝑐 ⋅ 𝑨𝒔 = 𝑨(𝑐𝒔).



Schnorr ID protocol

24

𝑔, 𝑥, 𝑋
𝑔, 𝑋

𝑦 ← ℤ𝑞

𝑌 = 𝑔𝑦
𝒀

𝑐 ← 𝓒 = ℤ𝑞
𝑐

𝑧 = 𝑦 + 𝑐𝑥
𝑧 Check 𝑔𝑧 = 𝑌 ⋅ 𝑋𝑐

𝑅 ≔ { 𝑋, 𝑥 ∶ 𝑔𝑥 = 𝑋}



Schnorr ID protocol

25

𝑔, 𝑥, 𝑋
𝑔, 𝑋

𝑦 ← ℤ𝑞

𝑌 = 𝑔𝑦
𝒀

𝑐 ← 𝓒 = ℤ𝑞
𝑐

𝑧 = 𝑦 + 𝑐𝑥
𝑧 Check 𝑔𝑧 = 𝑌 ⋅ 𝑋𝑐

𝑅 ≔ { 𝑋, 𝑥 ∶ 𝑔𝑥 = 𝑋}



Schnorr in the lattice world
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𝐴, 𝒔, 𝒖
𝐴, 𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽

Say hi and discuss with your neighbour 
how to translate Schnorr protocol in 

the lattice setting (2 minutes)! 



Schnorr in the lattice world [Lyu09,Lyu12]
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𝐴, 𝒔, 𝒖
𝐴, 𝒖

𝒚 ← ℤ𝑞
𝑚

𝒘 = 𝑨𝒚
𝒘

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽



Schnorr in the lattice world [Lyu09,Lyu12]
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𝐴, 𝒔, 𝒖
𝐴, 𝒖

𝒘

𝑐 ← 𝓒 = ℤ𝑞
𝑐

𝒚 ← ℤ𝑞
𝑚

𝒘 = 𝑨𝒚

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽



Schnorr in the lattice world [Lyu09,Lyu12]
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𝐴, 𝒔, 𝒖
𝐴, 𝒖

𝒘

𝑐 ← 𝓒 = ℤ𝑞
𝑐

𝒛 = 𝒚 + 𝑐𝒔
𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝒚 ← ℤ𝑞
𝑚

𝒘 = 𝑨𝒚

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽



What about malicious provers? Attempt 1

30

𝐴, 𝒖
𝐴, 𝒖

𝒘

𝑐 ← 𝓒 = ℤ𝑞
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽

Using linear algebra, 
find 𝒛 s.t. 𝑨𝒛 = 𝒘+ 𝑐𝒖



Completeness is destroyed
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𝐴, 𝒖
𝐴, 𝒖

𝒘

𝑐 ← 𝓒 = ℤ𝑞
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽

Check ||𝒛|| ≤ 𝛾



Fixing completeness
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𝐴, 𝒖

𝒘

𝑐 ← 𝓒 = ℤ𝑞
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽

Check ||𝒛|| ≤ 𝛾

𝐴, 𝒔, 𝒖

𝒛 = 𝒚 + 𝑐𝒔

𝒚 ← ℤ𝑞
𝑚

𝒘 = 𝑨𝒚

short

short

short



Fixing completeness
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𝐴, 𝒖

𝒘

𝑐 ← 𝓒 ⊆ ℤ𝑞
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽

Check ||𝒛|| ≤ 𝛾

𝐴, 𝒔, 𝒖

𝒛 = 𝒚 + 𝑐𝒔

𝒚 ← 𝐷𝑚

𝒘 = 𝑨𝒚

short

short

short



Fixing completeness – Attempt 1
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𝐴, 𝒖

𝒘

𝑐 ← [−𝛿, 𝛿]
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽

Check ||𝒛|| ≤ 𝛼 + 𝛽𝛿

𝐴, 𝒔, 𝒖

𝒛 = 𝒚 + 𝑐𝒔

𝒚 ← [−𝛼, 𝛼]𝑚

𝒘 = 𝑨𝒚

short



Fixing completeness – Attempt 1
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𝐴, 𝒖

𝒘

𝑐 ← [−𝛿, 𝛿]
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽

Check ||𝒛|| ≤ 𝛼 + 𝛽𝛿

Guess 𝑐′ ← −𝛿, 𝛿

Pick any short enough 𝒛

𝒘 = 𝑨𝒛 − 𝑐′𝒖

𝐴, 𝒖

If 𝑐 = 𝑐′, send 𝒛



Fixing completeness – Attempt 1
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𝐴, 𝒖

𝒘

𝑐 ← [−𝛿, 𝛿]
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and ||𝒔|| ≤ 𝛽

Check ||𝒛|| ≤ 𝛼 + 𝛽𝛿

Guess 𝑐′ ← −𝛿, 𝛿

Pick any short enough 𝒛

𝒘 = 𝑨𝒛 − 𝑐′𝒖

𝐴, 𝒖

If 𝑐 = 𝑐′, send 𝒛

What’s the 
success 

probability?

Prob. 1/(2𝛿 + 1).



Issues with soundness

• To achieve negligible (knowledge) soundness, one needs 𝛿 = exp(𝜆).

• But since 𝛿 ≪ 𝑞, the modulus 𝑞 has to be exponential as well!

• To overcome this limitation, we use polynomial rings (large challenge 
space of ``short’’ elements)

• 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑓 𝑋 )



𝑅𝑞 = ℤ𝑞 𝑋 /(𝑓 𝑋 )

• For concreteness, set 𝑓 𝑋 ≔ 𝑋𝑑 + 1 for a power-of-two 𝑑 = 𝑂 𝜆

Exercise:

Let 𝑞 = 7 and 𝑑 = 4. Compute 𝑋3 + 4𝑋 ⋅ (3𝑋2 − 1) over 𝑅𝑞 .



𝑅𝑞 = ℤ𝑞 𝑋 /(𝑓 𝑋 )

• For concreteness, set 𝑓 𝑋 ≔ 𝑋𝑑 + 1 for a power-of-two 𝑑 = 𝑂 𝜆

Exercise:

Let 𝑞 = 7 and 𝑑 = 4. Compute 𝑋3 + 4𝑋 ⋅ (3𝑋2 − 1) over 𝑅𝑞 .

𝑋3 + 4𝑋 ⋅ 3𝑋2 − 1 = 3𝑋5 − 𝑋3 + 12𝑋3 − 4𝑋
= −3𝑋 − 11𝑋3 − 4𝑋 𝑚𝑜𝑑 𝑋4 + 1 = 3𝑋3 𝑚𝑜𝑑 𝑋4 + 1, 7



𝑅𝑞 = ℤ𝑞 𝑋 /(𝑓 𝑋 )

• For concreteness, set 𝑓 𝑋 ≔ 𝑋𝑑 + 1 for a power-of-two 𝑑 = 𝑂 𝜆

• Let 𝑎 = 𝑎0 + 𝑎1𝑋 +⋯+ 𝑎𝑑−1𝑋
𝑑−1 ∈ R𝑞 . Then ||𝑎|| = max

𝑖
|𝑎𝑖|.

• Lemma: ||𝑎𝑏|| ≤ 𝑑 ⋅ ||𝑎|| ⋅ ||𝑏||.



𝑅𝑞 = ℤ𝑞 𝑋 /(𝑓 𝑋 )

• For concreteness, set 𝑓 𝑋 ≔ 𝑋𝑑 + 1 for a power-of-two 𝑑 = 𝑂 𝜆

• Let 𝑎 = 𝑎0 + 𝑎1𝑋 +⋯+ 𝑎𝑑−1𝑋
𝑑−1 ∈ R𝑞 . Then ||𝑎|| = max

𝑖
|𝑎𝑖|.

• Lemma: ||𝑎𝑏|| ≤ 𝑑 ⋅ ||𝑎|| ⋅ ||𝑏||.

• Proof: Note that

෍

𝑖=0

𝑑−1

𝑎𝑖 𝑋
𝑖 ෍

𝑗=0

𝑑−1

𝑏𝑗𝑋
𝑗 =෍

𝑖,𝑗

𝑎𝑖𝑏𝑗 𝑋
𝑖+𝑗

Hence, the 𝑘-th coefficient of 𝑎𝑏 has absolute value 

| σ𝑖+𝑗=𝑘(𝑚𝑜𝑑 𝑑)±𝑎𝑖𝑏𝑗| ≤ σ𝑖=0
𝑑−1 𝑎𝑖

2 σ𝑗=0
𝑑−1 𝑏𝑗

2 ≤ 𝑑2||𝑎||2 ⋅ ||𝑏||2.



𝑨𝒔 = 𝒖

Equation over 
ring 𝑅𝑞Vector 𝒔 has 

polynomials with  

coefficients
e.g. {-1,0,1}

Lattice-based cryptography

Denote 
𝑆𝛽 ≔ {𝑥 ∈ 𝑅𝑞: ||𝑥|| ≤ 𝛽}



Schnorr in the polynomial ring setting

43

𝐴, 𝒖

𝒘

𝑐 ← 𝑆𝛿
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and 𝒔 ∈ 𝑆𝛽

Check ||𝒛|| ≤ 𝛼 + 𝑑𝛽𝛿

𝐴, 𝒔, 𝒖

𝒛 = 𝒚 + 𝑐𝒔

𝒚 ← 𝑆𝛼
𝑚

𝒘 = 𝑨𝒚

short

Size of the 
challenge set is 
2𝛿 + 1 𝑑 . For 

𝑑 = 𝑂 𝜆 , that’s 
exponential!

We manage to defend 
from simple cheating 
strategies. But how to 

prove knowledge 
soundness?



Security proof

Knowledge Soundness

• Parameter 𝛿

(Honest-Verifier) Zero-Knowledge

• Parameter 𝛼



Towards knowledge soundness

• Special-soundness: given two 
valid transcripts 𝑌, 𝑐, 𝑧 and 
𝑌, 𝑐′, 𝑧′ for 𝑐 ≠ 𝑐′, one can 

extract 𝑥∗ s.t. 𝑋, 𝑥∗ ∈ 𝑅.

• Indeed, we know
• 𝑔𝑧 = 𝑌 ⋅ 𝑋𝑐 and 𝑔𝑧′ = 𝑌 ⋅ 𝑋𝑐′

• Thus 𝑔
𝑧−𝑧′

𝑐−𝑐′ = 𝑋. Set 𝑥∗ =
𝑧−𝑧′

𝑐−𝑐′
.



Why is special-soundness cool?

Suppose this (deterministic) 
cheating prover can convince 
the verifier with probability 
𝜖 > 1/|𝐶|.

0 1 0 0

𝑐|𝐶|𝑐1 𝑐2 𝑐3 𝑐𝑖

⋯ ⋯ 0/1 ⋯ ⋯ ⋯

We write 1 if the adversary 
succeeds on challenge 𝑐𝑖 and 
0 otherwise  

• Extraction strategy:
• Sample a random 𝑐𝑖 ← 𝐶
• If the adversary fails for 𝑐𝑖 , abort
• Let (𝑌, 𝑐𝑖 , 𝑧𝑖) be a valid transcript. Do:

• sample a random 𝑐𝑗 ← 𝐶\{𝑐𝑖}

While (𝑌, 𝑐𝑗 , 𝑧𝑗) is not a valid transcript

• Return (𝑌, 𝑐𝑖 , 𝑧𝑖) and (𝑌, 𝑐𝑗 , 𝑧𝑗)



Why is special-soundness cool?

Suppose this (deterministic) 
cheating prover can convince 
the verifier with probability 
𝜖 > 1/|𝐶|.

0 1 0 0

𝑐|𝐶|𝑐1 𝑐2 𝑐3 𝑐𝑖

⋯ ⋯ 0/1 ⋯ ⋯ ⋯

Expected running time 𝑇:
E 𝑇 = 𝐸 𝑇 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ⋅ Pr 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + 𝐸 𝑇 ¬𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ⋅ Pr ¬𝑠𝑢𝑐𝑐𝑒𝑠𝑠

• Extraction strategy:
• Sample a random 𝑐𝑖 ← 𝐶
• If the adversary fails for 𝑐𝑖 , abort
• Let (𝑌, 𝑐𝑖 , 𝑧𝑖) be a valid transcript. Do:

• sample a random 𝑐𝑗 ← 𝐶\{𝑐𝑖}

While (𝑌, 𝑐𝑗 , 𝑧𝑗) is not a valid transcript

• Return (𝑌, 𝑐𝑖 , 𝑧𝑖) and (𝑌, 𝑐𝑗 , 𝑧𝑗)

≤ 1 +
𝐶 − 1

𝜖 𝐶 − 1
⋅ 𝜖 + 1 ⋅ (1 − 𝜖)

≤ 1 +
𝐶 − 1

𝜖 𝐶 − 1
⋅ 𝜖 ≤ 2



Why is special-soundness cool?

Suppose this (deterministic) 
cheating prover can convince 
the verifier with probability 
𝜖 > 1/|𝐶|.

0 1 0 0

𝑐|𝐶|𝑐1 𝑐2 𝑐3 𝑐𝑖

⋯ ⋯ 0/1 ⋯ ⋯ ⋯

Success probability:
If 𝜖 > 1/|𝐶|, there must be at least two 1s. So:

Pr 𝐸 = 𝜖

• Extraction strategy:
• Sample a random 𝑐𝑖 ← 𝐶
• If the adversary fails for 𝑐𝑖 , abort
• Let (𝑌, 𝑐𝑖 , 𝑧𝑖) be a valid transcript. Do:

• sample a random 𝑐𝑗 ← 𝐶\{𝑐𝑖}

While (𝑌, 𝑐𝑗 , 𝑧𝑗) is not a valid transcript

• Return (𝑌, 𝑐𝑖 , 𝑧𝑖) and (𝑌, 𝑐𝑗 , 𝑧𝑗)



Special-soundness in the lattice setting

• Special-soundness: given two 
valid transcripts 𝑤, 𝑐, 𝑧 and 
𝑤, 𝑐′, 𝑧′ for 𝑐 ≠ 𝑐′, one can 

extract 𝒔∗ s.t. (𝑨, 𝒖), 𝒔∗ ∈ 𝑅.

• Let’s try:

• 𝑨𝒛 = 𝒘 + 𝑐𝒖 • 𝑨𝒛′ = 𝒘 + 𝑐′𝒖

𝑨
𝒛 − 𝒛′

𝑐 − 𝑐′
= 𝒖



Special-soundness in the lattice setting

• Special-soundness: given two 
valid transcripts 𝑤, 𝑐, 𝑧 and 
𝑤, 𝑐′, 𝑧 for 𝑐 ≠ 𝑐′, one can 

extract 𝒔∗ s.t. (𝑨, 𝒖), 𝒔∗ ∈ 𝑅.

• So what do we have?

• 𝑨(𝒛 − 𝒛′) = (𝑐 − 𝑐′)𝒖

short short

Relaxed relation: R∗ ≔ { 𝑨, 𝒖 , 𝒔∗, 𝑐∗ : 𝑨𝒔∗ = 𝑐∗𝒖 𝑚𝑜𝑑 𝑞 , 𝒔∗ ∈ 𝑆2 𝛼+𝑑𝛽𝛿 , 𝑐
∗ ∈ 𝑆2𝛿}



Special soundness summary

• We don’t manage to extract the exact witness 𝒔 ∈ 𝑆𝛽

• Instead, we only get (𝒔∗, 𝑐∗) s.t. 𝑨𝒔∗ = 𝑐∗𝒖 𝑚𝑜𝑑 𝑞 , 𝒔∗ ∈ 𝑆2 𝛼+𝑑𝛽𝛿 ,

𝑐∗∈ 𝑆2𝛿

• Actually, this relaxation is fine for signatures!



Instead, we only get (𝒔∗, 𝑐∗) s.t. 𝑨𝒔∗ = 𝑐∗𝒖 𝑚𝑜𝑑 𝑞 ,
𝒔∗ ∈ 𝑆2 𝛼+𝑑𝛽𝛿 , 𝑐∗∈ 𝑆2𝛿

So, intuitively we want to say that our candidate witness is s ≔ 𝒔∗/𝑐∗.

But first, is it well-defined?

For 𝑞 ≡ 5(𝑚𝑜𝑑 8), a non-zero element 
𝑐 ∈ 𝑆 𝑞/2 is invertible over 𝑅𝑞 .

But s is not short, right?

But maybe there is still something 
meaningful…



Lemma: Suppose there are two (𝒔0
∗ , 𝑐0

∗) and (𝒔1
∗ , 𝑐1

∗) which satisfy the 
above. Then, under the Module-SIS assumption,

𝒔 ≔
𝒔0
∗

𝑐0
∗ =

𝒔1
∗

𝑐1
∗

Proof sketch: 𝟎 = 𝑐0
∗𝑐1

∗𝒖 − 𝑐1
∗𝑐0

∗𝒖 = 𝑨 𝑐0
∗𝒔1

∗ − 𝑐1
∗𝒔0

∗

𝑨

Instead, we only get (𝒔∗, 𝑐∗) s.t. 𝑨𝒔∗ = 𝑐∗𝒖 𝑚𝑜𝑑 𝑞 ,
𝒔∗ ∈ 𝑆2 𝛼+𝑑𝛽𝛿 , 𝑐∗∈ 𝑆2𝛿

Short!



Security proof

Knowledge Soundness

• Parameter 𝛿

(Honest-Verifier) Zero-Knowledge

• Parameter 𝛼



Honest-verifier zero-knowledge

• Zero-knowledge: no information about 𝒔 is leaked.

• Is it the case here?

• Simple exercise.

• Let 𝑠 ∈ {−1,0,1} and 𝑦 ∈ [−100,100] be hidden. I reveal 𝑧 = 𝑦 + 𝑠.

• If 𝑧 = 101, what can we deduce?

• If 𝑧 = 100, what can we deduce?

• If 𝑧 = 99, what can we deduce?



Rejection sampling [Lyu09]

• 𝑦 ∈ −𝛼, 𝛼

• 𝑠 ∈ −𝛽, 𝛽

0−𝛼 𝛼

𝑦

𝑦 + 𝑠

−𝛼 + 𝛽 𝛼 − 𝛽

No information 
leaked if it lies 
in this interval



Rejection sampling

57

𝐴, 𝒖

𝒘

𝑐 ← 𝑆𝛿
𝑐

𝒛 Check 𝑨𝒛 = 𝒘+ 𝑐𝒖

𝑨𝒔 = 𝒖 (𝑚𝑜𝑑 𝑞) and 𝒔 ∈ 𝑆𝛽

Check ||𝒛|| ≤ 𝛼 − 𝑑𝛽𝛿

𝐴, 𝒔, 𝒖

𝒛 = 𝒚 + 𝑐𝒔

𝒚 ← 𝑆𝛼
𝑚

𝒘 = 𝑨𝒚

If ||𝒛|| > 𝛼 − 𝑑𝛽𝛿, reject



What’s the probability of not rejecting?

2 𝛼 − 2𝑑𝛽𝛿 − 1

2𝛼 − 1

𝑚𝑑

= 1 −
4𝑑𝛽𝛿

2𝛼 − 1

𝑚𝑑

If ||𝒚|| ≤ 𝛼 − 2𝑑𝛽𝛿, we‘re safe 
for sure.

= 1 −
2𝑑𝛽𝛿

𝛼 − 1/2

𝛼−1/2
2𝑑𝛽𝛿

⋅
2𝑑𝛽𝛿
𝛼−1/2

𝑚𝑑

≈ exp −
2𝑑𝛽𝛿𝑚𝑑

𝛼

≈ exp −1 for 𝛼 ≥ 2𝑑2𝛽𝛿𝑚.



(Non-abort)Honest-verifier zero-knowledge

• Zero-knowledge: no information about 𝒔 is leaked. In other 
words, one can simulate a valid (non-aborting) transcript.

1. 𝒛 ← 𝛼 − 𝑑𝛽𝛿, 𝛼 + 𝑑𝛽𝛿
2. 𝑐 ← 𝑆𝛿
3. 𝒘 ≔ 𝑨𝒛 − 𝑐𝒖.
4. Output (𝒘, 𝑐, 𝒛).

Lemma: Distribution of 𝒛 is uniform.

Proof: Note that for any value 𝒙 ∈ 𝑺𝛼−𝑑𝛽𝛿 we have

Pr 𝒛 = 𝒙 = Pr 𝒚 = 𝒙 − 𝑐𝒔 =
1

2𝛼 − 1

𝑚𝑑

.

We simulate the valid non-aborting transcript as 
follows.



Security proof

Knowledge Soundness

• Parameter 𝛿 to make sure

𝐶 = 2𝛿 + 1 𝑑 is exponential

(Honest-Verifier) Zero-Knowledge

• Parameter 𝛼 ≥ 2𝑑2𝛽𝛿𝑚 to 
ensure the probability of non-
rejection to be 1/3



Fiat-Shamir transformation

• Let 𝐻: 0,1 ∗ → 𝑆𝛿 be a hash function.

• We obtain a non-interactive proof as 
follows.

1. 𝒚 ← 𝑆𝛼
𝑚

2. 𝒘 = 𝑨𝒚
3. 𝑐 = 𝐻 (𝑨, 𝒖), 𝒘
4. 𝒛 = 𝒚 + 𝑐𝒔
5. If ||𝒛|| > 𝛼 − 𝑑𝛽𝛿, restart
6. Output 𝜋 = (𝒘, 𝒛).

To verify 𝜋 = (𝒘, 𝒛), check:

1. ||𝒛|| ≤ 𝛼 − 𝑑𝛽𝛿 and 𝑨𝒛 = 𝒘+ 𝑐𝒖 where 𝑐 = 𝐻 𝑨, 𝒖 , 𝒘

Proof size: 𝑛 + 𝑚 ring elements



Fiat-Shamir transformation

• Let 𝐻: 0,1 ∗ → 𝑆𝛿 be a hash function.

• Optimisation:

1. 𝒚 ← 𝑆𝛼
𝑚

2. 𝒘 = 𝑨𝒚
3. 𝑐 = 𝐻 (𝑨, 𝒖), 𝒘
4. 𝒛 = 𝒚 + 𝑐𝒔
5. If ||𝒛|| > 𝛼 − 𝑑𝛽𝛿, restart
6. Output 𝜋 = (𝑐, 𝒛).

To verify 𝜋 = (𝑐, 𝒛), check:
1. ||𝒛|| ≤ 𝛼 − 𝑑𝛽𝛿 and 𝑐 = 𝐻( 𝑨, 𝒖 , 𝑨𝒛 − 𝑐𝒖).

Proof size: 1 +𝑚 ring elements



Zero-knowledge in ROM

• No efficient adversary can distinguish between valid proofs and simulated proofs

Simple entropy argument to show that we will 
never ``overwrite’’ the random oracle

1. 𝒛 ← 𝛼 − 𝑑𝛽𝛿, 𝛼 + 𝑑𝛽𝛿
2. 𝑐 ← 𝑆𝛿
3. 𝒘 ≔ 𝑨𝒛 − 𝑐𝒖.
4. Program 𝐻 (𝑨, 𝒖),𝒘 ≔ 𝑐
5. Output 𝜋 ≔ (𝑐, 𝒛).

Simulate:



Overview

MOTIVATION ON ZERO-
KNOWLEDGE PROOFS 
(ZKP) AND SNARKS

SIMPLE EXAMPLE ZKP FOR LATTICE 
RELATED STATEMENTS

APPLICATIONS TO 
SIGNATURE SCHEMES 

(DILITHIUM) 



From an ID-protocol to a FSwA signature
KeyGen:
sk:= 𝒔 ← 𝑆𝛽
pk:= 𝐮 = 𝑨𝒔

Sign(sk,m):
1. 𝒚 ← 𝑆𝛼

𝑚

2. 𝒘 = 𝑨𝒚

3. 𝑐 = 𝐻 𝑨, 𝒖 ,𝒘,m

4. 𝒛 = 𝒚 + 𝑐𝒔
5. If ||𝒛|| > 𝛼 − 𝑑𝛽𝛿, restart
6. Output 𝜋 = (𝑐, 𝒛).

Verify(pk,m,𝜋 = (𝑐, 𝒛)):
Return 1 if all the following hold:
1. ||𝒛|| ≤ 𝛼 − 𝑑𝛽𝛿
2. 𝑐 = 𝐻( 𝑨, 𝒖 , 𝑨𝒛 − 𝑐𝒖,m).



sEUF-CMA security in the ROM

pk

𝑚

𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝑚∗, 𝜎∗

Adversary wins if 
𝑉𝑒𝑟 𝑝𝑘,𝑚∗, 𝜎∗ = 1
and (𝑚∗, 𝜎∗) does not belong to 
the query/answer set

𝑥
𝐻 𝑥

RO

Assumptions:
- Adversary makes 𝑞𝐻 RO 

queries (no duplicates)
- Adv makes 𝑞𝑆 signing 

queries 



Unforgeability proof

• Step 1: simulate the signing oracle via HVZK proof (no sk is used)

• Step 2: apply the forking lemma [BN06] 

• Step 3: reduce to the special soundness case.



Unforgeability proof

• Step 1: simulate the signing oracle via HVZK proof (no sk is used)

• Step 2: apply the forking lemma [BN06] 

• Step 3: reduce to the special soundness case.

𝑨 𝒛 − 𝒛′ = 𝑐 − 𝑐′ 𝒖 = 𝑨 𝑐 − 𝑐′ 𝒔

We need to argue
𝒛 − 𝒛′ ≠ (𝒄 − 𝑐′)𝒔



The only information known to the adversary 
about 𝑠 is 𝒖 = 𝑨𝒔

Lemma: For any 𝑨 ∈ 𝑅𝑞
𝑛×𝑚, where 𝑚 ≥ 2𝑛 log 𝑞/ log(2𝛽 + 1), for 𝒔 ← 𝑆𝛽

𝑚, with probability 1 − 2−𝑑

there exists another 𝒔′ ∈ 𝑆𝛽
𝑚 s.t. 𝑨𝒔 = 𝑨𝒔′.   

Proof: 𝑨: 𝑅𝑞
𝑚 → 𝑅𝑞

𝑛 can be thought of as a linear transformation whose range 

has size 𝑞𝑛𝑑 .

Thus, there are at most 𝑞𝑛𝑑 elements in 𝑆𝛽
𝑚 which do not collide with any 

other element in 𝑆𝛽
𝑚 by the pigeonhole principle.

Hence, the probability of 𝒔 being such an element is bounded by

𝑞𝑛𝑑

2𝛽+1 𝑚𝑑 =
𝑞𝑛

2𝛽+1 𝑚

𝑑

≤ 2−𝑑 .



Unforgeability proof

• Step 1: simulate the signing oracle via HVZK proof (no sk is used)

• Step 2: apply the forking lemma [BN06] 

• Step 3: reduce to the special soundness case.

𝑨 𝒛 − 𝒛′ = 𝑐 − 𝑐′ 𝒖 = 𝑨 𝑐 − 𝑐′ 𝒔

• Step 4: deduce that with non-negligible probability 
𝒛 − 𝒛′ − 𝑐 − 𝑐′ 𝒔 ≠ 𝟎



Towards Dilithium [DKL+18]

• CRYSTALS-Dilithium is a ``Fiat-Shamir with Aborts’’ signature scheme 
standardised by NIST 

• The scheme applies various (low-order bit) compression

• No forking required, relies on a tailored assumption, SelfTargetMSIS

• Smarter parameter selection and analysis



Further Discussion

• Rejection sampling using Discrete Gaussians [Lyu12]

• Removing rejection sampling (to avoid side-channel attacks), 
Raccoon [KRPP24], G+G [DPS23]

• Rejection sampling for FSwA – technical issues [BBDD+23, DFPS23]



Thank you!
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