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MOTIVATION ON ZERO- SIMPLE EXAMPLE ZKP FOR LATTICE APPLICATIONS TO
KNOWLEDGE PROOFS RELATED STATEMENTS SIGNATURE SCHEMES

(ZKP) AND SNARKS (DILITHIUM)
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Proot

a fact or piece of information that that
something exists or is true



nteractive Proof

R(x,w) =1

b+

Completeness:
For an honest prover
the verifier accepts



Non-Interactive Proof

R(x,w) =1

b+

Completeness:
For an honest prover
the verifier accepts



Succinct Non-Interactive Proot

R(x,w) =1

b+

Completeness:
For an honest prover
the verifier accepts

Succinct: || « [w]

)/WL\‘
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Succinct Non-Interactive Argument of
Knowledge

R(x,w) =1
X, W

"

' /4

\

Succinct: || « [w]

Knowledge soundness: If a prover can convince the verifier with high
probability, then it “"must know w"

Argument: knowledge soundness holds under a computational assumption.



Prover Verifier
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you're 30 years
~ old and you live \

in London
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Statement

Prover
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How can we convince the security that we're over 18
without revealing sensitive data?



= No secret
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APPLICATIONS OF ZERO-KNOWLEDGE PROOFS

CONFIDENTIAL E-VOTING ANONYMOUS
TRANSACTIONS CREDENTIALS
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electronic cash




A digital ID and
personal digital wallet

for EU citizens, residents and
businesses
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-xperiment

b < {0,1}
&
| Ifb=0: =
s Ifb=1: E= Gt
bl
& ifb=0>b
K otherwise

* Why is it ZK?
* What's the cheating probability?



We want to build ZKP tor meaningful
statements

* In this presentation, we focus on lattice-related statements.

* They can be further adapted to proving any NP statements.
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Lattice-based cryptography

As = u



Lattice-based cryptography

As = u

N
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Equation over
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Lattice-based cryptography
As = u

N

/\/ector S has\
small
coefficients

€9 {—l,O,l}J
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Equation over

-

rng Zg
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Lattice-based cryptography

Let us prove knowledge of such s!

As =u

N

/\/ector S has\

coefficients

Ke.g. {- 1,0,1}/

-

~

Equation over

\_

rng Zg
J




Lattices vs discrete log

DLOG
* X € Zg is a secret key

* g* is a public key

* Given a pk, it is hard to find sk
(DLOG assumption)

° gx . gy — gx'l'y
. (gx)c = g%*

Lattices

*S EZy is a secret key
* As is a public key

* Given a pk, it is hard to find sk
((1)SIS assumption)

cAs+ Ay =A(s+y)
*c-(As) = A(cs)



Schnorr 1D protocol

R={X,x): g* =X}

)/JF\‘
c < C=1Z,

Check g# =Y - X¢



Schnorr 1D protocol

R={X,x): g* =X}

)/JF\‘
c < C=1Z,

Check g# =Y - X¢



Schnorr in the lattice world

As =u(modq) and ||s]| <

"

&

A s, u

Say hi and discuss with your neighbour

how to translate Schnorr protocol in
the lattice setting (2 minutes)!

HELLO™ME




Schnorr in the lattice world [LyuO9 Lyul 2]

As = u (mod q) and ||s|| < B
| )ﬂL\\ o




Schnorr in the lattice world [LyuO9 Lyul 2]

As = u (mod q) and ||s|| < B
| )ﬂL\\ o

c<—C=Zq
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Schnorr in the lattice world [LyuO9 Lyul 2]

Z=Yy+cs

As = u (mod q) and ||s|| < B

)/JF\‘
c < C=1Z,

Check Az=w+ cu
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What about malicious provers? Attempt 1

As =u(modq) and ||s|| <

Using linear algebra,
findzst. Az=w+ cu

c < C

Check Az

W+ cu
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Completeness Is destroyed

As =u (modq) and [|s|| < B

)/JF\‘
c < C=1ZL,

Check Az=w+ cu

Check [|z]|| <y
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SIXIng completeness

As = u (mod q) and ||s|| < B

8

&

A s, u

short
{2

w = Ay

@y+cs

short

)/JF\‘
. Short

Check Az=w+ cu

Check ||z|] £ ¥
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SIXIng completeness

As = u (mod q) and ||s|| < B

8

&

A s, u

short
(o)

w = Ay

@y+cs

short

Check Az=w+ cu

Check ||z|] £ ¥
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Fixing completeness - Attempt 1

As = u (mod q) and ||s|| < B

)/JF\‘
C

Check Az=w+ cu

Check [|z]| < a + o



FIxing completeness - Attempt 1

As =u (modq) and [|s|| < B

Guess ¢’ « [—6,0]

Pick any short enough z

w=A4z —-c'u
f ¢ =c" send z

35

)/JF\‘
:

Check Az =w+ cu
Check [|z]| < a + o



What's the

dleteness - Attempt 1

probability?

As =u(modq) and ||s|| <

Guess ¢" « |—=6,0]

w
Pick any short enough : C @
w=Az — c'u Prob. 1/(26 + 1) ¢

Check ||z|| £ a + pO

36



ssues with soundness

* To achieve negligible (knowledge) soundness, one needs 6 = exp(A).

* But since § K ¢, the modulus g has to be exponential as well

* To overcome this limitation, we use polynomial rings (large challenge
space of ~“short” elements)

* Ry = Zy[X1/(F (X))



Rq — Zq[X]/(f(X))

e For concreteness, set f(X) :== X% + 1 for a power-of-two d = 0(4)

Exercise:
let ¢ = 7 and d = 4. Compute (X3 +4X) - (3X? — 1) over R, .




Rq — Zq[X]/(f(X))

e For concreteness, set f(X) :== X% + 1 for a power-of-two d = 0(4)

Exercise:
let ¢ = 7 and d = 4. Compute (X> +4X) - (3X* — 1) overR, .

(X34+4X) - (3X%2 —1) =3X° — X3 + 12X3 — 4X
= —3X — 11X3 — 4X (mod X* + 1) = 3X3(mod (X* + 1,7))



Rq — Zq[X]/(f(X))

e For concreteness, set f(X) :== X% + 1 for a power-of-two d = 0(4)

sleta=ag+ X+ +ag_1X41 € R,. Then ||a|| = max |a;]|
l

- lemma: [|ab|| < d - ||a]| - ||b]].



Rq — Zq [X]/(f(X))
e For concreteness, set f(X) := X% + 1 for a power-of-two d = 0(A)

sleta=ag+a X+ +ag_1X4t € Ry Then ||a|| = max |a].
l

e lemma: ||lab|| < d - ||all| - ||b]]

e Proof: Note that
d—1 d—1
ZaiXi Zb]X] =Zaiiji+j
i=0 j=0 L]

Hence, the k-th coefficient of ab has absolute value

|Zl+] =k(mod d) — +a b | <\/(Zl 0 aZ) (Zd 1b2) S\/d2||a||2 ' ”b”z




Lattice-based cryptography

Denote

Sp = {x € Ry: ||x|| < B}

As =u

N

/"~ V\ector § has
polynomials with

coefficients

\__egqg. (-1,0,1} /

-

~

Equation over

.

ring R,
J




Schnorr in the polynomial ring setting

8

&

43

As = u (mod q) and s € Sp

A We manage to defend

) S’ 5 .
from simple cheating
strategies. But how to

knowledge
soundness?
w
C
Z

Size of the
challenge set is

(26 + 1% For

d = 0(4), that's
exponentiall

Check Az=w+ cu
Check ||z|| £ a +dpo



Security proof

(Honest-Verifier) Zero-Knowledge

* Parameter 6 e Parameter



Towards knowledge soundness

* Special-soundness: given two

(Y, c,z) and

(Y,c',z") for ¢ # ¢', one can
extract x* st. (X,x*) € R

e Indeed, we know
e g?=Y-X¢ and g¥ =Y - X¢

-zl
Z—Z Z—71

* Thus ge-cr = X, Set x* =

c—cr’

Schnorr 1D protocol

R:={(X,x): g* =X}
B i
| h )rJr\i o

| 4

c

VA

c<—C’=Zq

Check g# =Y - X¢



Why Is special-soundness cool?

Suppose this (deterministic)
cheating prover can convince
the verifier with probability

e>1/|C|
Cl C2 C3 Ci C|C|
o |1 o | . o1 | | [0
e [Extraction strategy:
* Sample a random ¢; « C We write 1 if the adversary
* If the adversary fails for ¢;, abort succeeds on challenge ¢; and
* Llet (Y,c,z;) be a valid transcript. Do: 0 otherwise

« sample a random ¢; « C\{c;}
While (Y, ¢j, zj) is not a valid transcript
e Return (Y,¢;,z;) and (Y, Cj»Zj)



Why Is special-soundness cool?

Suppose this (deterministic)
cheating prover can convince
the verifier with probability

e>1/|C|
Cl Cz C3 Ci C|C|
o |1 o | . o1 | | [0
* Extraction sltrategy:d Expected running time T
Sample a random ¢; < € E[T] = E[T|success] - Pr[success] + E[T|—success] - Pr[—success]

* If the adversary fails for ¢;, abort Cl -1
* Llet (Y,c,z;) be a valid transcript. Do: < B . 1

* sample a random ¢; < C\{c;} {1+ elC] —1 etl-(1-¢

While (Y, ¢j, zj) is not a valid transcript IC] — 1
e Return (Y, Ci,Zi) and (Y, Cj,Zj) < 1 + (e‘lC‘l—_:l) e < 2




Why Is special-soundness cool?

Suppose this (deterministic)
cheating prover can convince
the verifier with probability
e>1/|C|

C1 (85) C3 C; Clc|
o i o o . ol . 0

Success probability:
If € > 1/|C|, there must be at least two 1s. So:
Pr[E] = €

e [Extraction strategy:
* Sample a random ¢; « C
* If the adversary fails for ¢;, abort
* Llet (Y,c,z;) be a valid transcript. Do:
* sample a random ¢; « C\{c;}
While (Y, Cj,Zj) is not a valid transcript
* Return (Y, ¢;,2;) and (Y, ¢, z)




Special-soundness in the lattice setting

Schnorr in the polynomial ring setting

* Special-soundness: given two As = u (mod q) and s € g

(w, c,z) and f% )
(w,c’,z") for ¢ # ¢, one can I A
extract s* st. ((4,u),s*) ER Qo . _—
~ c (s

'j?yﬂb z Check Az = w + cu

Check ||z|| < a + dBd




Special-soundness in the lattice setting

* Special-soundness: given two
valid transcripts (w, ¢, z) and
(w,c’,z) for ¢ # ¢', one can
extract s* st. ((4,u),s*) ER.

e So what do we have?

Relaxed relation: R*:={((4,w), (s c*)): As* = c*u (mod q), s* € So2(a+dps)» € € S25}

Schnorr in the polynomial ring setting

As = u(mod q) and s € Sp

( Asu

w = Ay

@y+cs

H\i A

Check Az=w+cu

Check ||z|| £ a + dfd




Special soundness summary

* We don’t manage to extract the exact witness s € Sp

* Instead, we only get (s8%,¢*) st. As™ = c"u (mod q), s* € Sy(g+aps)
c*E Sy

* Actually, this relaxation is fine for signatures!




Instead, we only get (s*,c*) st. As* = c*u (mod q),

S" € Sy(a+dps), € € Szs

So, intuitively we want to say that our cancicate witness is s := 8 /c”.

But first, is it well-defined?

For g = 5(mod 8), a non-zero element
c € SJT/Z is invertible over R
But sis not short, right?

But maybe there is still something
meaningful.



Instead, we only get (s*,c¢*) st. As* = c*u (mod q),

S" € Sy(a+dps), € € Szs

lemma: Suppose there are two (sy,¢g) and (87, ¢;) which satisfy the
above. Then, under the Module-SIS assumption,

So _ 51
§i=—=—

x %
Co ¢

Proof sketch: 0 = cociu — cicou = A(cys1 — €1 S




Security proof

Knowledge Soundness (Honest-Verifier) Zero-Knowledge

* Parameter 6 e Parameter a



Honest-veritier zero-knowledge

Schnorr in the polynomial ring setting

Zero-knowledge: no information about s is leaked.
As = u(mod q) and s € Sp ‘

e? :':—:'
 |s it the case here? Asu H Au
( 2N A

w = Ay
:
@y+cs
4 Check Az=w+cu

Check ||z|| < a + dBd

* Simple exercise.

 let s €{-1,0,1} and y € [—100,100] be hidden. | reveal z = y + s.
 If z=101, what can we deduce?

e If z=100, what can we deduce?

e |If z=99, what can we deduce?




Rejection sampling [LyuO9]

| —

*y € |[—a,a]

*SE [_ﬁ'ﬁ]

No information
leaked if it lies
in this interval
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Rejection sampling

As = u (mod q) and s € Sp

8

&

A s, u

y < S
w = Ay

Z=YyY+cSs

It ||z|| > a — dfo, reject

)/JF\‘
c < Ss

Check Az =w+ cu
Check ||z]| £ a —dpo



What's the probability of not rejecting?

Rejection sampling
If ||yl| < a—2dBS, we're safe

As =u(modq) and s € S
for sure. N~ p —\
L 2
md md l e )/+\‘ A

(2(a — 2dB8) — 1) (1 4dB6s )

—_ _— y<—53§”

20 —1 20 — 1 W= Ay w
c c « Sg
a—1/2 2dp6 md z=y+cs
Zdﬁé‘ 2dps a-1/2 £ Nlzll > @ — dBo, reject z Check Az =w + cu
= — 0 — 1/2 Check ||z|| € a — dBé

a

< 2d,[>’6md>
~exp|—

~ exp(—l) for a > 2d2,85m.



(Non-abort)Honest-verifier zero-knowledge

Zero-knowledge: no information about s is leaked. In other
words, one can a valid (non-aborting) transcript.

Lemma: Distribution of zis uniform.

Proof: Note that for any value x € S4_gps We have

1

Pr[z=x]=Pr[y=x—cs]=<2a_1

We simulate the valid non-aborting transcript as
follows.

1 z < [a—dB6,a+ dBo]
2 C « 55

3 w:=A4z — cu.

4. Output (w,c,2).

3

Rejection sampling

& As =u (modq) and s € Sp j
¢ A s, u
| )rJr WA

y < Sg

w = Ay i
c« Ss

c

Z=Yy+cs

: z Check Az =w+cu
If ||2]] > a — dfd, reject
Check ||z]| € a —dpé



Security proof

Knowledge Soundness (Honest-Verifier) Zero-Knowledge
* Parameter 0 to make sure * Parameter a@ = 2d%fém to
IC| = (26 + 1% is exponential ensure the probability of non-

rejection to be 1/3



~iat-Shamir transformatio

Let H:{0,1}* - S5 be a hash function.

* We obtain a non-interactive proof as
follows.

1 y<SH

2. w=Ay

3. c=H((4u),w)

4 z=vy+cs

5 If||lz|]| > a —dpé, restart
6. Output ™ = (w, 2).

To verify m = (w, z), check:
1. ||z|| £ a — dBé and Az = w + cu where ¢ = H((A,u),w)

s

Rejection sampling

As = u(mod q) and s € Sp
! i
h )rJr WA

y < Sa'
w = Ay i
c e« Ss
c
Z=y+cs
z Check Az =w+ cu

If ||z|| > @ — dBd, reject

Check ||z|| < a@ — dBS

Proof size: n + m ring elements




~iat-Shamir transformation

* let H:{0,1}* > S5 be a hash function.

* Optimisation:

1 y<SH

2. w=Ay

3. c=H((4u),w)

4 z=vy+cs

5 If||lz|]| > a —dpé, restart
6. Output ™ = (¢, 2).

To verify m = (¢, z), check:
1. ||z|]| £ a —dBé and ¢ = H((4,u), Az — cu).

Rejection sampling

As = u(mod q) and s € Sp
! i
h )rJr\\ o

y < Sa'
w = Ay i
c e« Ss
c
Z=y+cs
z Check Az =w+ cu

If ||z|| > @ — dBd, reject

Check ||z|| < a@ — dBS

Proof size: 1 +m ring elements




/ero-knowledge in ROM

* No efficient adversary can distinguish between valid proofs and simulated proofs

Simulate:
1 z < [a—dB6,a+ dB6]
2. C <« Sé‘
3 w=A4z— cu
4. Program H((A,u),w) ==c
5. Output w == (¢, 2).

Simple entropy argument to show that we will
never ~“overwrite” the random oracle

Flat-Shamir transformation

* let H:{0,1}" = Ss be a hash function.  Rejection sampling

As =u(modq) and s € Sg
s? S
: : : As,u
* Optimisation: = ) 2

y<Sa
w

If ||z|| > a — df§, restart
Output ™ = (¢, 2).

w=Ay
c ceSg

z=y+cs
1 y<Sg i 1l2ll > @ - dfis, reject z Check Az =w + cu
2 w=Ay Check ||2]] < a — dBS
3 ¢c=H((4,u),w)
4 z=y+cs
5.
6.

_ Proof size: 1 + m ring elements
To verify ™ = (¢, z), check:

1 ]|z]] £ a —dBé§ and ¢ = H((4,u), Az — cu).
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-rom an |D-protocol to a FSWA signature

KeyGen:
ski=§ « Sﬁ

pki=u = As

Sign(sk,m):

y <S4

w = Ay

c = H((A, u),w@
Z=Yy+cs

f ||z|| > a — dfd, restart
Output ™ = (¢, 2).

DN W NN

Verify(pk,m,T = (¢, 2)):

Return 1 if all the following hold:

1 |lz|]| £ a—dpd
2. ¢c=H((Au), Az — cu@.

Flat-Shamir transformation
* let H:{0,1}* = S5 be a hash function.  Reection sampling

* Optimisation:

c=H((A,u),w)
Z=y+cs

If ||z|]| > a — dBé, restart
Output ™ = (¢, 2).

DU AN N

To verify m = (c, ), check:
1. ||z|]| £ a —dpé and ¢ = H((A,w), Az — cu).

As = u(mod q) and s € S
s? <2
A s, u K{% Au
\

y ST
w= Ay w

¢+« Ss

z=y+cs

1|zl > @ — dps, reject Check Az =w +cu

Check ||z < a — dgs

Proof size: 1 + m ring elements




SEUF-CMA security in the ROM

% Sign(sk,m)

Assumptions:

- Adversary makes gy RO
queries (no duplicates)

- Adv makes gs signing
queries

Adversary wins if
Ver(pk,m*,c*) =1

and (m*, ") does not belong to
the query/answer set



Unforgeability proof

* Step 1. simulate the signing oracle via HVZK proof (no sk is used)
* Step 2: apply the forking lemma [BNOG]

* Step 3: reduce to the special soundness case.



Unforgeability proof

* Step 1. simulate the signing oracle via HVZK proof (no sk is used)
* Step 2: apply the forking lemma [BNOG]

* Step 3: reduce to the special soundness case.

A(z—2Z2')= (c—=cHu=A(c —c')s

We need to argue
(z—2")#(c—C)s




The only information known to the adversary
2bout s isu=As

Lemma: For any A € R}*™, where m = 2nlogq/log(2f + 1), for s « SZ;", with probability 1 — 27¢

there exists another s’ € SZ{‘ st. As = As’,

Proof: A:Rj" — Rj can be thought of as a linear transformation whose range

has size g™?.

Thus, there are at most g™® elements in SZ;" which do not collide with any
other element in SI})T‘ by the pigeonhole principle.

Hence, the probability of s being such an element is bounded by

qnd qn d d
— < )™
(2B3+1)md ((23+1)m) =27




Unforgeability proof

* Step 1. simulate the signing oracle via HVZK proof (no sk is used)
* Step 2: apply the forking lemma [BNOG]
* Step 3: reduce to the special soundness case.

A(z—2')= (c—cHu =

* Step 4: deduce that with non-negligible probability
(z—2') —



Towards Dilithium [DKL+ 18]

e CRYSTALS-Dilithium is a ~“Fiat-Shamir with Aborts” signature scheme
standardised by NIST

* The scheme applies various (low-order bit) compression
* No forking required, relies on a tailored assumption, SelfTargetMSIS

* Smarter parameter selection and analysis



~urtner Discussion

* Rejection sampling using Discrete Gaussians [Lyul2]

* Removing rejection sampling (to avoid side-channel attacks),
Raccoon [KRPP24], G+G [DPS23]

* Rejection sampling for FSwWA - technical issues [BBDD+23, DFPS2 3]



Thank you
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