

Lattice-Based Zero-Knowledge Proofs (I)

Ngoc Khanh Nguyen

Overview



MOTIVATION ON ZERO-
KNOWLEDGE PROOFS
(ZKP) AND SNARKS

SIMPLE EXAMPLE

ZKP FOR LATTICE
RELATED STATEMENTS

APPLICATIONS TO
SIGNATURE SCHEMES
(DILITHIUM)

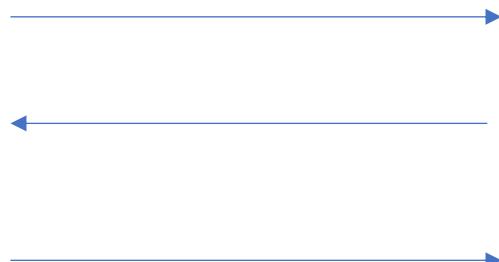
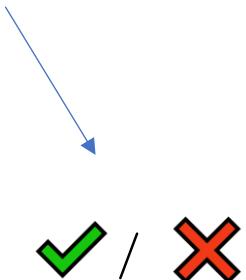
$$\begin{aligned}
 \frac{\partial}{\partial a} \ln f_{a,\sigma^2}(\xi_1) &= \frac{1}{\sigma^2} \int_{\mathbb{R}_n} T(x) \cdot \frac{\partial}{\partial \theta} f(x, \theta) dx = \int_{\mathbb{R}_n} \frac{\partial}{\partial \theta} T(x) f(x, \theta) dx, \\
 \int_{\mathbb{R}_n} T(x) \cdot \frac{\partial}{\partial \theta} f(x, \theta) dx &= M\left(T(\xi) \cdot \frac{\partial}{\partial \theta} \ln L(\xi, \theta)\right), \\
 \int_{\mathbb{R}_n} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x, \theta)\right) \cdot f(x, \theta) dx &= \int_{\mathbb{R}_n} T(x) \left(\frac{\partial}{\partial \theta} \frac{f(x, \theta)}{f(x, \theta)}\right) dx, \\
 \frac{\partial}{\partial \theta} \ln T(\xi) &= \frac{\partial}{\partial \theta} \int_{\mathbb{R}_n} T(x) f(x, \theta) dx = \int_{\mathbb{R}_n} \frac{\partial}{\partial \theta} T(x) f(x, \theta) dx.
 \end{aligned}$$

Proof

a fact or piece of information that shows that something exists or is true

Interactive Proof

$$R(x, w) = 1$$

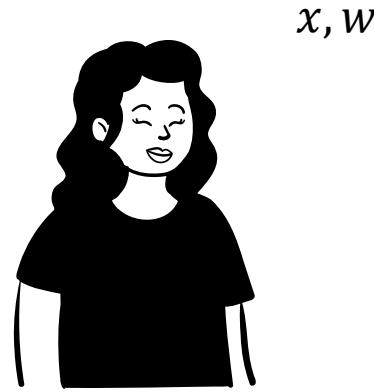
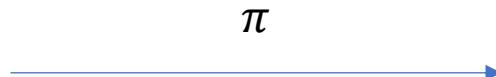
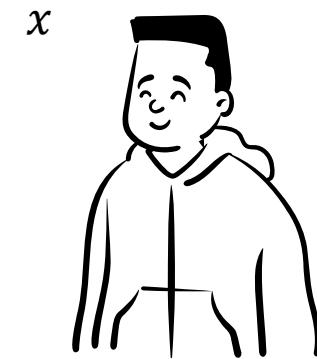
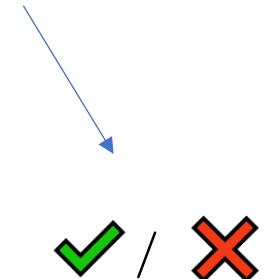


Completeness:

For an honest prover
the verifier accepts

Non-Interactive Proof

$$R(x, w) = 1$$

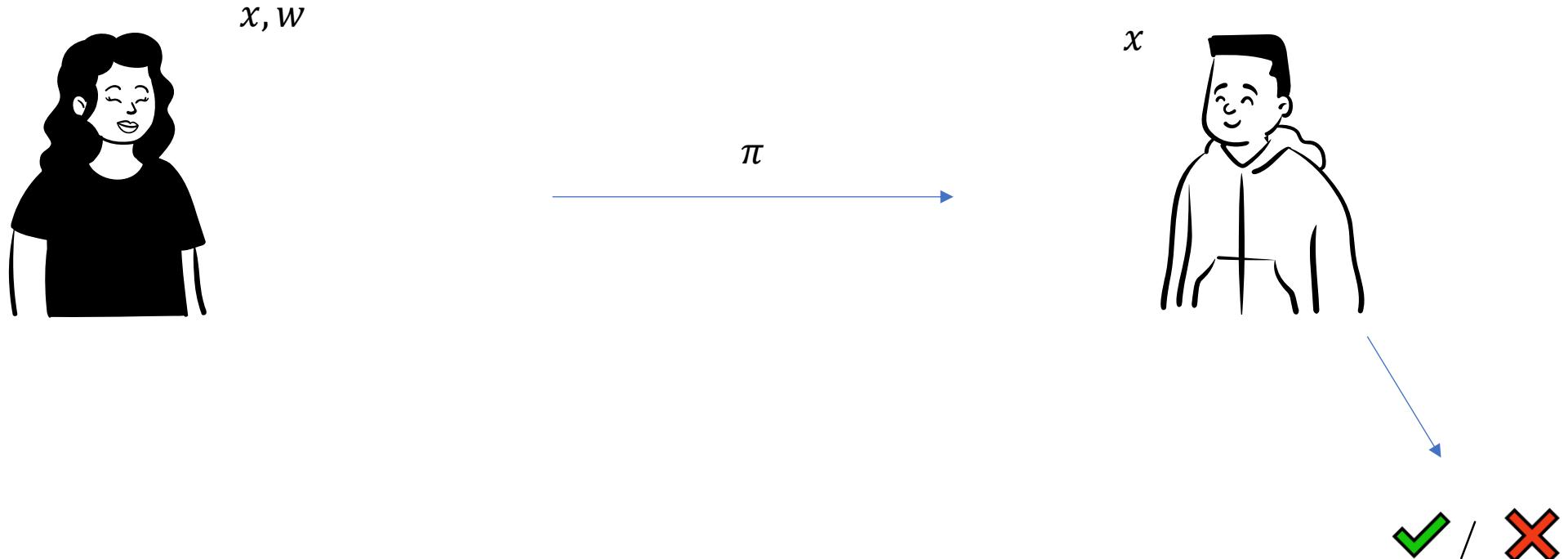


Completeness:

For an honest prover
the verifier accepts

Succinct Non-Interactive Proof

$$R(x, w) = 1$$

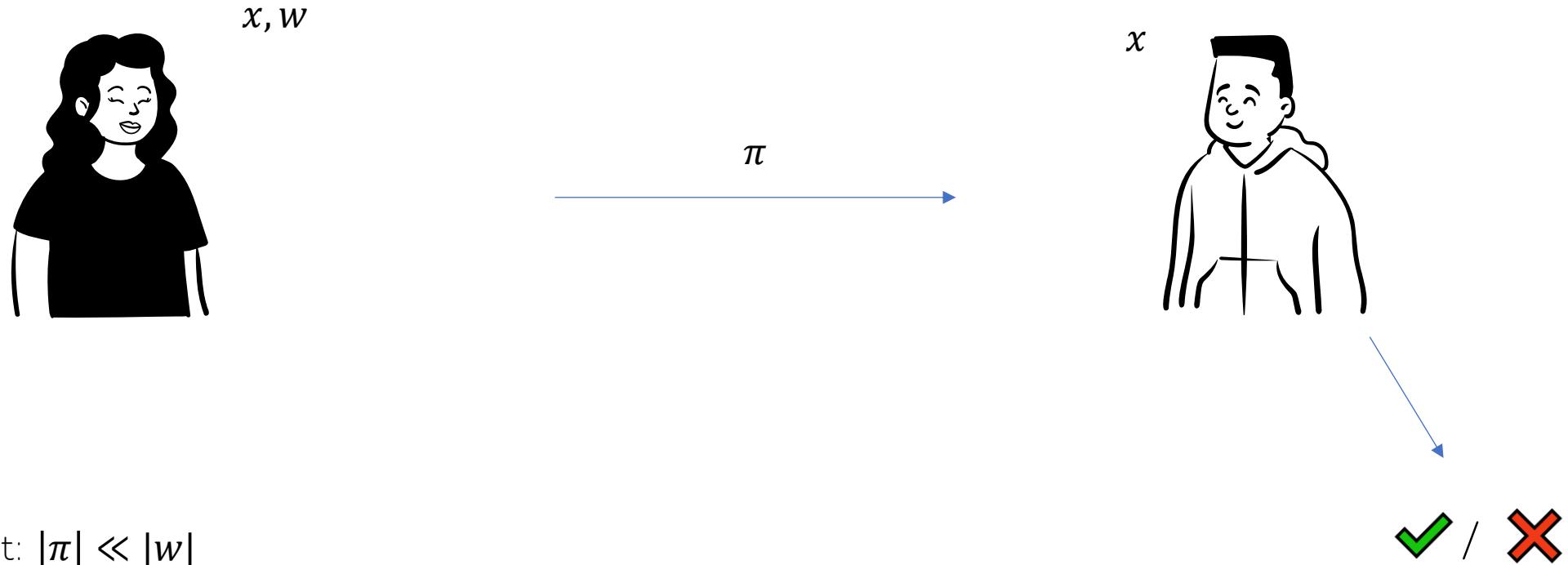


Completeness:
For an honest prover
the verifier accepts

Succinct: $|\pi| \ll |w|$

Succinct Non-Interactive Argument of Knowledge

$$R(x, w) = 1$$



Knowledge soundness: If a prover can convince the verifier with high probability, then it ``must know w ''.

Argument: knowledge soundness holds under a computational assumption.

Statement

Prover

Verifier

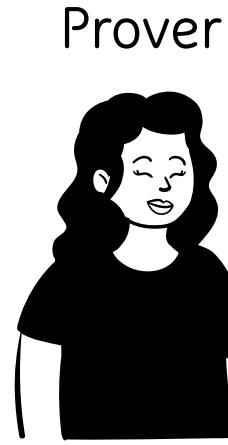
✓ / ✗

Prover

Statement

Verifier

Ha! I know
you're 30 years
old and you live
in London



Prover

Statement

Verifier

Ha! I know
you're 30 years
old and you live
in London

How can we convince the security that we're over 18
without revealing sensitive data?

Zero-knowledge proofs

Statement

Prover

Verifier

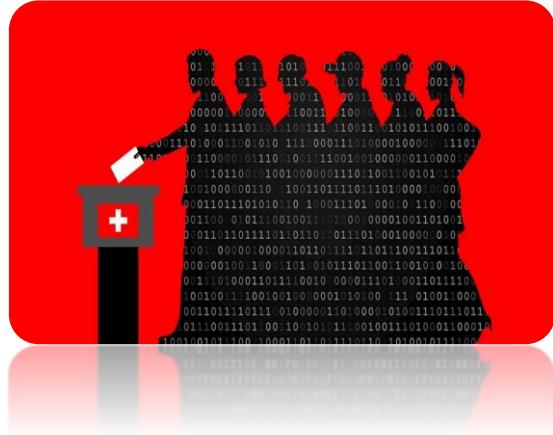
No secret
information learnt
apart from the
statement

APPLICATIONS OF ZERO-KNOWLEDGE PROOFS

12

CONFIDENTIAL TRANSACTIONS

E-VOTING



ANONYMOUS CREDENTIALS

A digital ID and personal digital wallet

for EU citizens, residents and
businesses

Overview

MOTIVATION ON ZERO-
KNOWLEDGE PROOFS
(ZKP) AND SNARKS

SIMPLE EXAMPLE

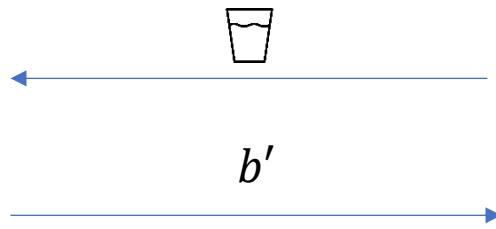
ZKP FOR LATTICE
RELATED STATEMENTS

APPLICATIONS TO
SIGNATURE SCHEMES
(DILITHIUM)

Experiment

Statement: I know how to distinguish between Pepsi and Coke

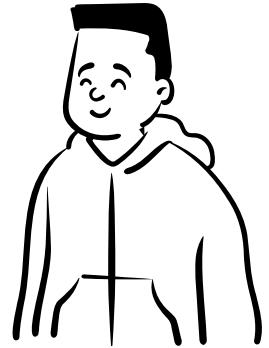
Experiment



$b \leftarrow \{0,1\}$

If $b = 0$: =

If $b = 1$: =



✓ if $b = b'$
✗ otherwise

- Why is it ZK?
- What's the cheating probability?

We want to build ZKP for meaningful statements

- In this presentation, we focus on **lattice-related statements**.
- They can be further adapted to proving any **NP statements**.

Overview

MOTIVATION ON ZERO-
KNOWLEDGE PROOFS
(ZKP) AND SNARKS

SIMPLE EXAMPLE

ZKP FOR LATTICE
RELATED STATEMENTS

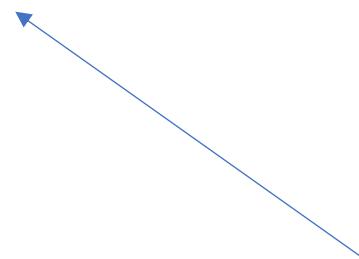
APPLICATIONS TO
SIGNATURE SCHEMES
(DILITHIUM)

Lattice-based cryptography

$$As = u$$

Lattice-based cryptography

$$\mathbf{A}\mathbf{s} = \mathbf{u}$$



Equation over
ring \mathbb{Z}_q

Lattice-based cryptography

$$A\mathbf{s} = \mathbf{u}$$

Vector \mathbf{s} has
small
coefficients
e.g. $\{-1,0,1\}$

Equation over
ring \mathbb{Z}_q

Lattice-based cryptography

$$A\mathbf{s} = \mathbf{u}$$

Let us prove knowledge of such \mathbf{s} !

Vector \mathbf{s} has
coefficients
e.g. $\{-1, 0, 1\}$

Equation over
ring \mathbb{Z}_q

Lattices vs discrete log

DLOG

- $x \in \mathbb{Z}_q$ is a secret key
- g^x is a public key
- Given a pk, it is hard to find sk
(DLOG assumption)

$$\begin{aligned} \bullet \quad & g^x \cdot g^y = g^{x+y} \\ \bullet \quad & (g^x)^c = g^{cx} \end{aligned}$$

Lattices

- $\mathbf{s} \in \mathbb{Z}_q^m$ is a secret key
- \mathbf{As} is a public key
- Given a pk, it is hard to find sk
((I)SIS assumption)

$$\begin{aligned} \bullet \quad & \mathbf{As} + \mathbf{Ay} = \mathbf{A}(\mathbf{s} + \mathbf{y}) \\ \bullet \quad & c \cdot (\mathbf{As}) = \mathbf{A}(c\mathbf{s}). \end{aligned}$$

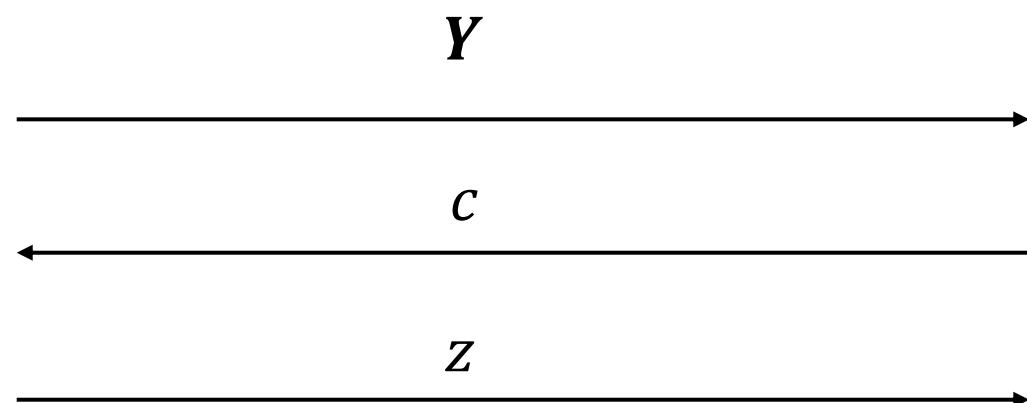
Schnorr ID protocol

$$R := \{(X, x) : g^x = X\}$$

g, x, X

g, X

$y \leftarrow \mathbb{Z}_q$
 $Y = g^y$
 $z = y + cx$



$c \leftarrow \mathcal{C} = \mathbb{Z}_q$
Check $g^z = Y \cdot X^c$

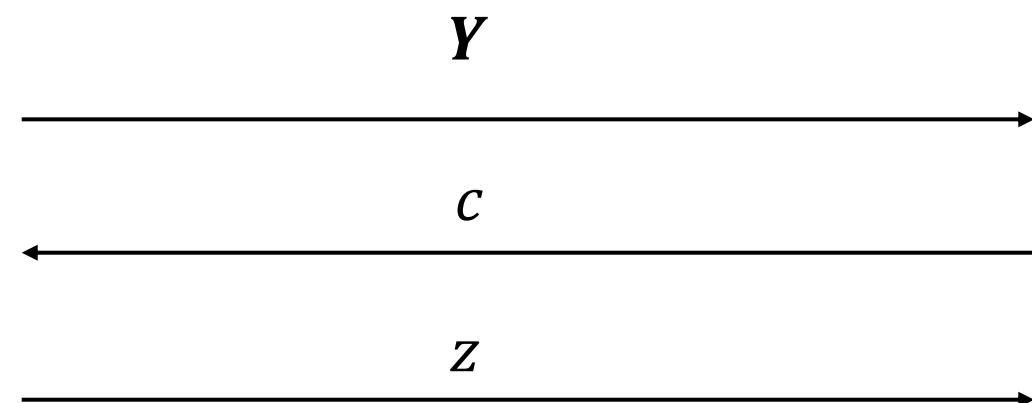
Schnorr ID protocol

g, x, X

g, X

$y \leftarrow \mathbb{Z}_q$
 $Y = g^y$
 $z = y + cx$

$$R := \{(X, x) : g^x = X\}$$



$c \leftarrow \mathcal{C} = \mathbb{Z}_q$

Check $g^z = Y \cdot X^c$

Schnorr in the lattice world

$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

A, s, u

A, u

Say **hi** and discuss with your neighbour
how to translate Schnorr protocol in
the lattice setting (2 minutes)!

Schnorr in the lattice world [Lyu09,Lyu12]

$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

A, s, u

A, u

$$y \leftarrow \mathbb{Z}_q^m$$

$$w = Ay$$

w

Schnorr in the lattice world [Lyu09,Lyu12]

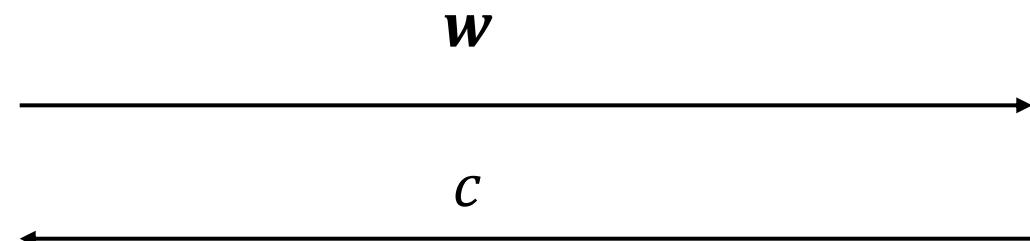
$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

A, s, u

A, u

$$y \leftarrow \mathbb{Z}_q^m$$

$$w = Ay$$



$$c \leftarrow \mathcal{C} = \mathbb{Z}_q$$

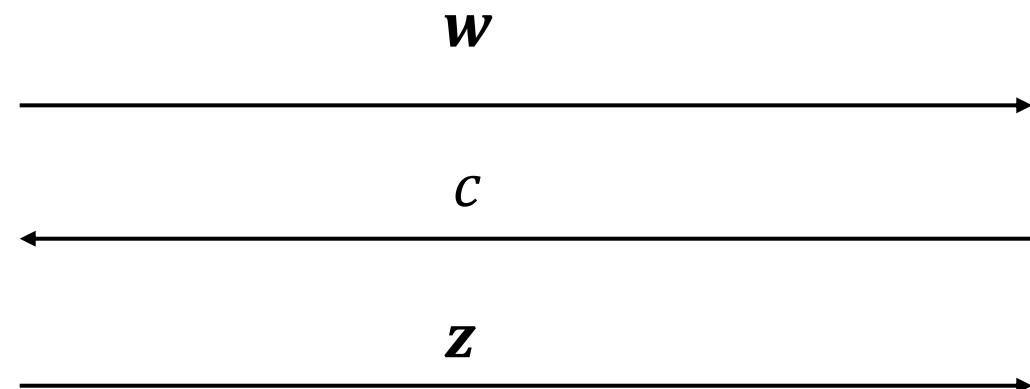
Schnorr in the lattice world [Lyu09,Lyu12]

$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

$$A, \mathbf{s}, \mathbf{u}$$

$$A, \mathbf{u}$$

$$\begin{aligned} \mathbf{y} &\leftarrow \mathbb{Z}_q^m \\ \mathbf{w} &= A\mathbf{y} \\ \mathbf{z} &= \mathbf{y} + c\mathbf{s} \end{aligned}$$



$$c \leftarrow \mathcal{C} = \mathbb{Z}_q$$

Check $A\mathbf{z} = \mathbf{w} + c\mathbf{u}$

What about malicious provers? Attempt 1

A, u

$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

A, u

We need norm bound
checks!

z

Using linear algebra,
find z s.t. $Az = w + cu$

$$c \leftarrow \mathcal{C} = \mathbb{Z}_q$$

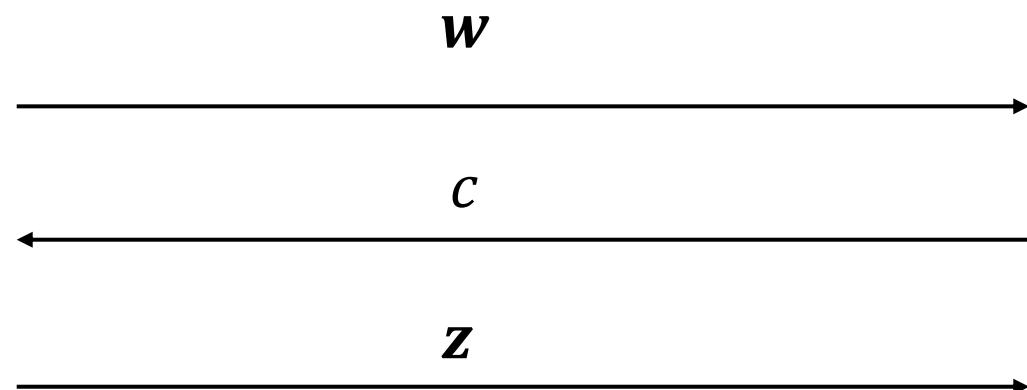
Check $Az = w + cu$

Completeness is destroyed

A, u

$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

A, u



$$c \leftarrow \mathcal{C} = \mathbb{Z}_q$$

Check $Az = w + cu$

Check $\|z\| \leq \gamma$

Fixing completeness

$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

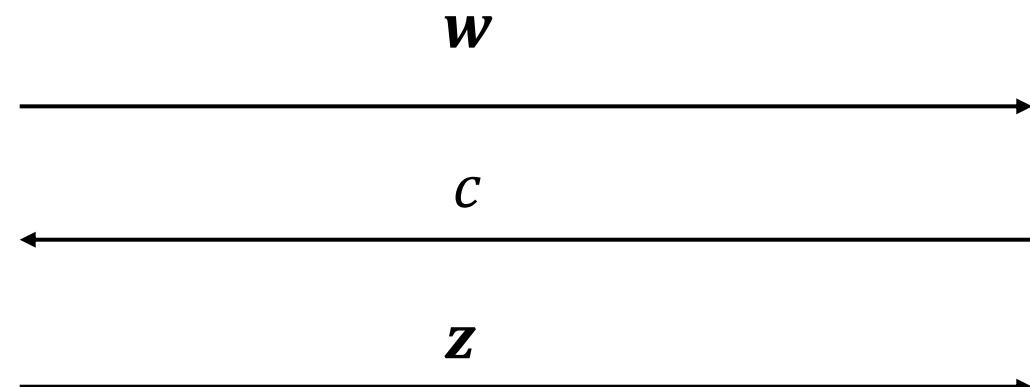
A, s, u

$$y \leftarrow \mathbb{Z}_q^m$$

$$w = Ay$$

$$z = y + cs$$

short



A, u

$$c \leftarrow \mathcal{C} = \mathbb{Z}_q$$

short

Check $Az = w + cu$

Check $\|z\| \leq \gamma$

Fixing completeness

$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

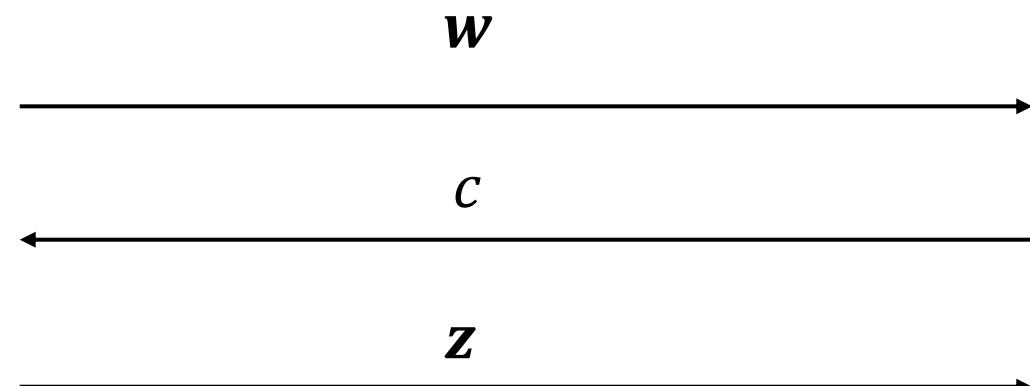
$A, \mathbf{s}, \mathbf{u}$

$$\begin{aligned} y &\leftarrow D^m \\ w &= Ay \end{aligned}$$

short

$$z = y + cs$$

short



A, \mathbf{u}

$$c \leftarrow \mathcal{C} \subseteq \mathbb{Z}_q$$

short

Check $Az = w + cu$

Check $\|z\| \leq \gamma$

Fixing completeness – Attempt 1

$$As = u \pmod{q} \text{ and } \|s\| \leq \beta$$

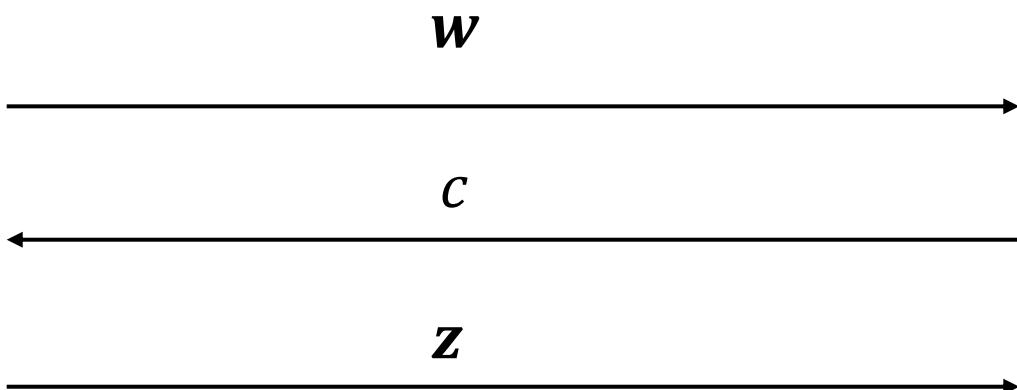
A, s, u

$$y \leftarrow [-\alpha, \alpha]^m$$

$$w = Ay$$

$$z = y + cs$$

short



A, u

$$c \leftarrow [-\delta, \delta]$$

Check $Az = w + cu$

Check $\|z\| \leq \alpha + \beta\delta$

Fixing completeness – Attempt 1

A, \mathbf{u}

$$As = \mathbf{u} \pmod{q} \text{ and } \|s\| \leq \beta$$

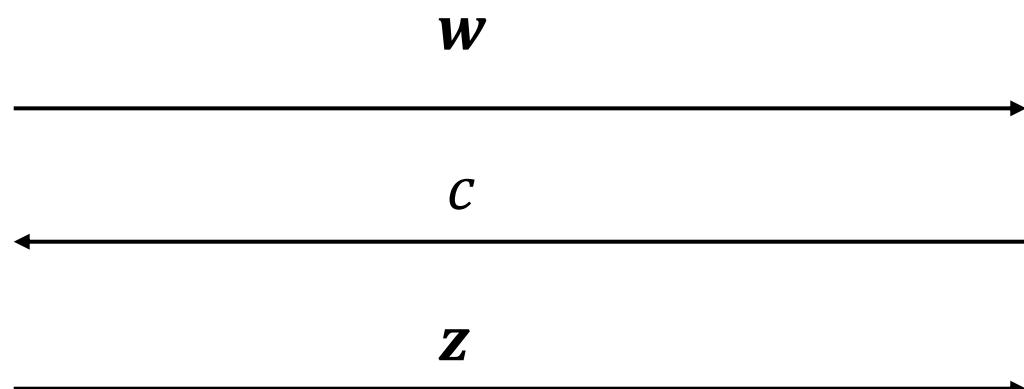
A, \mathbf{u}

Guess $c' \leftarrow [-\delta, \delta]$

Pick any short enough \mathbf{z}

$$\mathbf{w} = A\mathbf{z} - c'\mathbf{u}$$

If $c = c'$, send \mathbf{z}



$$c \leftarrow [-\delta, \delta]$$

Check $A\mathbf{z} = \mathbf{w} + c\mathbf{u}$

Check $\|\mathbf{z}\| \leq \alpha + \beta\delta$

What's the
success
probability?

A, \mathbf{u}

Guess $c' \leftarrow [-\delta, \delta]$

Pick any short enough \mathbf{z}

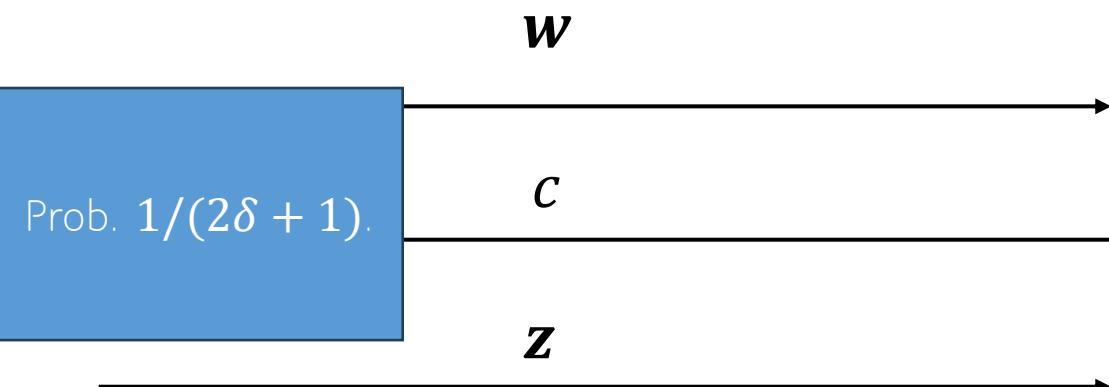
$\mathbf{w} = \mathbf{A}\mathbf{z} - c'\mathbf{u}$

If $c = c'$, send \mathbf{z}

Completeness – Attempt 1

$$\mathbf{A}\mathbf{s} = \mathbf{u} \pmod{q} \text{ and } \|\mathbf{s}\| \leq \beta$$

A, \mathbf{u}



$c \leftarrow [-\delta, \delta]$

Check $\mathbf{A}\mathbf{z} = \mathbf{w} + c\mathbf{u}$

Check $\|\mathbf{z}\| \leq \alpha + \beta\delta$

Issues with soundness

- To achieve negligible (knowledge) soundness, one needs $\delta = \exp(\lambda)$.
- But since $\delta \ll q$, the modulus q has to be exponential as well!

- To overcome this limitation, we use polynomial rings (large challenge space of ``short'' elements)
- $R_q = \mathbb{Z}_q[X]/(f(X))$

$$R_q = \mathbb{Z}_q[X]/(f(X))$$

- For concreteness, set $f(X) \coloneqq X^d + 1$ for a power-of-two $d = O(\lambda)$

Exercise:

Let $q = 7$ and $d = 4$. Compute $(X^3 + 4X) \cdot (3X^2 - 1)$ over R_q .

$$R_q = \mathbb{Z}_q[X]/(f(X))$$

- For concreteness, set $f(X) \coloneqq X^d + 1$ for a power-of-two $d = O(\lambda)$

Exercise:

Let $q = 7$ and $d = 4$. Compute $(X^3 + 4X) \cdot (3X^2 - 1)$ over R_q .

$$\begin{aligned}(X^3 + 4X) \cdot (3X^2 - 1) &= 3X^5 - X^3 + 12X^3 - 4X \\ &= -3X - 11X^3 - 4X \pmod{X^4 + 1} = 3X^3 \pmod{X^4 + 1, 7}\end{aligned}$$

$$R_q = \mathbb{Z}_q[X]/(f(X))$$

- For concreteness, set $f(X) \coloneqq X^d + 1$ for a power-of-two $d = O(\lambda)$
- Let $a = a_0 + a_1X + \cdots + a_{d-1}X^{d-1} \in R_q$. Then $\|a\| = \max_i |a_i|$.
- Lemma: $\|ab\| \leq d \cdot \|a\| \cdot \|b\|$.

$$R_q = \mathbb{Z}_q[X]/(f(X))$$

- For concreteness, set $f(X) := X^d + 1$ for a power-of-two $d = O(\lambda)$
- Let $a = a_0 + a_1X + \dots + a_{d-1}X^{d-1} \in R_q$. Then $\|a\| = \max_i |a_i|$.
- Lemma: $\|ab\| \leq d \cdot \|a\| \cdot \|b\|$.
- Proof: Note that

$$\left(\sum_{i=0}^{d-1} a_i X^i \right) \left(\sum_{j=0}^{d-1} b_j X^j \right) = \sum_{i,j} a_i b_j X^{i+j}$$

Hence, the k -th coefficient of ab has absolute value

$$|\sum_{i+j=k \pmod{d}} a_i b_j| \leq \sqrt{(\sum_{i=0}^{d-1} a_i^2) (\sum_{j=0}^{d-1} b_j^2)} \leq \sqrt{d^2 \|a\|^2 \cdot \|b\|^2}$$

Lattice-based cryptography

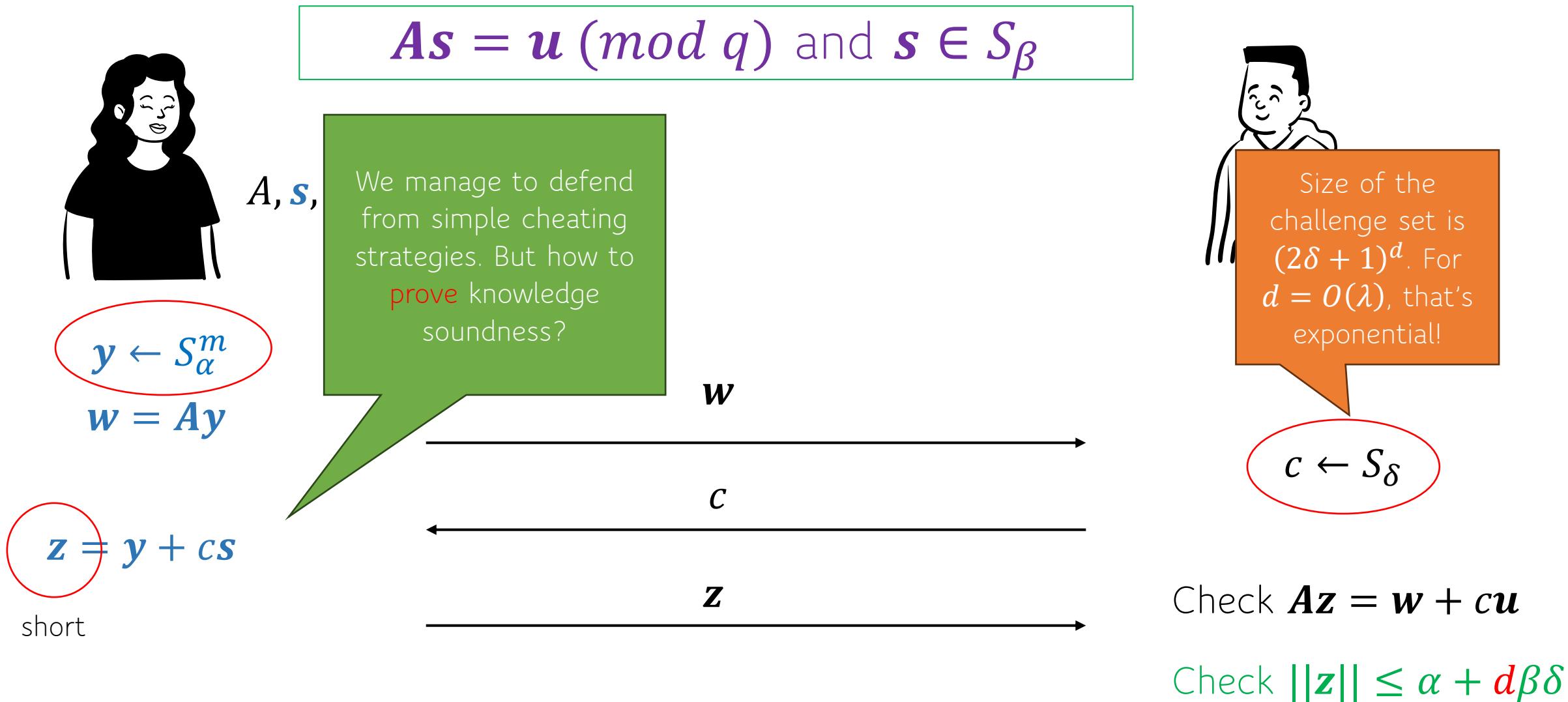
$$As = u$$

Denote
 $S_\beta := \{x \in R_q : \|x\| \leq \beta\}$

Vector s has polynomials with coefficients
e.g. $\{-1, 0, 1\}$

Equation over ring R_q

Schnorr in the polynomial ring setting



Security proof

Knowledge Soundness

- Parameter δ

(Honest-Verifier) Zero-Knowledge

- Parameter α

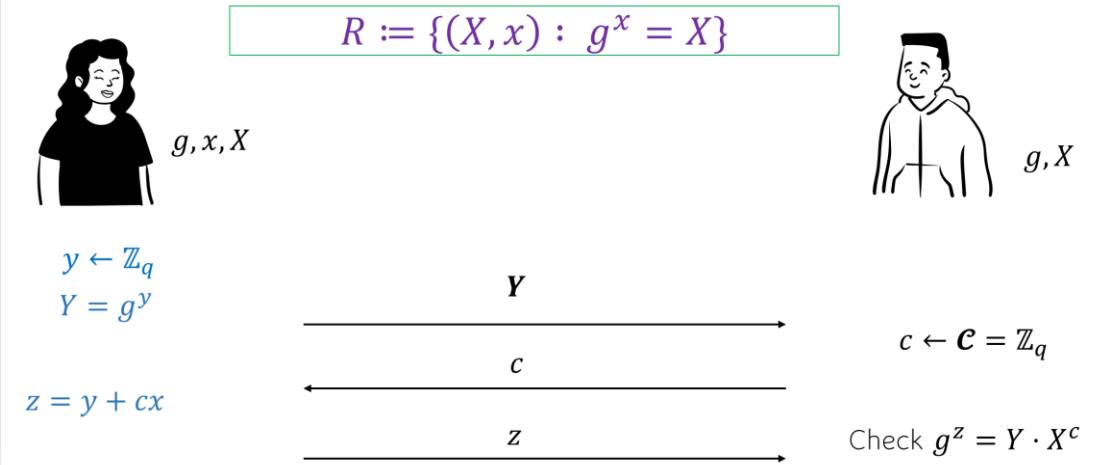
Towards knowledge soundness

- Special-soundness: given two valid transcripts (Y, c, z) and (Y, c', z') for $c \neq c'$, one can extract x^* s.t. $(X, x^*) \in R$.

- Indeed, we know

- $g^z = Y \cdot X^c$ and $g^{z'} = Y \cdot X^{c'}$
- Thus $g^{\frac{z-z'}{c-c'}} = X$. Set $x^* = \frac{z-z'}{c-c'}$.

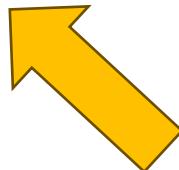
Schnorr ID protocol



Why is special-soundness cool?

Suppose this (**deterministic**) cheating prover can convince the verifier with probability $\epsilon > 1/|C|$.

c_1	c_2	c_3	...	c_i	...	$c_{ C }$
0	1	0	0/1	...



- Extraction strategy:
 - Sample a random $c_i \leftarrow C$
 - If the adversary fails for c_i , abort
 - Let (Y, c_i, z_i) be a valid transcript. Do:
 - sample a random $c_j \leftarrow C \setminus \{c_i\}$
 - While (Y, c_j, z_j) is not a valid transcript
 - Return (Y, c_i, z_i) and (Y, c_j, z_j)

We write **1** if the adversary succeeds on challenge c_i and **0** otherwise

Why is special-soundness cool?

Suppose this (deterministic) cheating prover can convince the verifier with probability $\epsilon > 1/|C|$.

c_1	c_2	c_3	...	c_i	$0/1$	$c_{ C }$
0	1	0	0/1	0

- Extraction strategy:
 - Sample a random $c_i \leftarrow C$
 - If the adversary fails for c_i , abort
 - Let (Y, c_i, z_i) be a valid transcript. Do:
 - sample a random $c_j \leftarrow C \setminus \{c_i\}$
 - While (Y, c_j, z_j) is not a valid transcript
 - Return (Y, c_i, z_i) and (Y, c_j, z_j)

Expected running time T :

$$\begin{aligned} E[T] &= E[T|success] \cdot \Pr[success] + E[T|\neg success] \cdot \Pr[\neg success] \\ &\leq \left(1 + \frac{|C| - 1}{\epsilon|C| - 1}\right) \cdot \epsilon + 1 \cdot (1 - \epsilon) \\ &\leq 1 + \left(\frac{|C| - 1}{\epsilon|C| - 1}\right) \cdot \epsilon \leq 2 \end{aligned}$$

Why is special-soundness cool?

Suppose this (deterministic) cheating prover can convince the verifier with probability $\epsilon > 1/|C|$.

c_1	c_2	c_3	c_i	$c_{ C }$
0	1	0	0/1	0

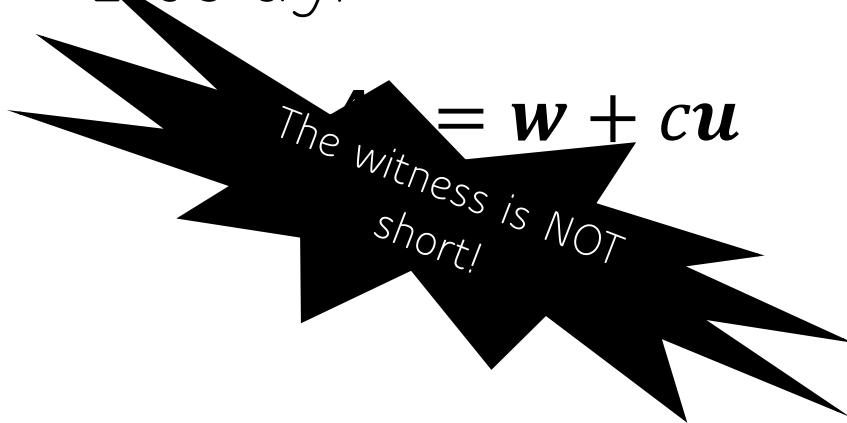
- Extraction strategy:
 - Sample a random $c_i \leftarrow C$
 - If the adversary fails for c_i , abort
 - Let (Y, c_i, z_i) be a valid transcript. Do:
 - sample a random $c_j \leftarrow C \setminus \{c_i\}$
 - While (Y, c_j, z_j) is not a valid transcript
 - Return (Y, c_i, z_i) and (Y, c_j, z_j)

Success probability:
If $\epsilon > 1/|C|$, there must be at least two 1s. So:

$$\Pr[E] = \epsilon$$

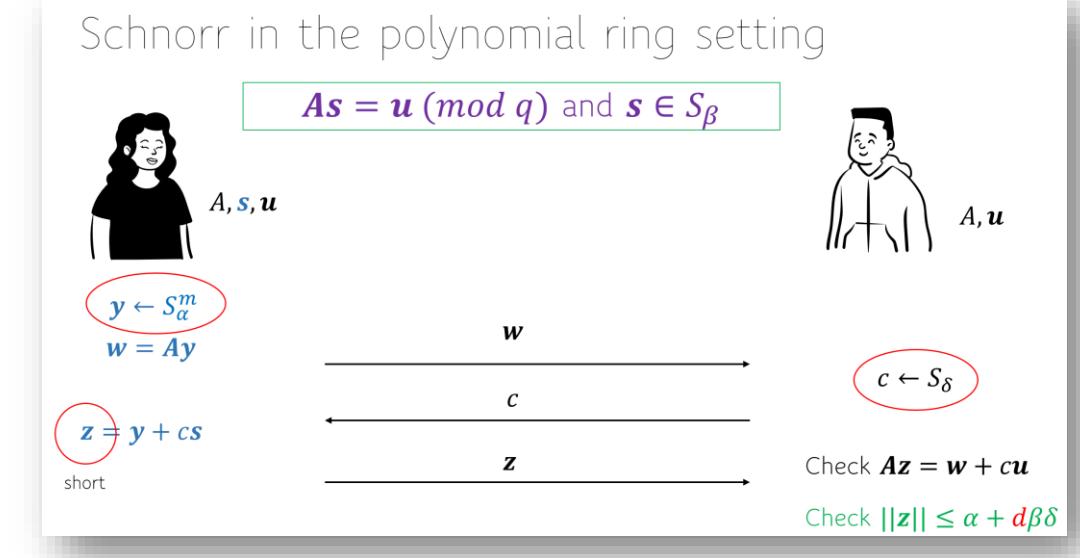
Special-soundness in the lattice setting

- Special-soundness: given two valid transcripts (w, c, z) and (w, c', z') for $c \neq c'$, one can extract \mathbf{s}^* s.t. $((A, \mathbf{u}), \mathbf{s}^*) \in R$.
- Let's try:



$$A \left(\frac{\mathbf{z} - \mathbf{z}'}{c - c'} \right) = \mathbf{u}$$

- $A\mathbf{z}' = w + c'\mathbf{u}$



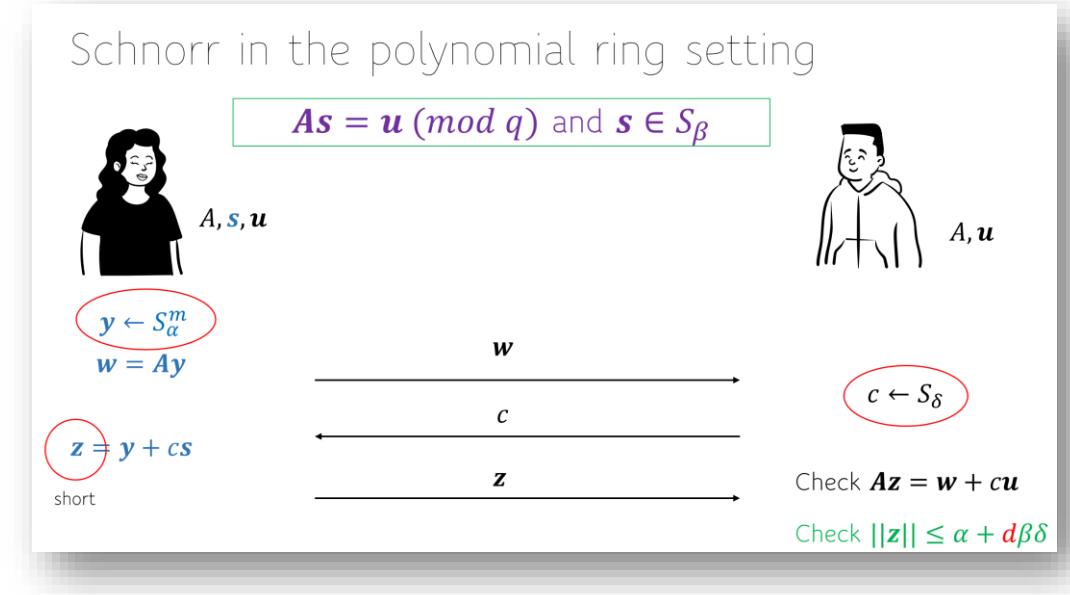
Special-soundness in the lattice setting

- Special-soundness: given two valid transcripts (w, c, z) and (w, c', z) for $c \neq c'$, one can extract \mathbf{s}^* s.t. $((A, u), \mathbf{s}^*) \in R$.
- So what do we have?

$$\bullet A(\mathbf{z} - \mathbf{z}') = (c - c')\mathbf{u}$$

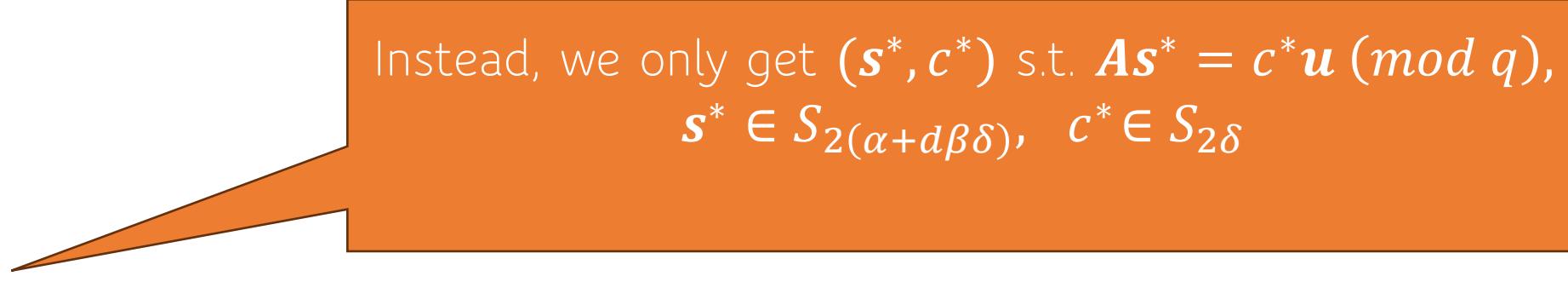
Relaxed relation:

$$\mathcal{R}^* \coloneqq \{((A, \mathbf{u}), (s^*, c^*)) : As^* = c^* \mathbf{u} \pmod{q}, s^* \in S_{2(\alpha+d\beta\delta)}, c^* \in S_{2\delta}\}$$



Special soundness summary

- We don't manage to extract the exact witness $\mathbf{s} \in S_\beta$
- Instead, we only get (\mathbf{s}^*, c^*) s.t. $\mathbf{A}\mathbf{s}^* = c^*\mathbf{u} \pmod{q}$, $\mathbf{s}^* \in S_{2(\alpha+d\beta\delta)}$,
 $c^* \in S_{2\delta}$
- Actually, this relaxation is fine for signatures!



Instead, we only get (\mathbf{s}^*, c^*) s.t. $\mathbf{A}\mathbf{s}^* = c^*\mathbf{u} \pmod{q}$,
 $\mathbf{s}^* \in S_{2(\alpha+d\beta\delta)}, \quad c^* \in S_{2\delta}$

So, intuitively we want to say that our **candidate** witness is $\mathbf{s} := \mathbf{s}^*/c^*$.

But first, is it well-defined?

For $q \equiv 5 \pmod{8}$, a non-zero element

$c \in S_{\sqrt{q/2}}$ is invertible over R_q .

But \mathbf{s} is not short, right?

But maybe there is still something meaningful...

Instead, we only get (\mathbf{s}^*, c^*) s.t. $\mathbf{A}\mathbf{s}^* = c^*\mathbf{u} \pmod{q}$,
 $\mathbf{s}^* \in S_{2(\alpha+d\beta\delta)}$, $c^* \in S_{2\delta}$

Lemma: Suppose there are two (\mathbf{s}_0^*, c_0^*) and (\mathbf{s}_1^*, c_1^*) which satisfy the above. Then, under the Module-SIS assumption,

$$\mathbf{s} := \frac{\mathbf{s}_0^*}{c_0^*} = \frac{\mathbf{s}_1^*}{c_1^*}$$

Proof sketch: $\mathbf{0} = c_0^*c_1^*\mathbf{u} - c_1^*c_0^*\mathbf{u} = \mathbf{A}(c_0^*\mathbf{s}_1^* - c_1^*\mathbf{s}_0^*)$

Short!

Security proof

Knowledge Soundness

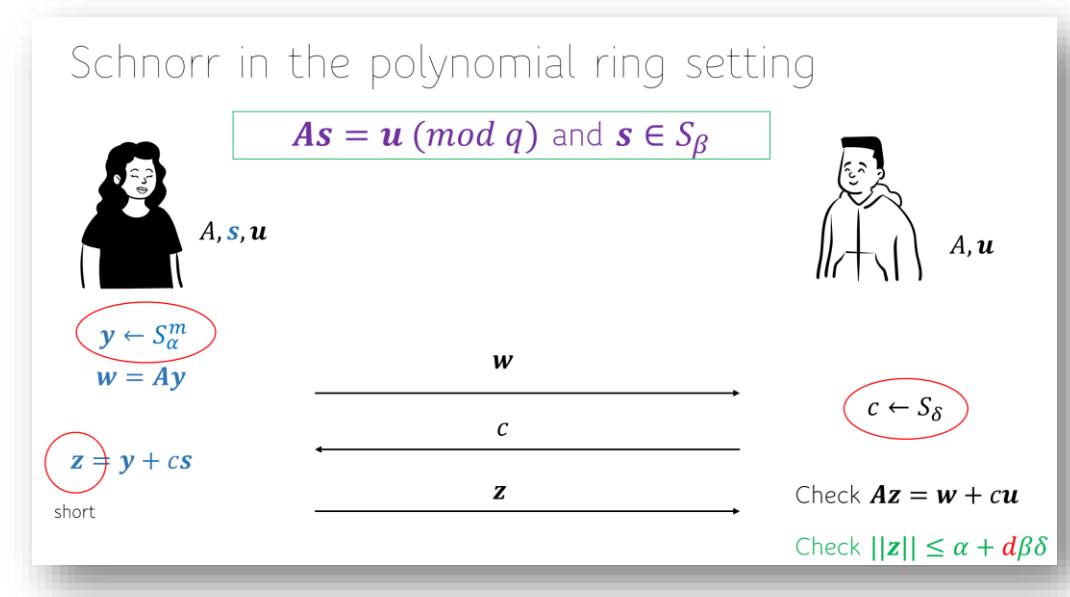
- Parameter δ

(Honest-Verifier) Zero-Knowledge

- Parameter α

Honest-verifier zero-knowledge

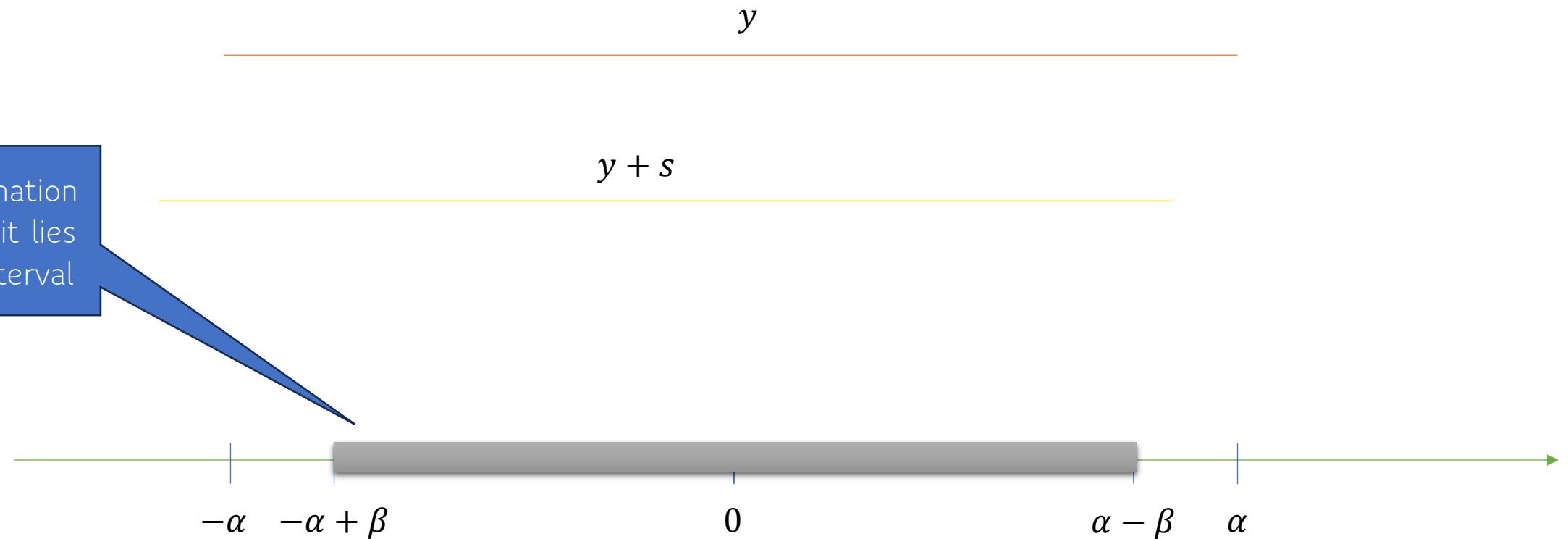
- Zero-knowledge: no information about \mathbf{s} is leaked.
- Is it the case here?



- Simple exercise.
- Let $s \in \{-1,0,1\}$ and $y \in [-100,100]$ be hidden. I reveal $z = y + s$.
- If $z = 101$, what can we deduce?
- If $z = 100$, what can we deduce?
- If $z = 99$, what can we deduce?

Rejection sampling [Lyu09]

- $y \in [-\alpha, \alpha]$
- $s \in [-\beta, \beta]$



Rejection sampling

$$As = u \pmod{q} \text{ and } s \in S_\beta$$

$$A, s, u$$

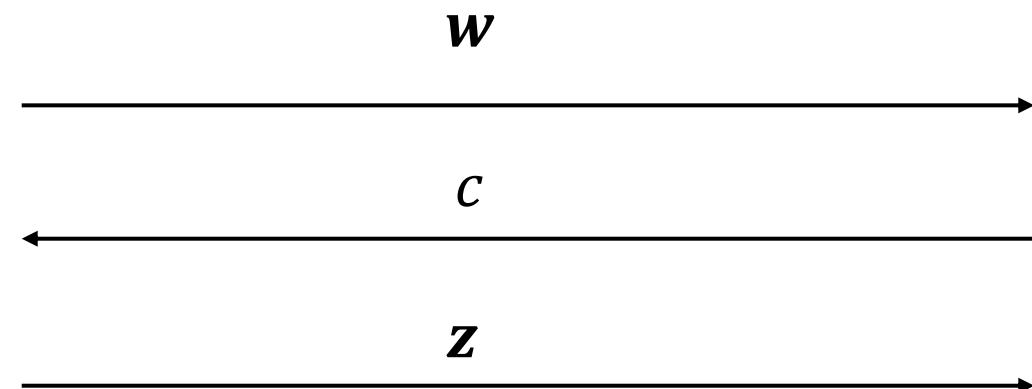
$$A, u$$

$$y \leftarrow S_\alpha^m$$

$$w = Ay$$

$$z = y + cs$$

If $\|z\| > \alpha - d\beta\delta$, reject



$$c \leftarrow S_\delta$$

Check $Az = w + cu$

Check $\|z\| \leq \alpha - d\beta\delta$

What's the probability of not rejecting?

If $\|\mathbf{y}\| \leq \alpha - 2d\beta\delta$, we're safe for sure.

$$\begin{aligned}
 \left(\frac{2(\alpha - 2d\beta\delta) - 1}{2\alpha - 1} \right)^{md} &= \left(1 - \frac{4d\beta\delta}{2\alpha - 1} \right)^{md} \\
 &= \left(1 - \frac{2d\beta\delta}{\alpha - 1/2} \right)^{\frac{\alpha-1/2}{2d\beta\delta} \cdot \frac{2d\beta\delta}{\alpha-1/2} md}
 \end{aligned}$$

$$\approx \exp\left(-\frac{2d\beta\delta md}{\alpha}\right)$$

$$\approx \exp(-1) \quad \text{for } \alpha \geq 2d^2\beta\delta m.$$

Rejection sampling

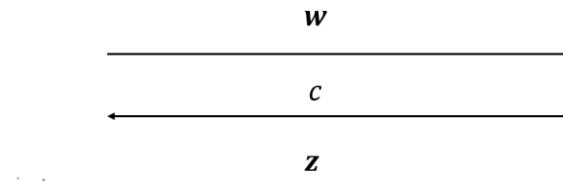
$$\mathbf{A}\mathbf{s} = \mathbf{u} \pmod{q} \text{ and } \mathbf{s} \in S_\beta$$

$$\mathbf{y} \leftarrow S_\alpha^m$$

$$\mathbf{w} = \mathbf{A}\mathbf{y}$$

$$\mathbf{z} = \mathbf{y} + c\mathbf{s}$$

If $\|\mathbf{z}\| > \alpha - d\beta\delta$, reject



$$A, \mathbf{u}$$

$$c \leftarrow S_\delta$$

Check $\mathbf{A}\mathbf{z} = \mathbf{w} + c\mathbf{u}$

Check $\|\mathbf{z}\| \leq \alpha - d\beta\delta$

(Non-abort) Honest-verifier zero-knowledge

- Zero-knowledge: no information about \mathbf{s} is leaked. In other words, one can **simulate** a valid (non-aborting) transcript.

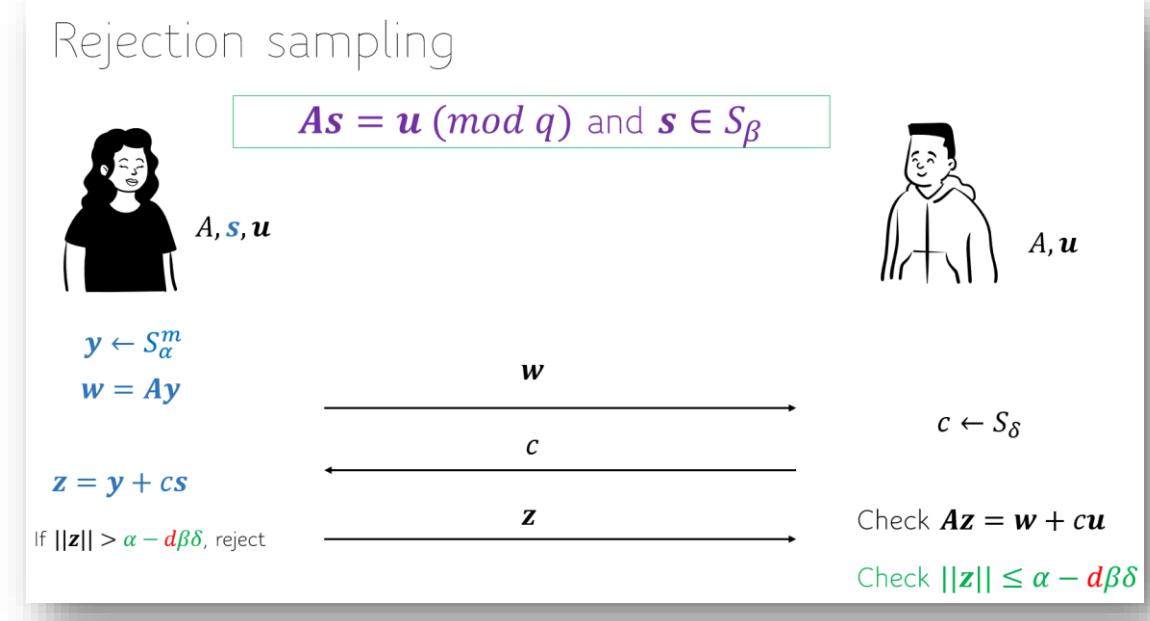
Lemma: Distribution of \mathbf{z} is uniform.

Proof: Note that for any value $\mathbf{x} \in \mathcal{S}_{\alpha-d\beta\delta}$ we have

$$\Pr[\mathbf{z} = \mathbf{x}] = \Pr[\mathbf{y} = \mathbf{x} - c\mathbf{s}] = \left(\frac{1}{2\alpha - 1}\right)^{md}.$$

We simulate the valid non-aborting transcript as follows.

1. $\mathbf{z} \leftarrow [\alpha - d\beta\delta, \alpha + d\beta\delta]$
2. $c \leftarrow S_\delta$
3. $\mathbf{w} := \mathbf{A}\mathbf{z} - c\mathbf{u}$
4. Output $(\mathbf{w}, c, \mathbf{z})$.



Security proof

Knowledge Soundness

- Parameter δ to make sure $|C| = (2\delta + 1)^d$ is exponential

(Honest-Verifier) Zero-Knowledge

- Parameter $\alpha \geq 2d^2\beta\delta m$ to ensure the probability of non-rejection to be 1/3

Fiat-Shamir transformation

- Let $H: \{0,1\}^* \rightarrow S_\delta$ be a hash function.

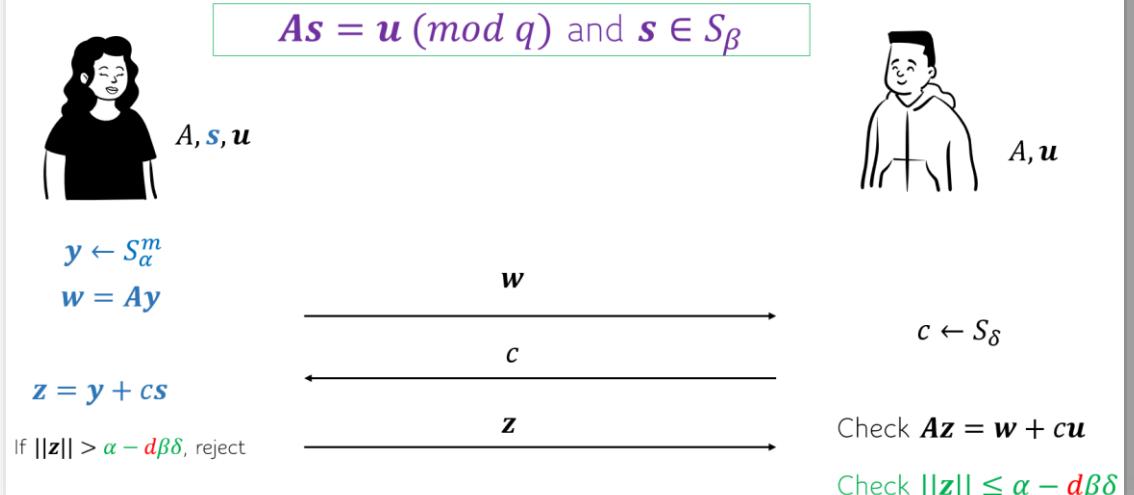
- We obtain a *non-interactive proof* as follows.

- $\mathbf{y} \leftarrow S_\alpha^m$
- $\mathbf{w} = \mathbf{Ay}$
- $c = H((\mathbf{A}, \mathbf{u}), \mathbf{w})$
- $\mathbf{z} = \mathbf{y} + cs$
- If $\|\mathbf{z}\| > \alpha - d\beta\delta$, restart
- Output $\pi = (\mathbf{w}, \mathbf{z})$.

To verify $\pi = (\mathbf{w}, \mathbf{z})$, check:

- $\|\mathbf{z}\| \leq \alpha - d\beta\delta$ and $\mathbf{Az} = \mathbf{w} + c\mathbf{u}$ where $c = H((\mathbf{A}, \mathbf{u}), \mathbf{w})$

Rejection sampling



Proof size: $n + m$ ring elements

Fiat-Shamir transformation

- Let $H: \{0,1\}^* \rightarrow S_\delta$ be a hash function.

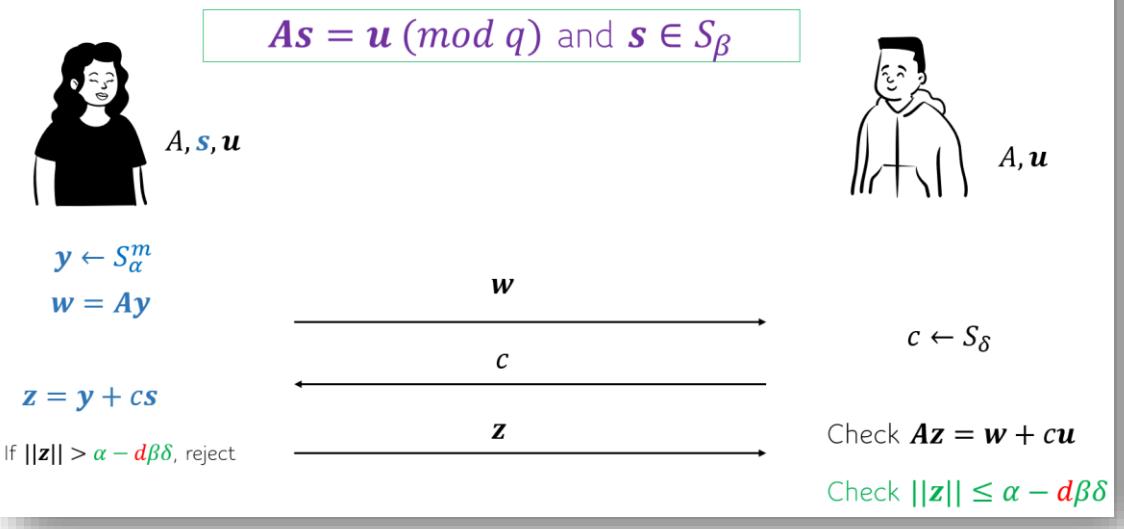
- Optimisation:

- $\mathbf{y} \leftarrow S_\alpha^m$
- $\mathbf{w} = \mathbf{Ay}$
- $c = H((\mathbf{A}, \mathbf{u}), \mathbf{w})$
- $\mathbf{z} = \mathbf{y} + cs$
- If $\|\mathbf{z}\| > \alpha - d\beta\delta$, restart
- Output $\pi = (\mathbf{c}, \mathbf{z})$.

To verify $\pi = (\mathbf{c}, \mathbf{z})$, check:

- $\|\mathbf{z}\| \leq \alpha - d\beta\delta$ and $\mathbf{c} = H((\mathbf{A}, \mathbf{u}), \mathbf{Az} - \mathbf{cu})$.

Rejection sampling



Proof size: $1 + m$ ring elements

Zero-knowledge in ROM

- No efficient adversary can distinguish between valid proofs and simulated proofs

Simulate:

1. $\mathbf{z} \leftarrow [\alpha - d\beta\delta, \alpha + d\beta\delta]$
2. $c \leftarrow S_\delta$
3. $\mathbf{w} := \mathbf{Az} - c\mathbf{u}$.
4. Program $H((\mathbf{A}, \mathbf{u}), \mathbf{w}) := c$
5. Output $\pi := (c, \mathbf{z})$.

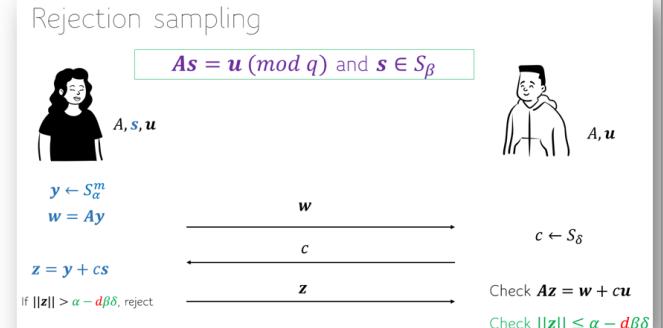
Simple entropy argument to show that we will never ``overwrite'' the random oracle

Fiat-Shamir transformation

- Let $H: \{0,1\}^* \rightarrow S_\delta$ be a hash function.
- Optimisation:

1. $\mathbf{y} \leftarrow S_\alpha^m$
2. $\mathbf{w} = \mathbf{Ay}$
3. $c = H((\mathbf{A}, \mathbf{u}), \mathbf{w})$
4. $\mathbf{z} = \mathbf{y} + c\mathbf{s}$
5. If $\|\mathbf{z}\| > \alpha - d\beta\delta$, restart
6. Output $\pi = (c, \mathbf{z})$.

To verify $\pi = (c, \mathbf{z})$, check:
 1. $\|\mathbf{z}\| \leq \alpha - d\beta\delta$ and $c = H((\mathbf{A}, \mathbf{u}), \mathbf{Az} - c\mathbf{u})$.



Proof size: $1 + m$ ring elements

Overview

MOTIVATION ON ZERO-
KNOWLEDGE PROOFS
(ZKP) AND SNARKS

SIMPLE EXAMPLE

ZKP FOR LATTICE
RELATED STATEMENTS

APPLICATIONS TO
SIGNATURE SCHEMES
(DILITHIUM)

From an ID-protocol to a FSwA signature

KeyGen:

$\text{sk} := \mathbf{s} \leftarrow S_\beta$
 $\text{pk} := \mathbf{u} = \mathbf{A}\mathbf{s}$

Sign(sk, \mathbf{m}):

1. $\mathbf{y} \leftarrow S_\alpha^m$
2. $\mathbf{w} = \mathbf{A}\mathbf{y}$
3. $c = H((\mathbf{A}, \mathbf{u}), \mathbf{w}, \mathbf{m})$
4. $\mathbf{z} = \mathbf{y} + c\mathbf{s}$
5. If $\|\mathbf{z}\| > \alpha - d\beta\delta$, restart
6. Output $\pi = (\mathbf{c}, \mathbf{z})$.

Verify($\text{pk}, \mathbf{m}, \pi = (c, \mathbf{z})$):

Return 1 if all the following hold:

1. $\|\mathbf{z}\| \leq \alpha - d\beta\delta$
2. $\mathbf{c} = H((\mathbf{A}, \mathbf{u}), \mathbf{A}\mathbf{z} - c\mathbf{u}, \mathbf{m})$

Fiat-Shamir transformation

- Let $H: \{0,1\}^* \rightarrow S_\delta$ be a hash function.

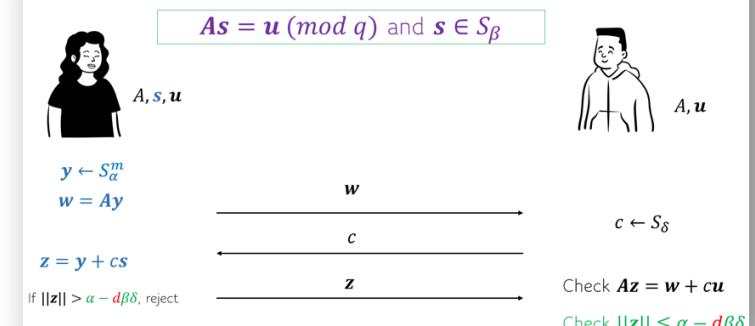
- Optimisation:

1. $\mathbf{y} \leftarrow S_\alpha^m$
2. $\mathbf{w} = \mathbf{A}\mathbf{y}$
3. $c = H((\mathbf{A}, \mathbf{u}), \mathbf{w})$
4. $\mathbf{z} = \mathbf{y} + c\mathbf{s}$
5. If $\|\mathbf{z}\| > \alpha - d\beta\delta$, restart
6. Output $\pi = (\mathbf{c}, \mathbf{z})$.

To verify $\pi = (\mathbf{c}, \mathbf{z})$, check:

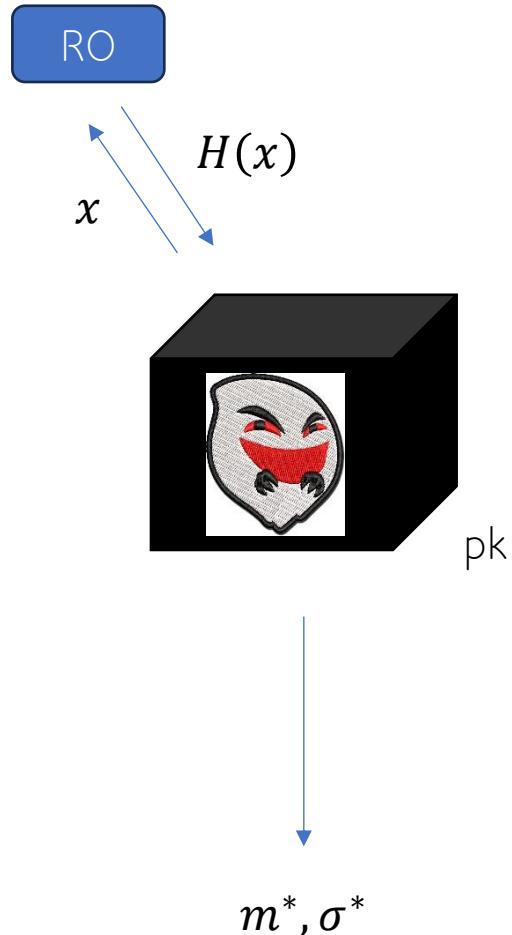
1. $\|\mathbf{z}\| \leq \alpha - d\beta\delta$ and $\mathbf{c} = H((\mathbf{A}, \mathbf{u}), \mathbf{A}\mathbf{z} - \mathbf{c}\mathbf{u})$.

Rejection sampling



Proof size: $1 + m$ ring elements

sEUF-CMA security in the ROM



Assumptions:

- Adversary makes q_H RO queries (no duplicates)
- Adv makes q_S signing queries

Adversary wins if
 $Ver(pk, m^*, \sigma^*) = 1$
and (m^*, σ^*) does not belong to
the query/answer set

Unforgeability proof

- Step 1: simulate the signing oracle via HVZK proof (no sk is used)
- Step 2: apply the forking lemma [BN06]
- Step 3: reduce to the special soundness case.

Unforgeability proof

- Step 1: simulate the signing oracle via HVZK proof (no sk is used)
- Step 2: apply the forking lemma [BN06]
- Step 3: reduce to the special soundness case.

$$\mathbf{A}(\mathbf{z} - \mathbf{z}') = (c - c')\mathbf{u} = \mathbf{A}(c - c')\mathbf{s}$$

We need to argue
 $(\mathbf{z} - \mathbf{z}') \neq (c - c')\mathbf{s}$

The only information known to the adversary about \mathbf{s} is $\mathbf{u} = \mathbf{A}\mathbf{s}$

Lemma: For any $\mathbf{A} \in R_q^{n \times m}$, where $m \geq 2n \log q / \log(2\beta + 1)$, for $\mathbf{s} \leftarrow S_\beta^m$, with probability $1 - 2^{-d}$ there exists another $\mathbf{s}' \in S_\beta^m$ s.t. $\mathbf{A}\mathbf{s} = \mathbf{A}\mathbf{s}'$.

Proof: $\mathbf{A}: R_q^m \rightarrow R_q^n$ can be thought of as a linear transformation whose range has size q^{nd} .

Thus, there are at most q^{nd} elements in S_β^m which do not collide with any other element in S_β^m by the pigeonhole principle.

Hence, the probability of \mathbf{s} being such an element is bounded by

$$\frac{q^{nd}}{(2\beta+1)^{md}} = \left(\frac{q^n}{(2\beta+1)^m}\right)^d \leq 2^{-d}.$$

Unforgeability proof

- Step 1: simulate the signing oracle via HVZK proof (no sk is used)
- Step 2: apply the forking lemma [BN06]
- Step 3: reduce to the special soundness case.

$$\mathbf{A}(\mathbf{z} - \mathbf{z}') = (c - c')\mathbf{u} = \mathbf{A}(c - c')\mathbf{s}$$

- Step 4: deduce that with non-negligible probability
 $(\mathbf{z} - \mathbf{z}') - (c - c')\mathbf{s} \neq \mathbf{0}$

Towards Dilithium [DKL+18]

- CRYSTALS-Dilithium is a ``Fiat-Shamir with Aborts'' signature scheme standardised by NIST
- The scheme applies various (low-order bit) compression
- No forking required, relies on a tailored assumption, SelfTargetMSIS
- Smarter parameter selection and analysis

Further Discussion

- Rejection sampling using Discrete Gaussians [Lyu12]
- Removing rejection sampling (to avoid side-channel attacks), Raccoon [KRPP24], G+G [DPS23]
- Rejection sampling for FSwA - technical issues [BBDD+23, DFPS23]

Thank you!