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Statistical Security in Lattice Schemes and Entropic Security

Applications of Smoothing



Learning with Errors and Gaussians

• Daniele’s talk: LWE is Interface to Lattice Cryptography 

• Do lattice crypto without fully understanding lattices! 

• Gaussians are somewhat error distribution and easy to analyse 

• This talk: Gaussians provide security features we don’t know how to achieve with other error 
distributions



Overview

• Basic Tools 

• Drowning 

• Leftover Hashing 

• Refined Tools 

• Singular Value Analysis 

• Smoothing

Applications 

• FHE Circuit Privacy 

• Entropic LWE



Decisional Version

Learning with Errors [Reg05]
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Worst-Case Hardness of LWE/Modulo-to-Noise Ratio

• For gaussian error distributions , LWE 
enjoys worst-case hardness 

• Quantum Reduction from (wc) SIVP to LWE 
[Reg05], classical reduction from (wc) GapSVP to 
LWE [Pei09,BLPRS13] 

• Approxiation factor of worst-case problem relates 
to the modulus-to-noise ratio 

χ = Dσ

α = q/σ



Basic Tools



Drowning/Flooding/Smudging

Lemma: 

•  symmetric and monotonously decreasing 
distribution 

• ,  

• Then  

• Bottom Line: Good anti-concentration bound for  
  hides 

χ

e ∼ χ t ∈ ℝ

Δ(e + t, e) = Pr[e ∈ [−t/2,t/2]]

χ
⇒ e t



Proof
Δ(X, X′￼) = ∑

x

| Pr[X = x] − Pr[X′￼ = x] |



Drowning/Flooding/Smudging

•  rectangular:  

•  Gaussian:    

•  ,  must be superpoly larger than  for this expression 
to be negligible 

• Drawback: Superpoly modulus-to-noise regime 
unavoidable

χ Δ(e + t, e) = Pr[e ∈ [−t/2,t/2]] =
t
r

χ Δ(e + t, e) = Pr[e ∈ [−t/2,t/2]] ≤
t
σ

r s t



Leftover Hashing

• Min Entropy  Log-Guessability:  

• For simplicity  prime 

•  supported on  with   

•  chosen uniformly random 

• Then  for uniformly random  

∼ H∞(x) = − log(max
ξ

Pr[x = ξ])

q

x ℤm
q H∞(x) ≥ n log(q) + 2 log(1/ϵ)

A ∈ ℤn×m
q

(A, Ax) ≈ϵ (A, u) u ∈ ℤn
q



GSW Encryption

• Public Key: Matrix  

• Secret Key: Vector  

• Ciphertext: Matrix  
 random short,  gadget matrix

A

s

C = AR + mG
R G

s

A′￼

sA′￼+ e
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GSW Homomorphic Operations

GSW Encryption

• Decryption:  

• ,  

• Homomorphic Addition:  

• Homomorphic Multiplication:  

• Ciphertext  after homomorphic Operation: Norm of  grows 
moderately, but  is far from random (comes from homomorphic evaluation)

(−s⊤,1)C = e⊤R + mG

C1 = AR1 + m1G C2 = AR2 + m2G

C1 + C2 = A(R1 + R2) + (m1 + m2)G

C1 ⋅ G−1(C2) = A(R1G−1(C2) + m1R2)) + m1m2G

C* = AR* + m*G R
R′￼



Ciphertext Sanitization

Circuit Privacy

• Circuit Privacy: Homomorphically computed ciphertexts statistically look like fresh encryptions 

• Choose fresh  and set  

• Recall that  

• First component of :  is statistically close to uniform and hence is   

• Second component of :  

•  leaks information about 

R C′￼ = C* + AR

A = ( A′￼

s⊤A′￼+ e⊤)
C′￼ A′￼R A′￼R* + A′￼R

C′￼ s⊤(A′￼R* + A′￼R) + e⊤(R* + R)

e⊤(R* + R) R*



Ciphertext Sanitization

Circuit Privacy

•  leaks information about  

• Drown this term out with a drowning term , i.e. set  

• Second component of  now: 
  

• Statistically independent of 

e⊤(R* + R) R*

d C′￼ = C* + AR + (0
ẽ)

C′￼

s⊤(A′￼R* + A′￼R) + e⊤(R* + R) + ẽ ≈ s⊤(A′￼R* + A′￼R) + ẽ

R*



Refined Tools



Lattices, Dual Lattices and Fourier Transforms

• Lattice  for some full rank  

• Dual Lattice  

• It holds 

Λ = {B ⋅ x | x ∈ ℤn} B ∈ ℝn×n

Λ* = {y ∈ ℝn | ∀z ∈ Λ : ⟨y, z⟩ ∈ ℤ}

Λ* = {(B−1)⊤ ⋅ x | x ∈ ℤn}



Singular Value Analysis

•  real-valued matrix with (say)  

• Singular values  are square-roots of eigenvalues of  

•  can be written as  with ,  and  a matrix 
with the  on diagonal and 0 everywhere else

A ∈ ℝn×m m ≥ n

σ1(A) ≥ … ≥ σn(A) ≥ 0 A ⋅ A⊤

A A = UDV⊤ U ∈ O(ℝn) V ∈ O(ℝm) D ∈ ℝn×m

σi(A)

A = U D V



Singular Value Analysis

• Matrix  positive definite   symmetric and all singular values of  are positive 

• Write  

•  is of the form  

• “Inner product matrices”: For all  it holds  

• Additional Notation: Write  for 

M ∈ ℝn×n ⇔ M M

M > 0

M A⊤ ⋅ A

x ∈ ℝn\{0} x⊤Mx > 0

M > M′￼ M − M′￼ > 0



Gaussians

ρ Σ(x) ∝ e−π⋅x⊤Σ−1x

Dℝn, Σ

x ∼ Dℝn, Σ ⇒ 𝔼[xx⊤] = Σ



Discrete Gaussians

DΛ, Σ

̂ρ Σ(z) = ρ Σ(z)/ρ Σ(Λ)



Smoothing

• Invented in [MR04] to “blur” a worst-case lattice (recall Daniele’s talk) 

• Incredibly useful for more efficient schemes with statistical security (no drowning) 

• Smoothing parameter  

Fix some  
We say  if 

ηϵ(Λ)
ϵ > 0

σ ≥ ηϵ(Λ) ̂ρ1/σ(Λ*) ≤ 1 + ϵ



Continuous Smoothing Lemma [Regev’05]

Smoothing

• Let  

•  

•  

•  

• Then  

σ ≥ 2 ⋅ ηϵ(Λ)

x ∼ DΛ,σ

e ∼ Dℝn,σ

e* ∼ Dℝn, 2σ

x + e ≈ϵ e*



Gaussian Decompositions

Lemma 

• Fix matrix  

• ,  

• Then  where  

• Conversely, if  (positive definite), then  can be 

decomposed as  for independent  and  

• If , then such a  exists if 

Z ∈ ℝm×n

e1 ∼ Dℝn,σ1
e2 ∼ Dℝm, Σ2

e3 = Ze1 + e2 ∼ Dℝm, Σ3
Σ3 = σ2

1ZZ⊤ + Σ2

Σ2 ≥ Σ3 − σ2
1ZZ⊤ ≥ 0 e3 ∼ Dℝm, Σ3

e3 = Ze1 + e2 e1 ∼ Dℝn,σ1
e2 ∼ Dℝm, Σ2

Σ3 = σ2I Σ2 σ > σ1 ⋅ σ1(Z)



Proof

• The covariance matrix of  is 

 

 

 

 

• If , then  is positive definite, as for all  

e3 = Ze1 + e2
𝔼[e3e⊤

3 ] = 𝔼[Ze1e⊤
1 Z⊤] + 𝔼[Ze1e⊤

2 ] + 𝔼[e2e⊤
1 Z⊤] + 𝔼[e2e⊤

2 ]
= Z𝔼[e1e⊤

1 ]Z⊤ + 𝔼[e2e⊤
2 ]

= Zσ2
1Z⊤ + Σ2

= σ2
1ZZ⊤ + Σ2

𝔼[e3e⊤
3 ] = σ2 Σ2 = σ2I − σ2

1ZZ⊤ x ∈ ℝn\{0}
x⊤Σ2x = σ2x⊤x − σ2

1 x⊤ZZ⊤x⊤ = σ2∥x∥2 − σ2
1∥Z⊤x∥2 ≥ σ2∥x∥2 − σ2

1σ1(Z)2∥x∥2 > 0



Gaussian “Leftover Hash Lemma”

Goal 

• Fix some short matrix  

•  discrete Gaussian 

•  continuous Gaussian 

• Show:   Gaussian

Z ∈ ℝm×n

x

e

Zx + e

Lemma 

•  

•  with  

• Then   with 

x ∼ DΛ,σ1

e ∼ Dℝn,σ2
σ2

2 I ≥ σ2
1ZZ⊤

Zx + e ∼ Dℝn, Σ

Σ = σ2
2 I + σ2

1ZZ⊤



Proof

• Decompose  as  with  and  as per last lemma 

• Then  

•  statistically close to  as per smoothing lemma 

• Hence  follows 

e e = Ze1 + e2 e1 ∼ Dℝn,σ1
e2 ∼ D

ℝm, σ2
2I − σ2

1ZZ⊤

Zx + e = Zx + Ze1 + e2 = Z(x + e1) + e2

x + e1 x′￼ ∼ Dℝn, 2σ1

Zx′￼+ e2 D
Rm, σ2

2 + σ2
1ZZ⊤



Application: FHE Circuit Privacy [BDMW16]

Recall 

• Gadget Matrix 

• Randomised  

 follows  conditioned on 

G−1
σ ( ⋅ )

x ∼ G−1
σ (c) DZm,σ Gx = c

1,2,…,2log q

1,2,…,2log q

1,2,…,2log q
⋱G =



Application: FHE Circuit Privacy [BDMW16]
• Alternative homomorphic evaluation:  

• Show:  statistically close to a fresh encryption of 

C = C1 ⋅ G−1
rand(C2) + (0

ẽ)
C m1 ⋅ m2

C1 G−1
rand(C2) 0+

ẽ

C1 x 0+
ẽ

Where x ∼ G−1
rand(c)



Application: FHE Circuit Privacy [BDMW16]
• Show:  statistically close to a fresh encryption of C m

C1 x 0+
ẽ

x ∼ G−1
rand(c)

C1
= A

s⊤A + e⊤

mG+

A

s⊤A + e⊤

mc+= x 0+
ẽ



Application: FHE Circuit Privacy [BDMW16]

x ∼ G−1
rand(c)

A

s⊤A + e⊤

x

+x
ẽe⊤

Gaussian LHL with Z = e⊤

≈
e*

≈ u

LHL



Application: Entropic LWE

• LWE: Secret  is uniform 

• Entropic LWE:  only comes from a min-entropy distribution 

• Think: LWE with leaky secret

s

s



Decisional Version

Learning with Errors [Reg05]

A

sA + e

≈c
A

u

 uniforms Uniformly random in ℤm
q



Decisional Version

Entropic LWE

A A≈c

sA + e u

 chosen from a min-entropy distribution s 𝒮

ℤn
q

Uniformly random in ℤm
q



The Lossiness Technique [GKPV10]

A

B C F+

≈ Under standard LWE

uniform in ℤn×k
q Discrete gaussian (Dℤ,σ)n×m

uniform in 

or


Discrete gaussian 

ℤn×k
q

(Dℤ,σ)n×k

uniform in ℤn×m
q

• Common proof strategy: Replace uniformly chosen matrix  with a pseudorandom 
matrix which has unusually many short vectors in its (row-)span 

• Now use that  loses information about 

A

A, sA + e s



Warmup: with drowning

The Lossiness Technique [GKPV10]

A, sA + e

BC + F, s(BC + F) + e
≈LWE

BC + F, sBC + sF + e
=

BC + F, sBC + e′￼≈s ≈LHL BC + F, tC + e′￼

≈LWE

A, u

BC + F, u
≈LWE

Chosen from a min-entropy 
distribution  supported on 𝒮 {0,1}n

0 0



Noise-Lossiness [BD’20]

• Fix distribution  supported on   

• ,  is a gaussian with parameter  

• Measures the information lost about  after 
passing it through a gaussian channel 

• Different Perspective: How bad is  as an 
error correcting code?

𝒮 ℤn
q

s ← 𝒮 e σ

s

𝒮

H̃∞(s |s + e)
= − log(Pr

s,e
[𝒜*(s + e) = s])

 is maximum likelihood decoder for 𝒜* 𝒮



Noise Lossiness: General Distributions

ℤn
q

H̃∞(s |s + e) ≥ H∞(s) − n ⋅ log(q/σ) − 1



Noise Lossiness: Short Distributions

ℤn
q

H̃∞(s |s + e) ≥ H∞(s) − 2r n /σ

r



From Noise-Lossiness to Hardness of Entropic LWE [BD’20]

A, sA + e

BC + F, s(BC + F) + e
≈LWE

BC + F, sBC + sF + e
=

=
BC + F, sBC + sF + e1F + e2

=
BC + F, sBC + (s + e1)F + e2



From Noise-Lossiness to Hardness of Entropic LWE [BD’20]

A, sA + e

BC + F, s(BC + F) + e

BC + F, sBC + sF + e

≈

=

=
BC + F, sBC + sF + e1F + e2

=
BC + F, sBC + (s + e1)F + e2 ≈LHL BC + F, tC + (s + e1)F + e2 BC + F, tC + sF + e=

≈LWE

BC + F, u

≈LWE

A, u



Conclusions and Further Applications

• Drowning is a general technique to remove noise artefacts  

• Requires a stronger LWE assumption and leads to (practically) undesirable parameters 

• Gaussian Smoothing is (sometimes) an alternative to drowning 

• Uses specific features of Gaussians (Decomposability), and works with poly modulus-to-noise LWE 

• Other Recent Applications: 

• Ring LWE with entropic hardness [BD’20b] 

• Laconic Encryption (Simple type of Laconic Function Evalution) with polynomial modulus-to-noise 
ratio [DKFLMR’23]

Thanks!


