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Learning with Errors and Gaussians

- Daniele’s talk: LWE is Interface to Lattice Cryptography
. Do lattice crypto without fully understanding lattices!
- Gaussians are somewhat error distribution and easy to analyse

- This talk: Gaussians provide security features we don't know how to achieve with other error
distributions
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- £ntropic LWE
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Learning with Errors [RegO5

Decisional Version
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Worst-Case Hardness of LWE/Modulo-to-Noise .

. For gaussian error distributions y = D _, LWE
enjoys worst-case hardness

« Quantum Reduction from (wc) SIVP to LWE

RegOb], classical reduction from (wc) GapSVP to
WE [Pei0O9 BLPRS

- Approxiation factor of worst-case problem relates

to the modulus-to-noise ratioa = g/o
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Basic Tools



Lemma:

- ¥y symmetric and monotonously decreasing
distribution

e~y t€R
- Then A(e + t,e) = Prle € |[—1/2,t/2]]

- Bottom Line: Good anti-concentration bound for y
= e hides t
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Drowning/Flooding/sSmudging
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Drowning/Flooding/smudging

[
., yrectangular: A(e + t,e) = Pr[e € [—1/2,t/12]] = —
r

[
. ¥ Gaussian: A(e+t,e) =Prle € |[—t/2,t/2]] £ —

O

- 1, S must be superpoly larger than £ for this expression

to be negligible

- Drawback: Superpoly modulus-to-noise regime
unavoidable




Leftover Hashing

. Min Entropy ~ Log-Guessability: H__(x) = — log(max Pr[x = ¢£])
<

- For simplicity g prime

. x supported on Z with H (x) > nlog(g) + 2log(1/¢)

. A E 72”” chosen uniformly random

. Then (A, Ax) =_ (A, u) for uniformly random u € 7’;




GoW Encryption

. Public Key: Matrix A
- Secret Key: \Vector §

. Ciphertext: Matrix C = AR + mG
R random short, G gadget matrix




GoW Encryption

GSW Homomorphnic Operations

. Decryption: (—s',1)C =¢'R + mG

.+ C, =AR; +mG, G, = ARy, + my,G

- Homomorphic Addition: C, + C;, = AR + R,) + (m; + m,)G

. Homomorphic Multiplication: C, - G™'(C,) = A(R,G~'(C,) + mR,)) + m;m,G

. Ciphertext C* = AR* + m*G after hommomorphic Operation: Norm of R grows

moderately, but R"is far from random (comes fromm homomorphic evaluation)



Clrcult Privacy
Clphertext sanitization

. Circuit Privacy: Homomorphically computed ciphertexts statistically look like fresh encryptions

. Choose fresh RandsetC' = C* + AR

A/
Recall that A =
' (STA’ + eT>

. First component of C": A’R is statistically close to uniform and henceis A’'R* + A'R
. Second component of C: s '(A'R* + A'R) + ¢ (R* + R)

. ¢ (R* + R) leaks information about R*



Clrcult Privacy

Clphertext sanitization

. e (R* + R) leaks information about R*

~/

. Drown this term out with a drowning term d, i.e. set C' = C* + AR + (O)
e

. Second component of C' now:
s'(AR*+A'R)+e' (R*+R)+é~s'"(AR*¥+ A'R) + &

. Statistically independent of R*



Refined Tools



[ attices, Dual Lattices and..

Tanstorms

~ourler

. Lattice A= {B-x | x € Z"} for some full rank B € R

. Dual Lattice A*={y e R" | Vze A: (y,z) € Z}

. It holds A* = {(B™1)

x| x e 7"}




Singular Value Analysis

. A € R™™ reqal-valued matrix with (say) m > n

. Singular values 6;(A) > ... > 0,(A) > 0 are square-roots of eigenvalues of A AT

. A canbe writtenasA = UDV " with U € O(R"), V € O(l

with the 6;,(A) on diagonal and O everywhere else

B -

™yand D € |

n

XM o matrix



Singular Value Analysis

.+ Matrix M € R™" positive definite & M symmetric and all singular values of M are positive

. Write M > 0

« MisoftheformA' -A

. “Inner product matrices”: For all x € R™{0} it holds x 'Mx > 0

. Additional Notation: Write M > M'forM — M’ > 0
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Discrete (Gaussians

D, /s

Pz = p 5 5N




SmMootning

- |Invented in [IMRO4] to “blur” a worst-case lattice (recall Daniele’s talk)

. Incredibly useful for more efficient schemes with statistical security (no drowning)

- Smoothing parameter# ()

Fix some € > 0
Wesay o 2> n.(N)ifp;,(A*) <1 +¢€



SmMootning

Continuous smoothing Lemma |[Regev 05|

. Leto > /2 - n(A)

: xNDAG
: eND[R”G

* A~
. € DW, 3 s

+ Thenx + e ~_ e*



(Gaussian bDecompositions

Lemma

. Fix matrix Z € R™*"
- 6 DIR”,Glf €r ~ DIR’",\@
. Theney; =Zey + e, ~ DRm,\@ where 2, = (fIZZZT + 25

. Conversely, if 2, 2> 2.3 — GIZZZT > 0 (positive definite), then e; ~ D[Rm,\@ can be

decomposed as e; = Ze, + e, for independent e; ~ Dan and e, ~ DRm,\@

. If X5 = 6] then such a X, exists if 6 > o - 6,(Z)



I )

Proor

» The covariance matrix of e = Ze; + e, is

‘[6363] — —[ZeleTZT] + —[Zelez] + Eleye, 'Z' + -[ezezT ]
= ZlE|ee, Nz + ‘[6262 ]

= ZalzZT + 2,

=0Z72"'+ 3%,

- IfEleses | = o2, then 2, = o1 — GIZZZ is positive definite, as for allx € R™\{0}
x'Tox = o°x ' x — 01 x'ZZ'x" = o?||x||? - O, 2N Zx||? > o?||x||” — O 61(2)2”)6H2 > ()




(Gaussian Leftover Hasn Lemma’

Godl Lemma

. Fix some short matrix Z € R™*" « X~ Dy,

. x discrete Gaussian . e ~ Dg, , with 62l > 6277
s o

« ¢ continuous Gaussian -
. Then Zx + e DRH,\/E with

2 2 T
. Show: Zx + e Gaussian 2 = "2]+ ‘71ZZ
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> 08 per last lemma

Decompose e as e = Ze| + e, with e ~ Dga , and e; ~ DR \/ ¥
) m, 62 _61

ThenZx+e=2x+2Ze;+e, =Z(x+e¢e;) + e,

- , .
X + e, statistically close to x* ~ DRH’\/E(;1 as per smoothing lemmoa

Hence Zx' + e, follows D
Rm,\/ 62 + 62 ZZT



Application: F

Recall

- Gadget Matrix

. Randomised Ga_l( + )

X ~ Gg_l(c) follows D, . conditioned on Gx = ¢

- Clrcult k

JMW16




Application: FHE Circuit .

. Alternative homomorphic evaluation: C = C; - Gr:”lfld(cz) + (O)

“Tivacy

~/

. Show: C statistically close to a fresh encryption of m; - m,

)MW16

Where x ~ G~!

ran

d(C )
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Application: F

. Show: C statistically close to a fresh encryption of m

sTA+e!

X ~ Gr:”lfl d(c)

- Clreult .

“rivacy |

_ s'A+e! _
€ €

)MW16




Application: FHE Circuit Privacy |[BDMW16
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. | WE: Secret s is uniform

- Entropic LWE: s only comes from a min-entropy distribution

- Think: LWE with leaky secret



Learning with Errors [RegO5

Decisional Version

- -
C

A

s uniform Uniformly random in Z’;’;



cntropic LWE

Decisional Version

- -
C

A

. . m
s chosen from a min-entropy distribution & Unitormly random in Zq




The Lossiness Technigue | GKPV10

. Common proof strategy: Replace uniformly chosen matrix A with a pseudorandom
matrix which has unusually many short vectors in its (row-)span

- Now use that A, sA + e loses information about s

e szm »

> Under standard LWE

uniform in ZZX"
or —

Discrete gaussian (DZ,G)”X"

|

uniform in ZZX"" Discrete gaussian (D _

)nXm



The Lossiness Technigue | GKPV10

Warmup: with drowning

Chosen from a min-entropy
distribution & supported on {0,1 }"

A,sA+e  — A, u
R WE ~LWE
BC+F,s(BC+F)+e BC+ F,u
— ~LWE

BC+ F,sBC+stkk+e ~, BC+F,sBC+e" ~;y; BC+F,tC+ ¢

\)




Noise-1.0ss1mness | B

)20

. Fix distribution & supported on Z’q”‘

. 5§ «— &, eisagaussian with parameter o

. Measures the information lost about s after
0assing it through a gaussian channel

. Different Perspective: How bad is & as an
error correcting code?

ﬁoo(s | s + e)
= — log(Pr|*(s + e) = s])

2 * is maximum likelihood decoder for &



Noise Lossiness: General Distriputions

ﬁoo(s |s+e)>H_(s) —n-log(g/o) — 1




Noise L.ossiness: Short Distriputions

2y

H_(s|s+e)>H_(s)—2r/nlo




From Noise-I.ossiness to Haraness of -

A, sA+e

~LWE
BC+ F,s(BC+ F)+e

BC+ F,sBC+ sF + e

BC + F,sBC + sF + e F + ¢,

BCH+ F,sBC+ (s+e)F + ¢,

~Ntropic L.

L 1]
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From Noise-I.ossiness to Hardness of -

A, sA+e

n
ny/

BC+ F,s(BC+ F)+e

BC+ F,sBC+ sF + e

BC + F,sBC + sF + e F + ¢,

BC+F,sBC+(s+e)F+e, ~;,, BC+F,iC+(s+e)F+e, = BC+F,tC+ sF

~Ntropic L.

A, u
~ 1 WE
BC+ F,u

~ I WE

L 1]

20|




Conclusions and Further Applications

- Drowning is a general technique to remove noise artefacts
- Requires a stronger LWE assumption and leads to (practically) undesirable parameters

- Gaussian Smoothing is (sometimes) an alternative to drowning

. Uses specific features of Gaussians (Decomposability), and works with poly modulus-to-noise LWE

- Other Recent Applications:

Thanks!
- Ring LWE with entropic hardness [BD20D] q n s'

- Laconic Encryption (Simple type of Laconic Function Evalution) with polynomial modulus-to-noise
ratio [DKFLMR23]




