

# Applications of Smoothing

## Statistical Security in Lattice Schemes and Entropic Security

# Learning with Errors and Gaussians

- Daniele's talk: LWE is *Interface* to Lattice Cryptography
- Do lattice crypto without fully understanding lattices!
- Gaussians are somewhat error distribution and easy to analyse
- **This talk:** Gaussians provide security features we don't know how to achieve with other error distributions

# Overview

- **Basic Tools**

- Drowning
- Leftover Hashing

- **Refined Tools**

- Singular Value Analysis
- Smoothing

## Applications

- FHE Circuit Privacy
- Entropic LWE

# Learning with Errors [Reg05]

Decisional Version

$\mathbb{Z}_q$

$A$

$sA + e$

$\approx_c$

$A$

$u$

$=$

$s$

$A$

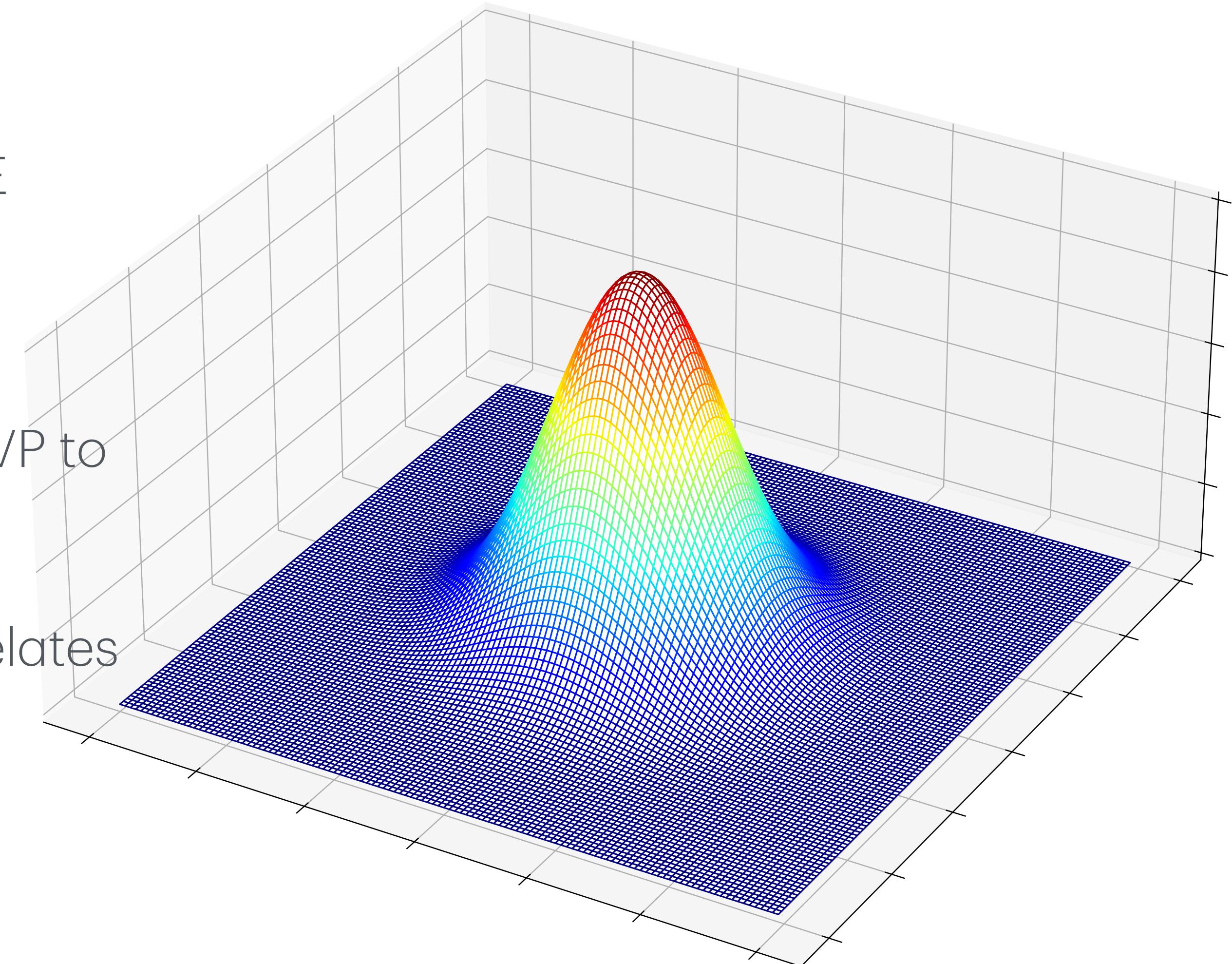
$+$

$e$

$e \sim \chi$

# Worst-Case Hardness of LWE/Modulo-to-Noise Ratio

- For **gaussian** error distributions  $\chi = D_\sigma$ , LWE enjoys worst-case hardness
- Quantum Reduction from (wc) SIVP to LWE [Reg05], classical reduction from (wc) GapSVP to LWE [Pei09, BLPRS13]
- Approxiation factor of worst-case problem relates to the modulus-to-noise ratio  $\alpha = q/\sigma$

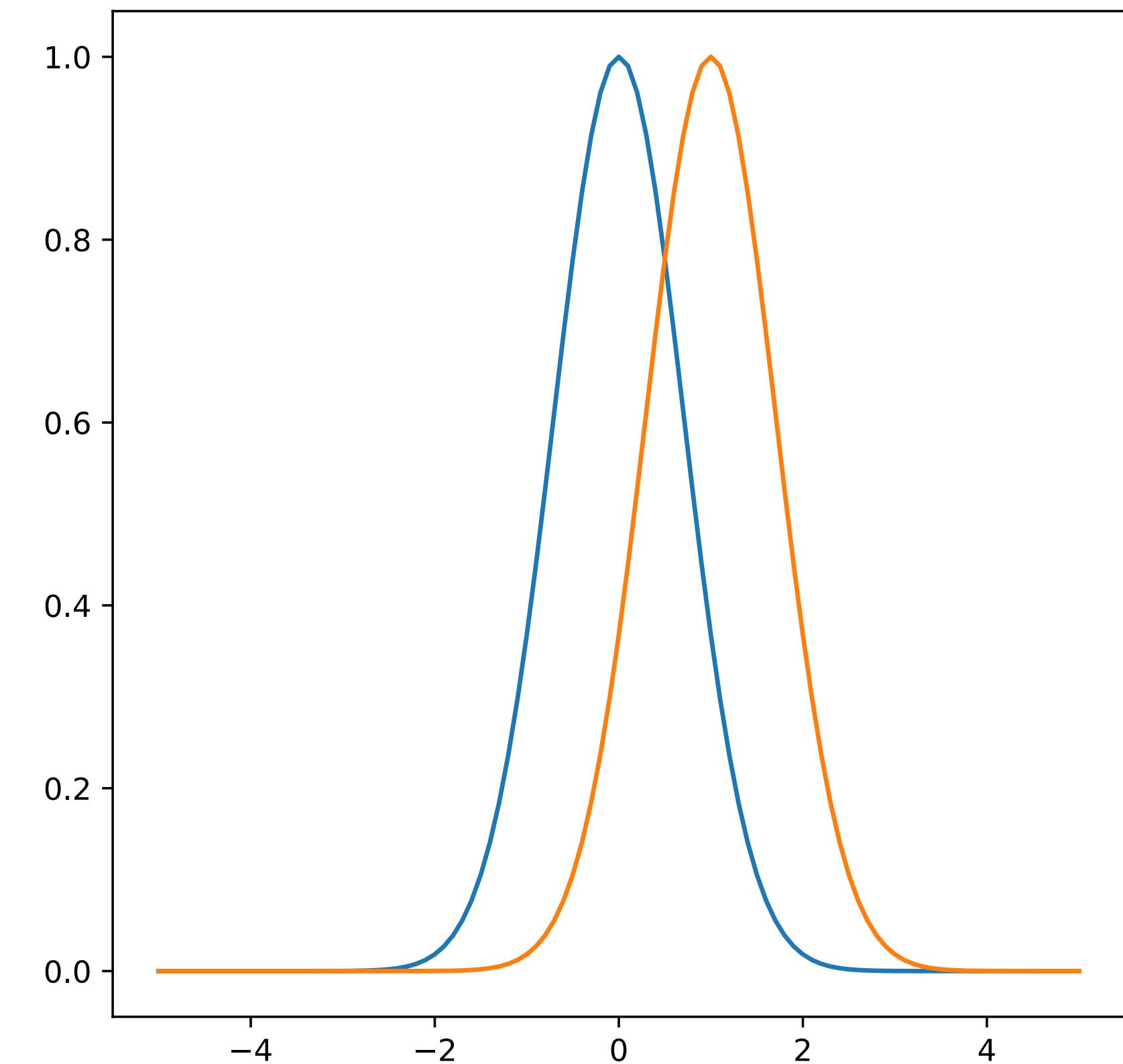


# Basic Tools

# Drowning/Flooding/Smudging

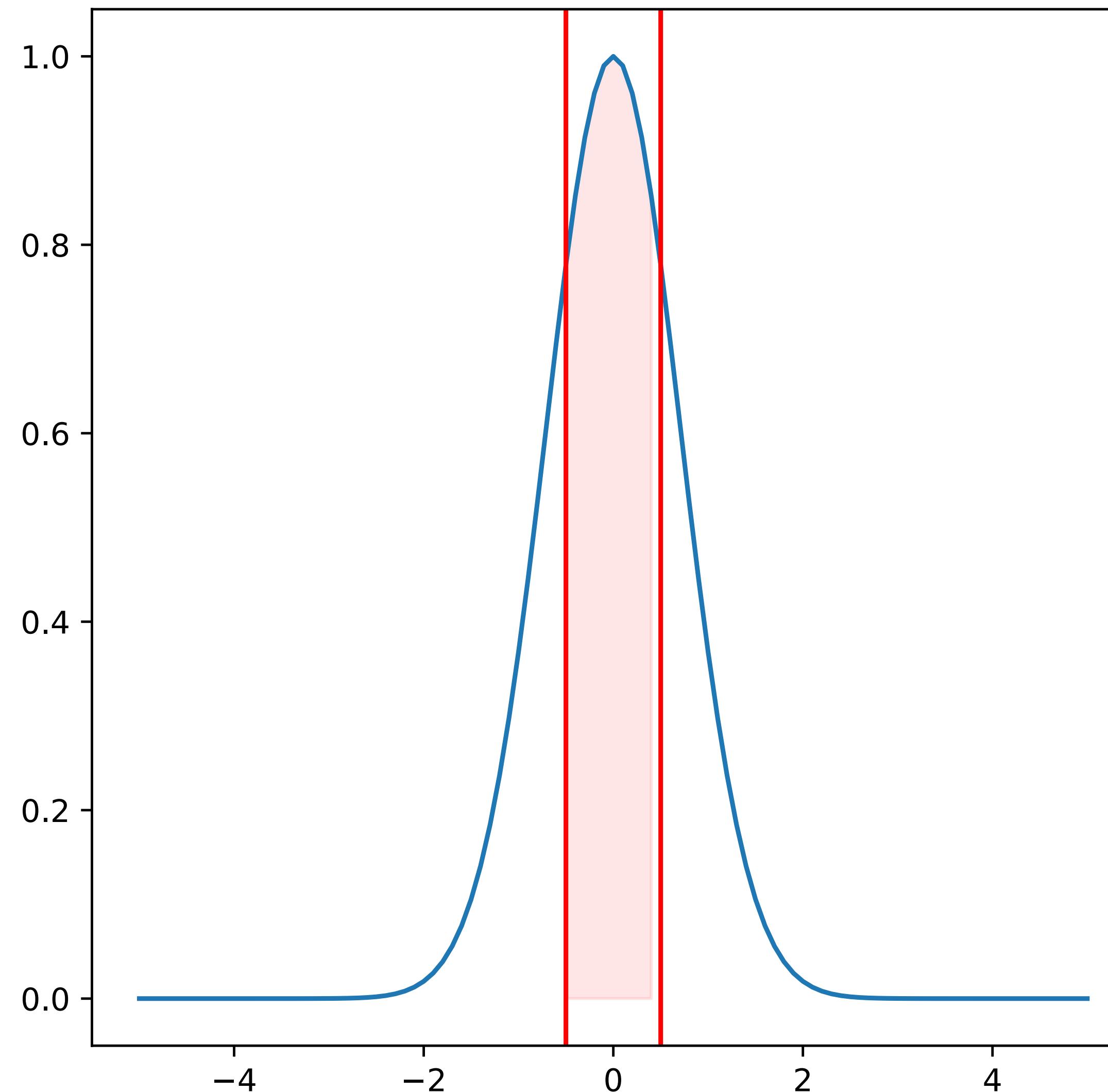
## Lemma:

- $\chi$  **symmetric** and **monotonously decreasing** distribution
- $e \sim \chi, t \in \mathbb{R}$
- Then  $\Delta(e + t, e) = \Pr[e \in [-t/2, t/2]]$
- **Bottom Line:** Good anti-concentration bound for  $\chi$   
 $\Rightarrow e$  hides  $t$



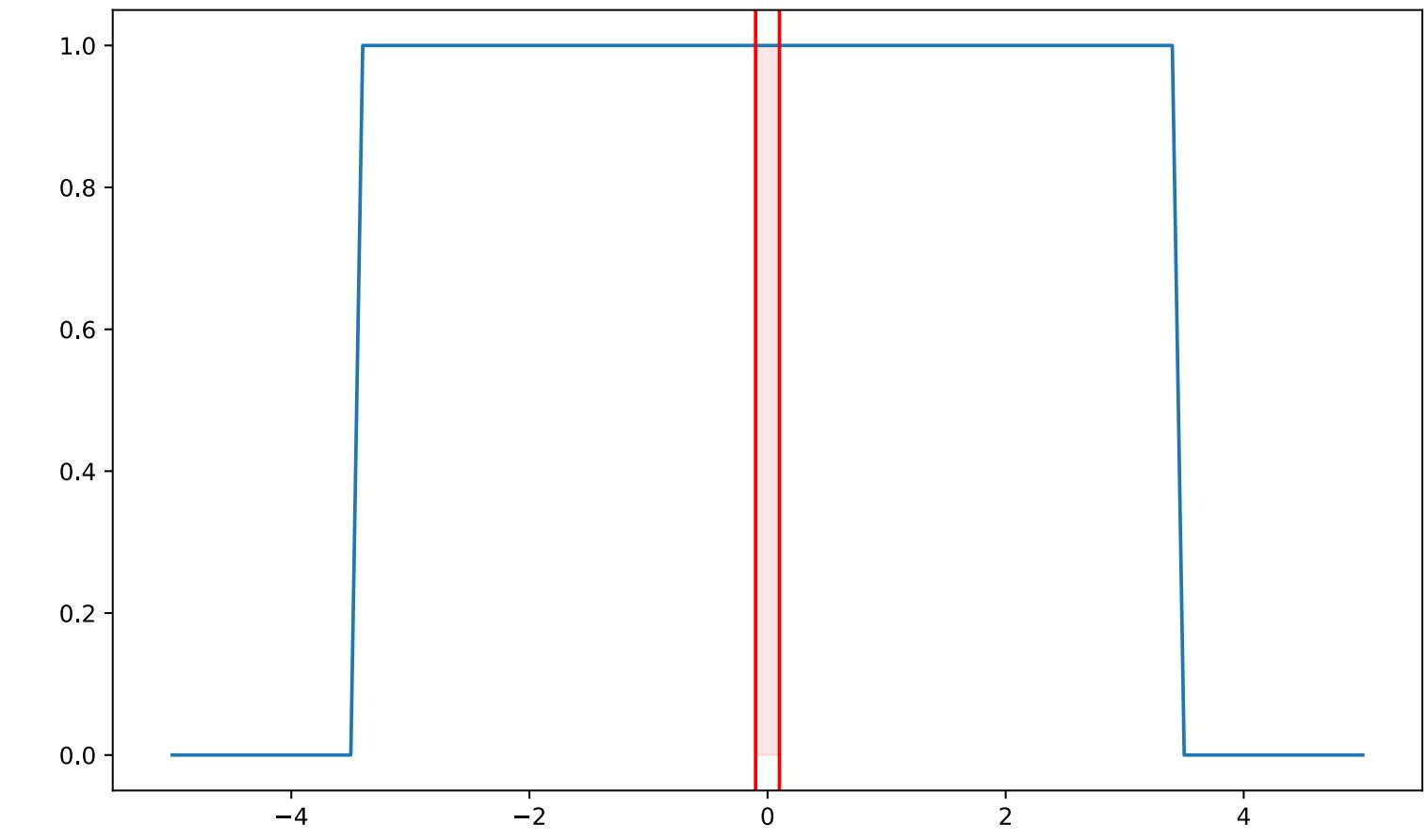
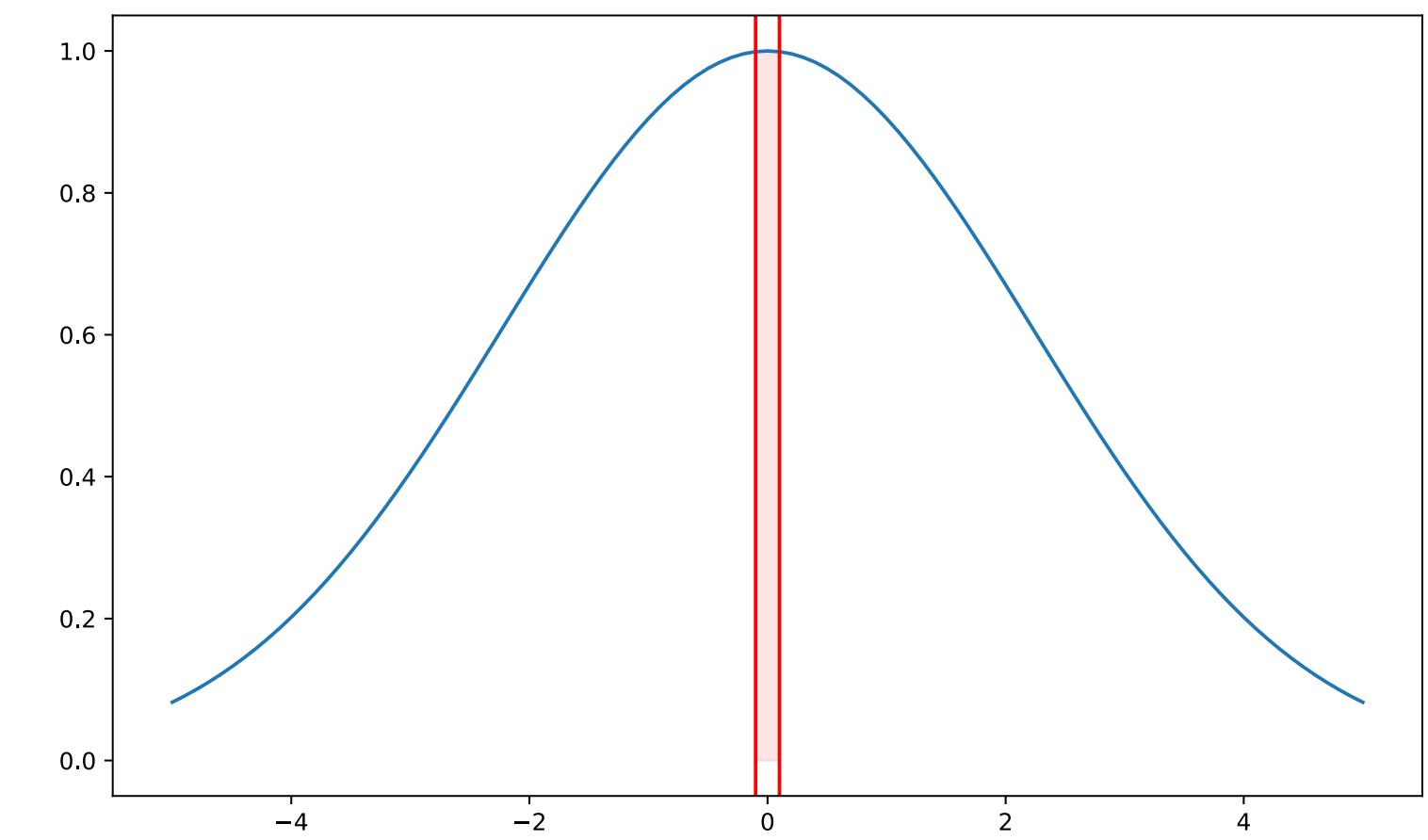
# Proof

$$\Delta(X, X') = \sum_x |\Pr[X = x] - \Pr[X' = x]|$$



# Drowning/Flooding/Smudging

- $\chi$  rectangular:  $\Delta(e + t, e) = \Pr[e \in [-t/2, t/2]] = \frac{t}{r}$
- $\chi$  Gaussian:  $\Delta(e + t, e) = \Pr[e \in [-t/2, t/2]] \leq \frac{t}{\sigma}$
- $r, s$  must be superpoly larger than  $t$  for this expression to be negligible
- **Drawback:** Superpoly modulus-to-noise regime unavoidable



# Leftover Hashing

- Min Entropy  $\sim$  Log-Guessability:  $H_\infty(x) = -\log(\max_\xi \Pr[x = \xi])$
- For simplicity  $q$  prime
- $x$  supported on  $\mathbb{Z}_q^m$  with  $H_\infty(x) \geq n \log(q) + 2 \log(1/\epsilon)$
- $A \in \mathbb{Z}_q^{n \times m}$  chosen uniformly random
- Then  $(A, Ax) \approx_\epsilon (A, u)$  for uniformly random  $u \in \mathbb{Z}_q^n$

# GSW Encryption

- **Public Key:** Matrix  $A$

$$A = \begin{array}{c} A' \\ \hline sA' + e \end{array}$$

- **Secret Key:** Vector  $s$

- **Ciphertext:** Matrix  $C = AR + mG$

$R$  random short,  $G$  gadget matrix

$$A \quad R \quad + \quad mG$$

# GSW Encryption

## GSW Homomorphic Operations

- **Decryption:**  $(-s^\top, 1)C = e^\top R + mG$
- $C_1 = AR_1 + m_1G, C_2 = AR_2 + m_2G$
- **Homomorphic Addition:**  $C_1 + C_2 = A(R_1 + R_2) + (m_1 + m_2)G$
- **Homomorphic Multiplication:**  $C_1 \cdot G^{-1}(C_2) = A(R_1 G^{-1}(C_2) + m_1 R_2)) + m_1 m_2 G$
- Ciphertext  $C^* = AR^* + m^*G$  after homomorphic Operation: Norm of  $R$  grows moderately, but  $R'$  is far from random (comes from homomorphic evaluation)

# Circuit Privacy

## Ciphertext Sanitization

- Circuit Privacy: Homomorphically computed ciphertexts statistically look like fresh encryptions
- Choose fresh  $R$  and set  $C' = C^* + AR$
- Recall that  $A = \begin{pmatrix} A' \\ s^\top A' + e^\top \end{pmatrix}$
- First component of  $C'$ :  $A'R$  is statistically close to uniform and hence is  $A'R^* + A'R$
- Second component of  $C'$ :  $s^\top(A'R^* + A'R) + e^\top(R^* + R)$
- $e^\top(R^* + R)$  leaks information about  $R^*$

# Circuit Privacy

## Ciphertext Sanitization

- $e^\top (R^* + R)$  leaks information about  $R^*$
- Drown this term out with a drowning term  $d$ , i.e. set  $C' = C^* + AR + \begin{pmatrix} 0 \\ \tilde{e} \end{pmatrix}$
- Second component of  $C'$  now:  
$$s^\top (A'R^* + A'R) + e^\top (R^* + R) + \tilde{e} \approx s^\top (A'R^* + A'R) + \tilde{e}$$
- Statistically independent of  $R^*$

# Refined Tools

# Lattices, Dual Lattices and Fourier Transforms

- Lattice  $\Lambda = \{B \cdot x \mid x \in \mathbb{Z}^n\}$  for some full rank  $B \in \mathbb{R}^{n \times n}$
- Dual Lattice  $\Lambda^* = \{y \in \mathbb{R}^n \mid \forall z \in \Lambda : \langle y, z \rangle \in \mathbb{Z}\}$
- It holds  $\Lambda^* = \{(B^{-1})^\top \cdot x \mid x \in \mathbb{Z}^n\}$

# Singular Value Analysis

- $A \in \mathbb{R}^{n \times m}$  real-valued matrix with (say)  $m \geq n$
- Singular values  $\sigma_1(A) \geq \dots \geq \sigma_n(A) \geq 0$  are square-roots of eigenvalues of  $A \cdot A^\top$
- $A$  can be written as  $A = UDV^\top$  with  $U \in O(\mathbb{R}^n)$ ,  $V \in O(\mathbb{R}^m)$  and  $D \in \mathbb{R}^{n \times m}$  a matrix with the  $\sigma_i(A)$  on diagonal and 0 everywhere else

$$A = U \begin{array}{c} \diagdown \\ D \end{array} V$$

# Singular Value Analysis

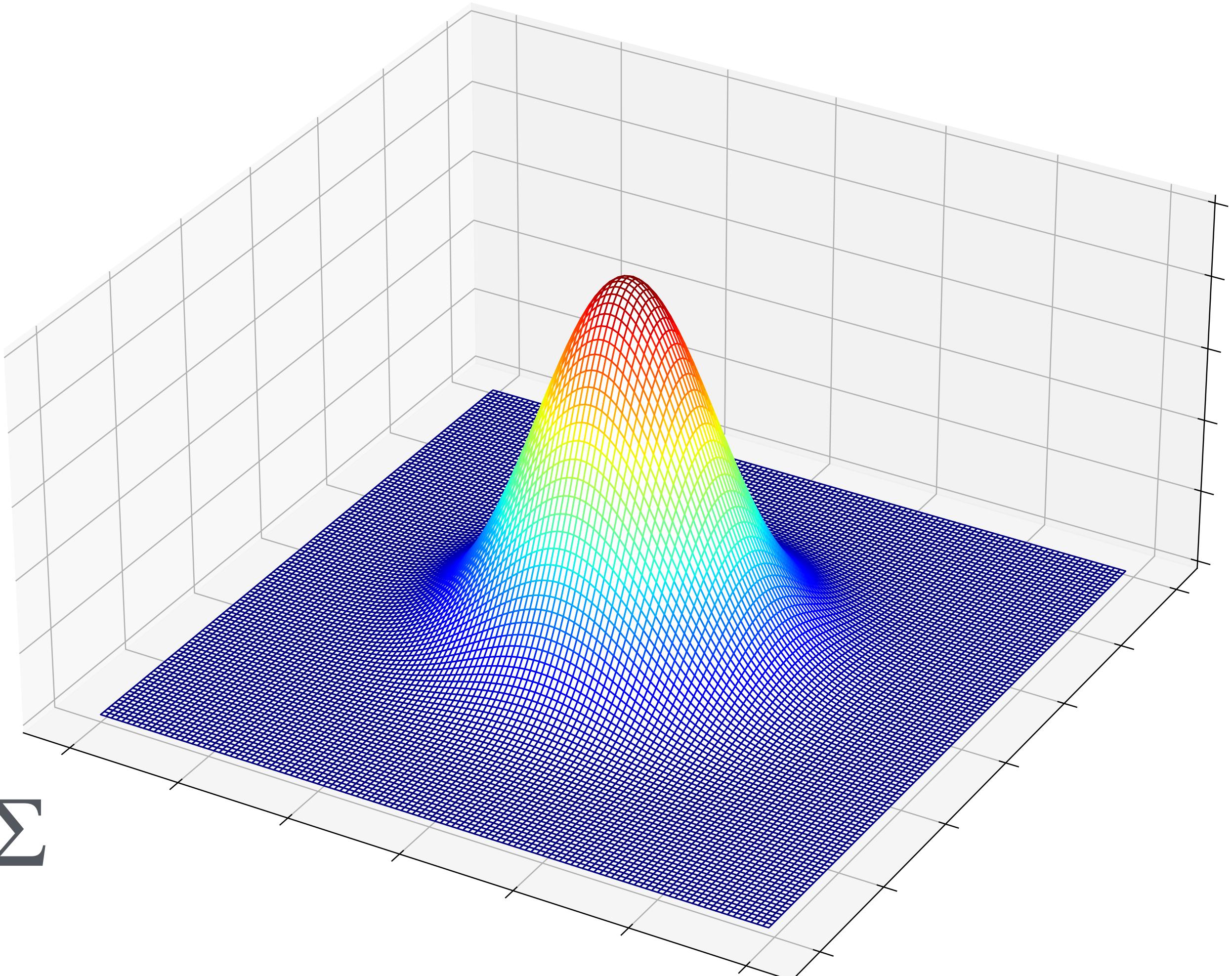
- Matrix  $M \in \mathbb{R}^{n \times n}$  positive definite  $\Leftrightarrow M$  symmetric and all singular values of  $M$  are positive
- Write  $M > 0$
- $M$  is of the form  $A^\top \cdot A$
- “Inner product matrices”: For all  $x \in \mathbb{R}^n \setminus \{0\}$  it holds  $x^\top M x > 0$
- Additional Notation: Write  $M > M'$  for  $M - M' > 0$

# Gaussians

$$\rho_{\sqrt{\Sigma}}(x) \propto e^{-\pi \cdot x^\top \Sigma^{-1} x}$$

$$D_{\mathbb{R}^n, \sqrt{\Sigma}}$$

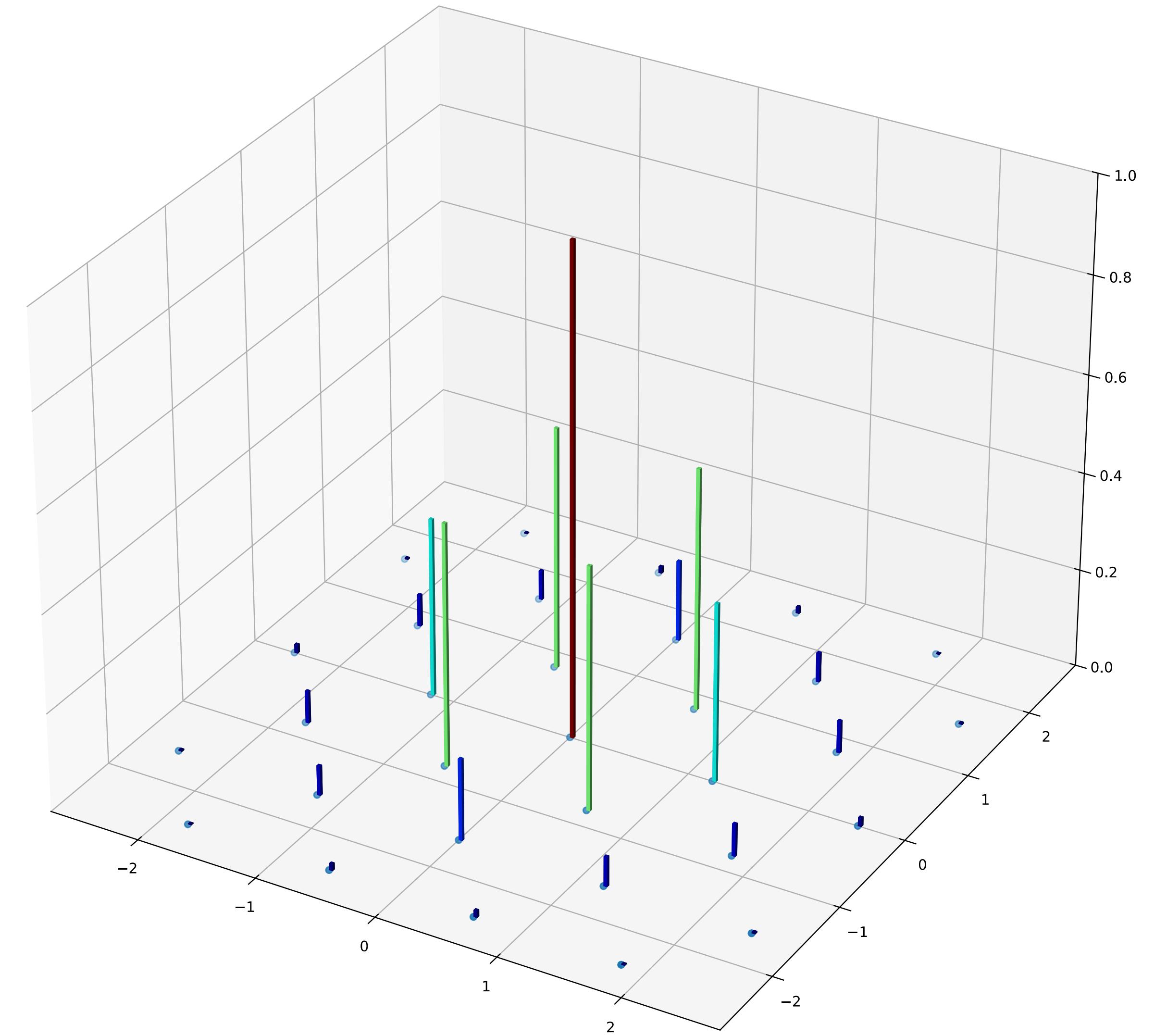
$$x \sim D^{\mathbb{R}^n, \sqrt{\Sigma}} \Rightarrow \mathbb{E}[xx^\top] = \Sigma$$



# Discrete Gaussians

$$\hat{\rho}_{\sqrt{\Sigma}}(z) = \rho_{\sqrt{\Sigma}}(z)/\rho_{\sqrt{\Sigma}}(\Lambda)$$

$$D_{\Lambda, \sqrt{\Sigma}}$$



# Smoothing

- Invented in [MR04] to “blur” a worst-case lattice (recall Daniele’s talk)
- Incredibly useful for more efficient schemes with statistical security (no drowning)
- **Smoothing parameter**  $\eta_\epsilon(\Lambda)$

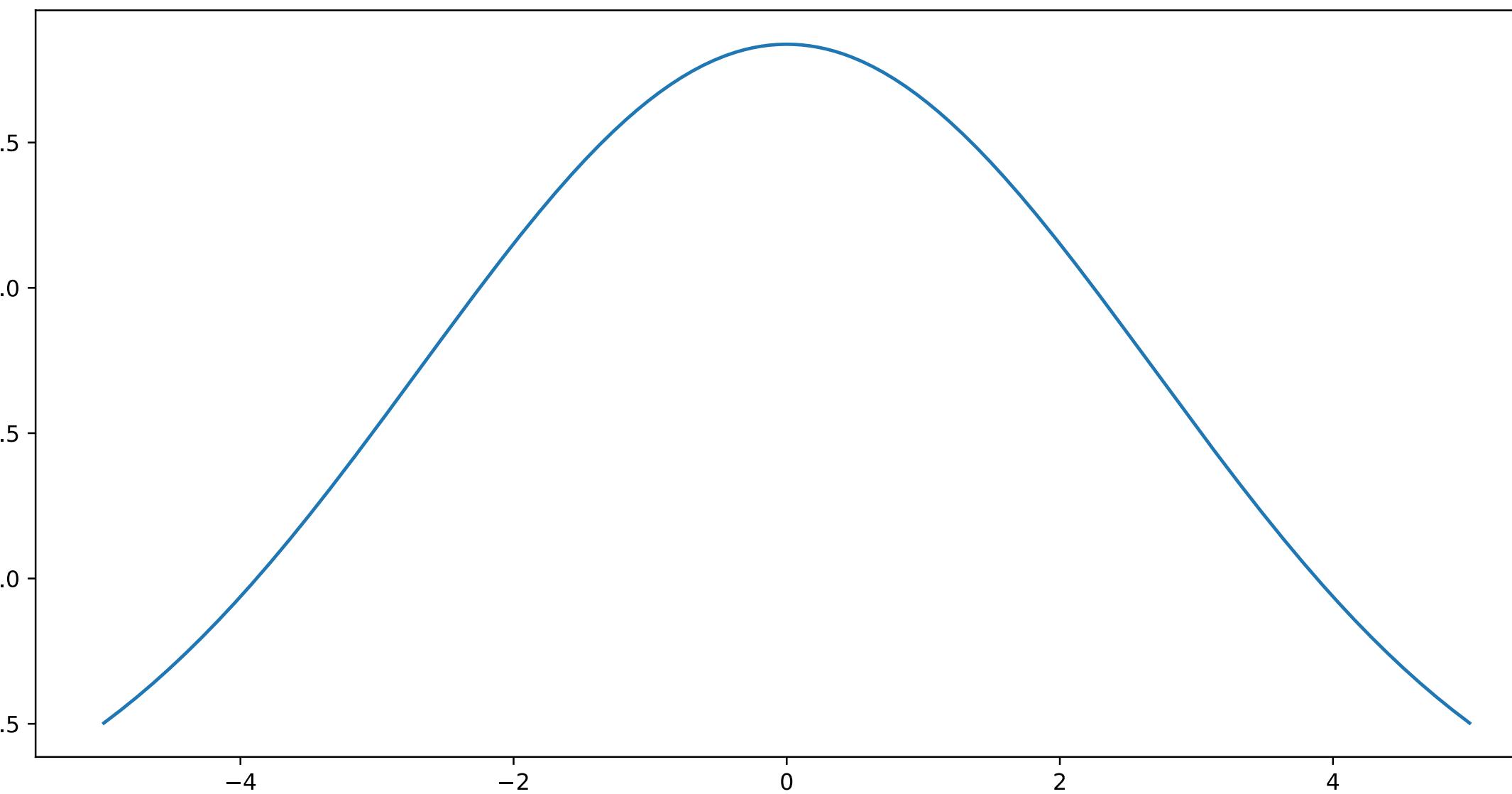
Fix some  $\epsilon > 0$

We say  $\sigma \geq \eta_\epsilon(\Lambda)$  if  $\hat{\rho}_{1/\sigma}(\Lambda^*) \leq 1 + \epsilon$

# Smoothing

Continuous Smoothing Lemma [Regev'05]

- Let  $\sigma \geq \sqrt{2} \cdot \eta_\epsilon(\Lambda)$
- $x \sim D_{\Lambda, \sigma}$
- $e \sim D_{\mathbb{R}^n, \sigma}$
- $e^* \sim D_{\mathbb{R}^n, \sqrt{2}\sigma}$
- Then  $x + e \approx_\epsilon e^*$



# Gaussian Decompositions

## Lemma

- Fix matrix  $Z \in \mathbb{R}^{m \times n}$
- $e_1 \sim D_{\mathbb{R}^n, \sigma_1}$ ,  $e_2 \sim D_{\mathbb{R}^m, \sqrt{\Sigma_2}}$
- Then  $e_3 = Ze_1 + e_2 \sim D_{\mathbb{R}^m, \sqrt{\Sigma_3}}$  where  $\Sigma_3 = \sigma_1^2 ZZ^\top + \Sigma_2$
- Conversely, if  $\Sigma_2 \geq \Sigma_3 - \sigma_1^2 ZZ^\top \geq 0$  (positive definite), then  $e_3 \sim D_{\mathbb{R}^m, \sqrt{\Sigma_3}}$  can be decomposed as  $e_3 = Ze_1 + e_2$  for independent  $e_1 \sim D_{\mathbb{R}^n, \sigma_1}$  and  $e_2 \sim D_{\mathbb{R}^m, \sqrt{\Sigma_2}}$
- If  $\Sigma_3 = \sigma^2 I$ , then such a  $\Sigma_2$  exists if  $\sigma > \sigma_1 \cdot \sigma_1(Z)$

# Proof

- The covariance matrix of  $e_3 = Ze_1 + e_2$  is

$$\begin{aligned}\mathbb{E}[e_3 e_3^\top] &= \mathbb{E}[Ze_1 e_1^\top Z^\top] + \mathbb{E}[Ze_1 e_2^\top] + \mathbb{E}[e_2 e_1^\top Z^\top] + \mathbb{E}[e_2 e_2^\top] \\ &= Z\mathbb{E}[e_1 e_1^\top]Z^\top + \mathbb{E}[e_2 e_2^\top] \\ &= Z\sigma_1^2 Z^\top + \Sigma_2 \\ &= \sigma_1^2 ZZ^\top + \Sigma_2\end{aligned}$$

- If  $\mathbb{E}[e_3 e_3^\top] = \sigma^2$ , then  $\Sigma_2 = \sigma^2 I - \sigma_1^2 ZZ^\top$  is positive definite, as for all  $x \in \mathbb{R}^n \setminus \{0\}$

$$x^\top \Sigma_2 x = \sigma^2 x^\top x - \sigma_1^2 x^\top ZZ^\top x^\top = \sigma^2 \|x\|^2 - \sigma_1^2 \|Z^\top x\|^2 \geq \sigma^2 \|x\|^2 - \sigma_1^2 \sigma_1(Z)^2 \|x\|^2 > 0$$

# Gaussian “Leftover Hash Lemma”

## Goal

- Fix some short matrix  $Z \in \mathbb{R}^{m \times n}$
- $x$  discrete Gaussian
- $e$  continuous Gaussian
- **Show:**  $Zx + e$  Gaussian

## Lemma

- $x \sim D_{\Lambda, \sigma_1}$
- $e \sim D_{\mathbb{R}^n, \sigma_2}$  with  $\sigma_2^2 I \geq \sigma_1^2 Z Z^\top$
- Then  $Zx + e \sim D_{\mathbb{R}^n, \sqrt{\Sigma}}$  with  $\Sigma = \sigma_2^2 I + \sigma_1^2 Z Z^\top$

# Proof

- Decompose  $e$  as  $e = Ze_1 + e_2$  with  $e_1 \sim D_{\mathbb{R}^n, \sigma_1}$  and  $e_2 \sim D_{\mathbb{R}^m, \sqrt{\sigma_2^2 I - \sigma_1^2 ZZ^\top}}$  as per last lemma
- Then  $Zx + e = Zx + Ze_1 + e_2 = Z(x + e_1) + e_2$
- $x + e_1$  statistically close to  $x' \sim D_{\mathbb{R}^n, \sqrt{2}\sigma_1}$  as per smoothing lemma
- Hence  $Zx' + e_2$  follows  $D_{\mathbb{R}^m, \sqrt{\sigma_2^2 + \sigma_1^2 ZZ^\top}}$

# Application: FHE Circuit Privacy [BDMW16]

## Recall

- Gadget Matrix
- Randomised  $G_\sigma^{-1}(\cdot)$   
 $x \sim G_\sigma^{-1}(c)$  follows  $D_{Z^m, \sigma}$  conditioned on  $Gx = c$

$$G = \begin{matrix} & & 1,2,\dots,2^{\log q} \\ & & 1,2,\dots,2^{\log q} \\ & \ddots & \\ & & 1,2,\dots,2^{\log q} \end{matrix}$$

# Application: FHE Circuit Privacy [BDMW16]

- Alternative homomorphic evaluation:  $C = C_1 \cdot G_{rand}^{-1}(C_2) + \begin{pmatrix} 0 \\ \tilde{e} \end{pmatrix}$
- Show:  $C$  statistically close to a fresh encryption of  $m_1 \cdot m_2$



# Application: FHE Circuit Privacy [BDMW16]

- Show:  $C$  statistically close to a fresh encryption of  $m$

$$C_1 = A + mG$$

$s^\top A + e^\top$

$$x \sim G_{rand}^{-1}(c)$$

$$C_1 + x = A + s^\top A + e^\top + 0 + mc + \tilde{e}$$

# Application: FHE Circuit Privacy [BDMW16]

$$x \sim G_{rand}^{-1}(c)$$
$$A \quad | \quad x$$
$$s^\top A e^\top + e^\top \quad | \quad x$$
$$+ \quad | \quad \tilde{e}$$

LHL  $\approx$   $u$

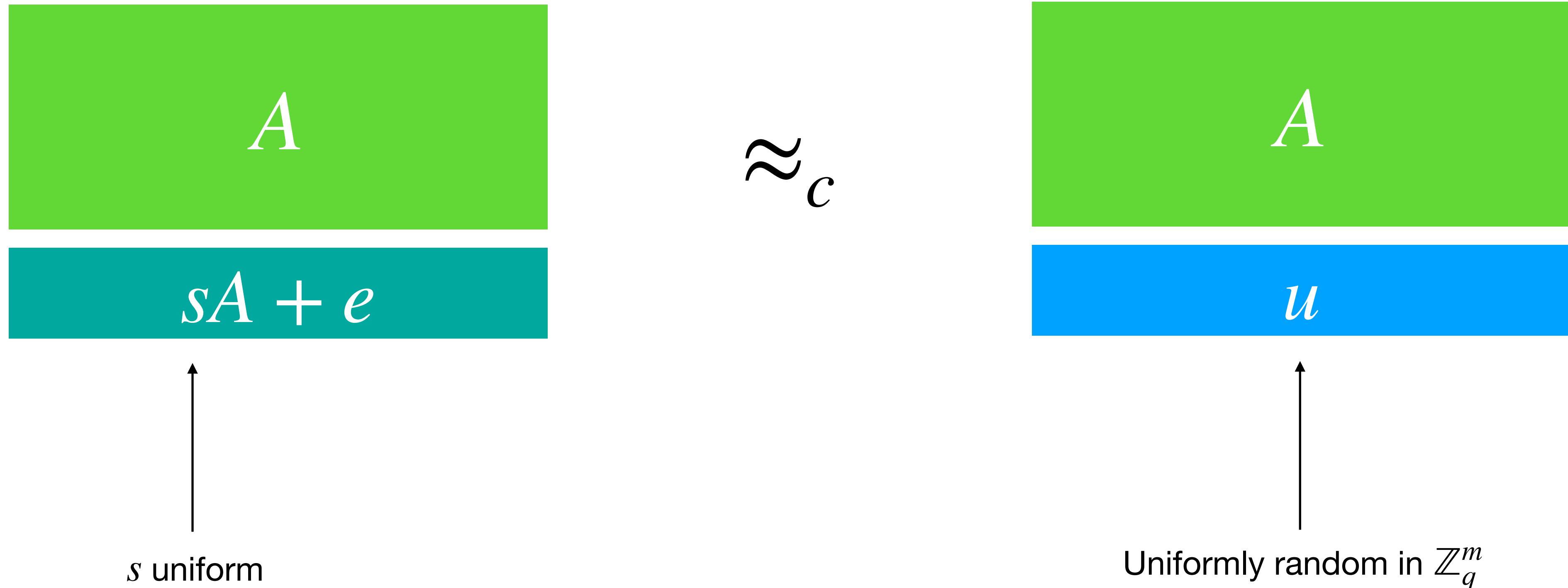
Gaussian LHL with  $Z = e^\top$   $\approx$   $e^*$

# Application: Entropic LWE

- LWE: Secret  $s$  is uniform
- Entropic LWE:  $s$  only comes from a min-entropy distribution
- Think: LWE with leaky secret

# Learning with Errors [Reg05]

Decisional Version



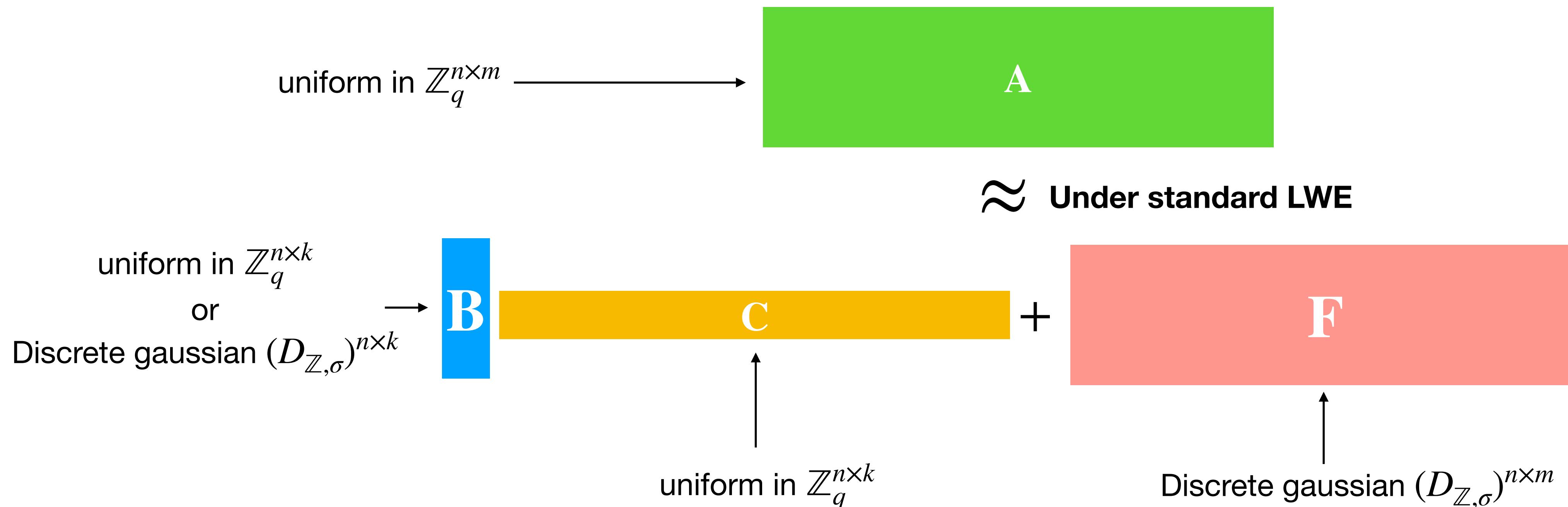
# Entropic LWE

Decisional Version



# The Lossiness Technique [GKPV10]

- Common proof strategy: Replace uniformly chosen matrix  $A$  with a pseudorandom matrix which has unusually many short vectors in its (row-)span
- Now use that  $A, sA + e$  loses information about  $s$



# The Lossiness Technique [GKPV10]

Warmup: with drowning

Chosen from a min-entropy  
distribution  $\mathcal{S}$  supported on  $\{0,1\}^n$

$$A, sA + e \quad \xleftarrow{\hspace{1cm}}$$

$$A, u$$

$$\approx_{LWE}$$

$$\approx_{LWE}$$

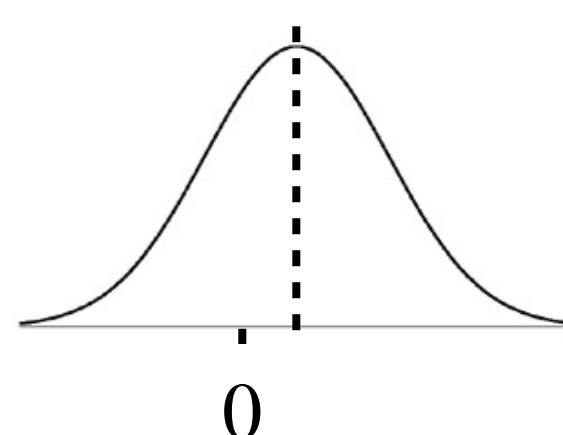
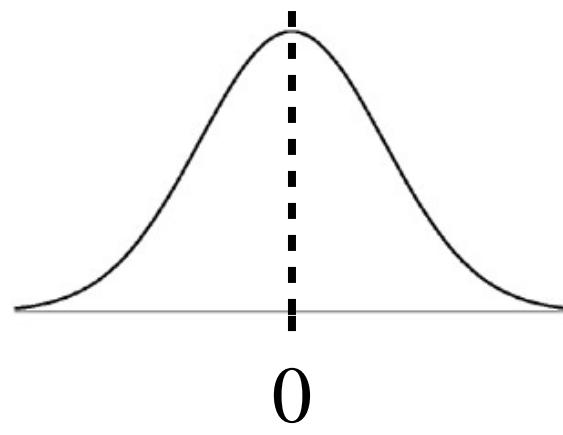
$$BC + F, s(BC + F) + e$$

$$BC + F, u$$

$$=$$

$$\approx_{LWE}$$

$$BC + F, sBC + sF + e \approx_s BC + F, sBC + e' \approx_{LHL} BC + F, tC + e'$$

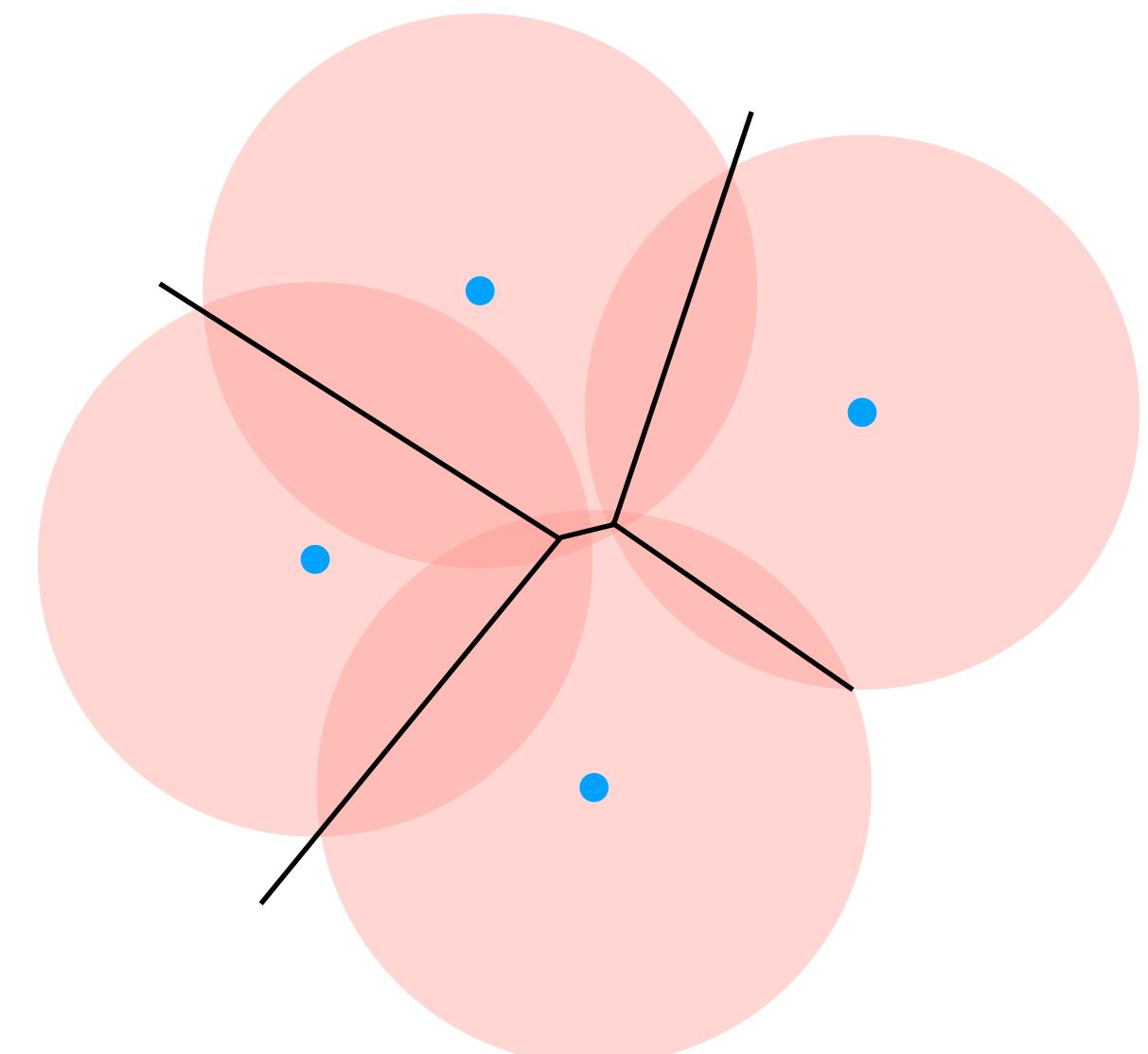


# Noise-Lossiness [BD'20]

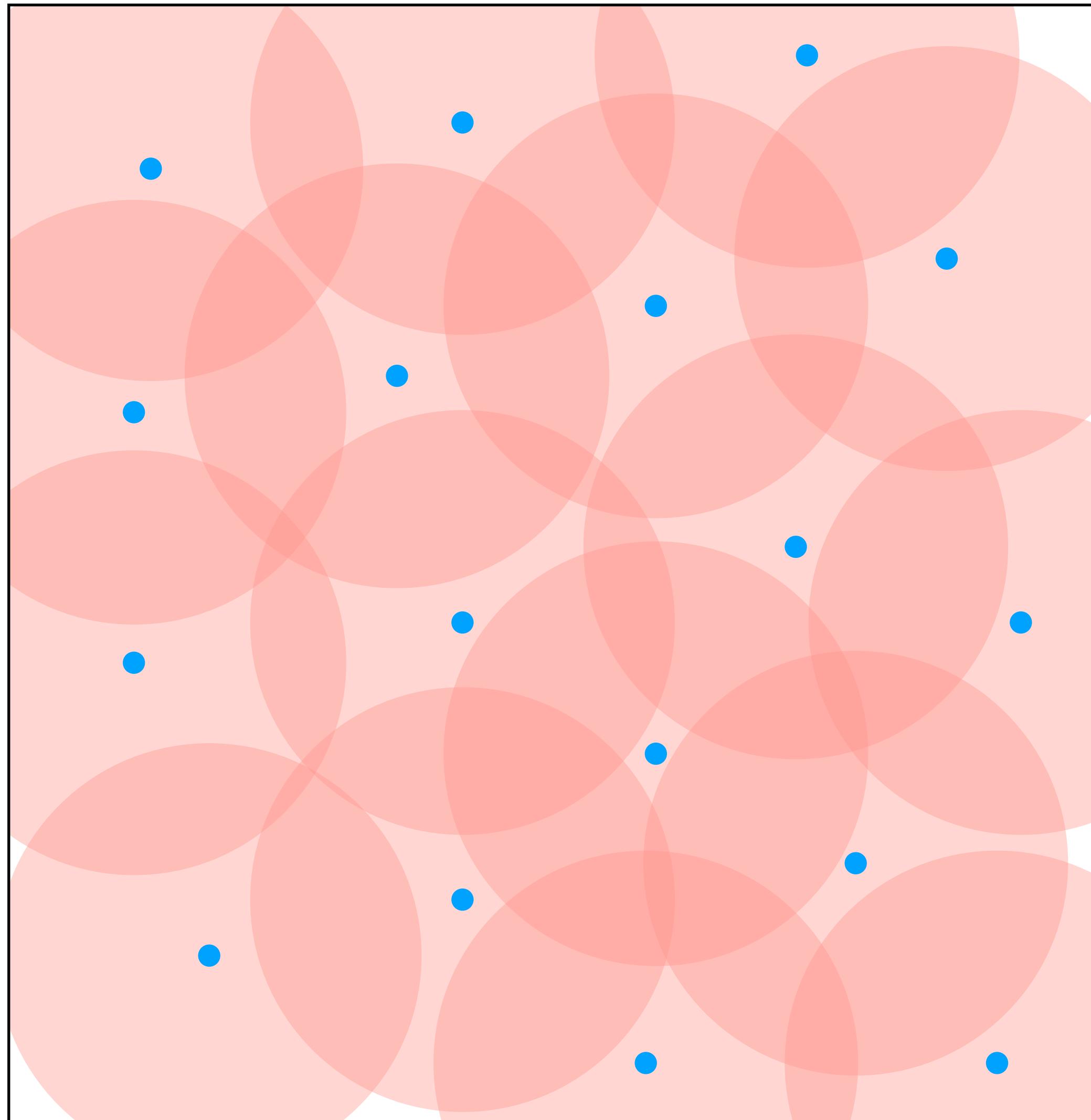
- Fix distribution  $\mathcal{S}$  supported on  $\mathbb{Z}_q^n$
- $s \leftarrow \mathcal{S}$ ,  $e$  is a gaussian with parameter  $\sigma$
- Measures the information lost about  $s$  after passing it through a gaussian channel
- Different Perspective: How bad is  $\mathcal{S}$  as an error correcting code?

$$\begin{aligned}\tilde{H}_\infty(s \mid s + e) \\ = - \log \Pr_{s,e}[\mathcal{A}^*(s + e) = s]\end{aligned}$$

$\mathcal{A}^*$  is maximum likelihood decoder for  $\mathcal{S}$



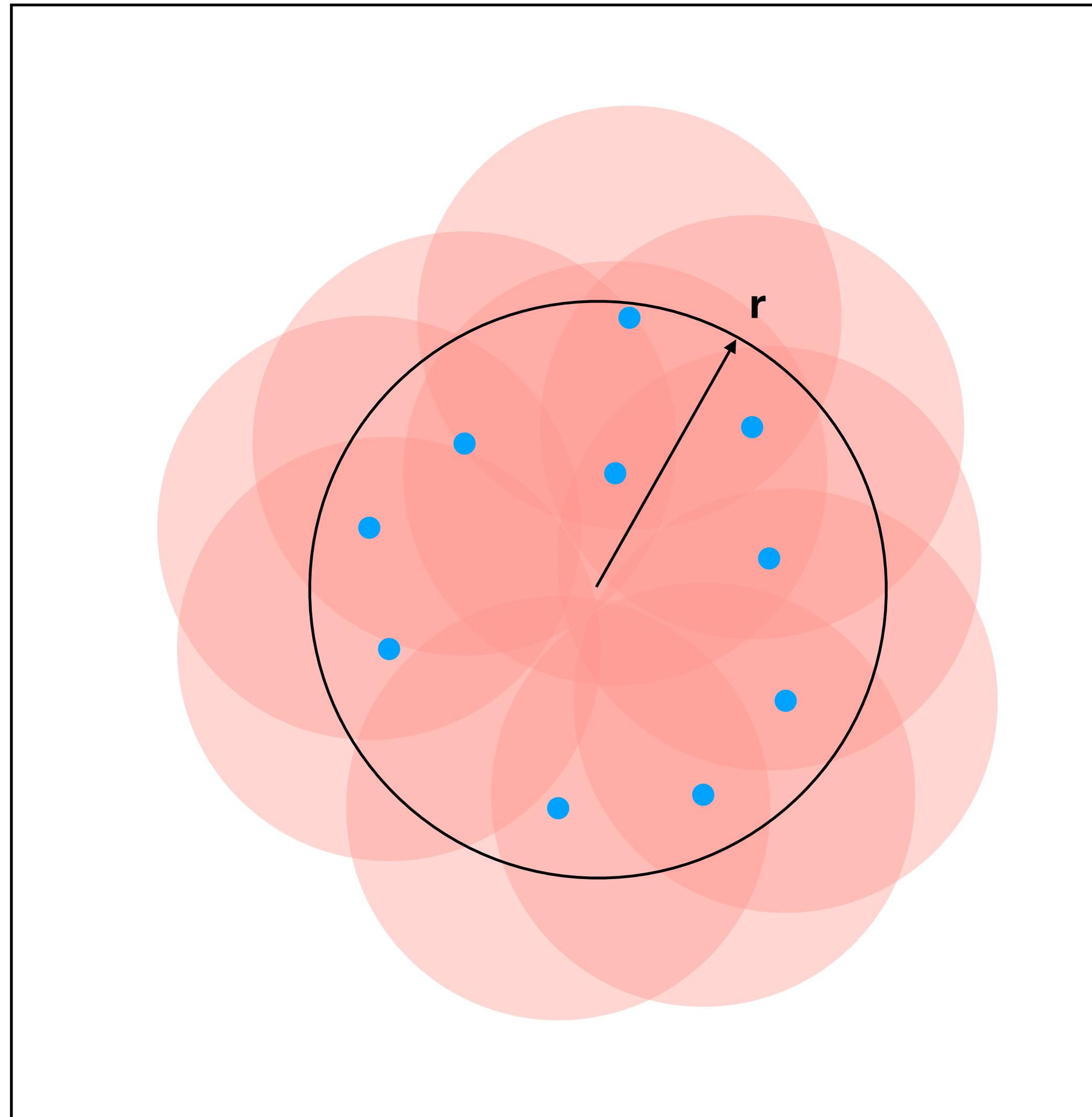
# Noise Lossiness: General Distributions



$\mathbb{Z}_q^n$

$$\tilde{H}_\infty(s | s + e) \geq H_\infty(s) - n \cdot \log(q/\sigma) - 1$$

# Noise Lossiness: Short Distributions



$$\mathbb{Z}_q^n$$

$$\tilde{H}_\infty(s | s + e) \geq H_\infty(s) - 2r\sqrt{n}/\sigma$$

# From Noise-Lossiness to Hardness of Entropic LWE [BD'20]

$$A, sA + e$$

$$\approx_{LWE}$$

$$BC + F, s(BC + F) + e$$

$$=$$

$$BC + F, sBC + sF + e$$

$$=$$

$$BC + F, sBC + sF + e_1F + e_2$$

$$=$$

$$BC + F, sBC + (s + e_1)F + e_2$$

# From Noise-Lossiness to Hardness of Entropic LWE [BD'20]

$$\begin{aligned} A, sA + e & \\ \approx & \\ BC + F, s(BC + F) + e & \\ = & \\ BC + F, sBC + sF + e & \quad A, u \\ = & \quad \approx_{LWE} \\ BC + F, sBC + sF + e_1F + e_2 & \quad BC + F, u \\ = & \quad \approx_{LWE} \\ BC + F, sBC + (s + e_1)F + e_2 & \approx_{LHL} BC + F, tC + (s + e_1)F + e_2 = BC + F, tC + sF + e \end{aligned}$$

# Conclusions and Further Applications

- Drowning is a general technique to remove noise artefacts
- Requires a stronger *LWE* assumption and leads to (practically) undesirable parameters
- Gaussian Smoothing is (sometimes) an alternative to drowning
- Uses specific features of Gaussians (Decomposability), and works with poly modulus-to-noise *LWE*
- Other Recent Applications:
  - Ring LWE with entropic hardness [BD'20b]
  - Laconic Encryption (Simple type of Laconic Function Evaluation) with polynomial modulus-to-noise ratio [DKFLMR'23]

**Thanks!**