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Computing on Encrypted Data
Personalised Medicine

“The dream for tomorrow’s medicine is
to understand the links between DNA
and disease — and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic data and
medical records secure while still z
enabling the massive, cloud-based long haired, skinny Kid I married 25 years ago.
aﬂa|yses needed tO make meanlngfL” I need a DNA sample to make sure it’s still you.”
associations.”

Check Hayden, E. (2015). Nature, 519, 400-401.
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[ Doesn’t FHE solve exactly this? }
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Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

* Other Professors or admin assistants of CS
group can open it

* Encrypt file for each of them?

* |t someone quits or new person joins? Re-
encrypt ?

* Organizational nightmare !
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Need New Tools & Techmques'

SO TEEARTy Y AR ONE
I\/Iam Tool Lattice Trapdoors
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Trapdoor Functions

Generate (f,T)
f:D — R, One Way

D R

f Easy
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Easy given T




Short Integer Solution Problem

Let A € Z™, g = poly(n), m = Q(nlog g)

Given matrix A, find “short” (low norm) vector x such that

Ax=0 modg €Z,

~ B\ (~ )

n A « |lm = 0 | n mod q




Learning With Errors Problem

Distinguish “noisy inner products” from uniform

Fix uniform s eZq“

? ?
a,, b, =<a,s>+e, a’; , b’
? ?
| VS |
i i
I !
? ?
a ,b =<a_ s>+e_ ', by
a, uniforme 2", e, ~ ¢ € Z, g, uniformeZ.", b; uniform&Z,
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Based on SIS

fAX)=AXx modgqg € ZZ

e Short X, surjective
e CRHF if SIS is hard [Ajt96...]

(0, q)

J(4:0)




Lattice Based One Way Functions

Public Key A € 7)™, g = poly(n), m = Q(nlog q)

Based on SIS Based on LWE
fA(X) =AX modg € ZZ gA(S, e) = S'’A +e mod q € ZZQ
e Short X, surjective e \ery short e, injective
e CRHF if SIS is hard [Ajt96...] e OWF if LWE is hard [Reg05...]
(0, q)
[ J (an) L 2 I ( ] /f\
| Atls |
| ( ] [ ] | \ly |
//T\\x I | O% |
o / O \ . . (q:.O)
\\ // J(2:0)
A 4 9

Image Credit: MP12 slides




Inverting functions for Crypto

e Given u=f,(x) =AXx mod ¢
e Sample

X'« = fl(u

with prob « exp( —||x’||*/¢?)

+ +
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And

e Given g,(s,e) =s’A+¢ mod g

e Find unique (s, e)
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Output center of parallelopipid containing T
Pretty Accurate... 16
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Bad Basis

Closer
Lattice
point
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Output center of parallelopipid containing T
Not So Accurate...




Basis quality and Hardness

- SVP, CVP, SIS (...) hard given arbitrary
(bad) basis

- Some hard lattice problems are easy given
a good basis

» Wil exploit this asymmetry
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Lattice Trapdoors (Type 1

Recall u=/\(x)=AXx mod g e ey 2
Want

X'« =fiw
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Lattice Trapdoors (Type 1

Recall u=/,x)=Ax mod g
Want

X'« =fiw
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Lattice Trapdoors (Type 1
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Lattice Trapdoors (Type 1)

Inverting Our Function

)
+ v

Recall u=/,x)=Ax modgq *
+ + + +

Want

X'« = fil(uw

with prob « exp( —[Ix|*/c?)

The Lattice

A={x:Ax=0 mod g} C Z7

Short basis for A lets us sample from /;'(w)
with correct distribution!
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Two Questions

—

1. How to get short basis

2. How to use short basis
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Lattice Trapdoors (Type 2)

Not a short basis but
- Just as powerful

- More efficient

- Better parameters

- Implies Type 1 trapdoors
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Step 1: /o sc for Gadget G
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Step 1: /o sc for Gadget G

Recall /c®)=Gx modqg € Z; and gg(s.e) =s'G+e mod g € Z)

Let ¢g=2¢ and g=I1,2,4,,2"1ez

Invert LWE: find s€Z, s.t. s-g+e=[s+¢;25+e, - 2 s+ ¢_]

® Get Isb(s) from 2k-1¢ 4 e
® Then get next bit of s and so on.
® \\Vorks as long as every e; € [—q/4,q/4)

Invert SIS: sample Gaussian preimage x s.t.~ u = (g x) mod ¢

® For i €[0,....,k—1], choose x; « 2Z+u), u <~ u—x)l2e€”Z
® letk=2. x, < 2z+u), u < (u—2zy—u)/2 =—z
x; < (221 — z¢)
(8, X) =270+ u+22z,—zp) =u+4z;=u mod 4
20
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Step 2: Randomize G to A
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Step 2: Randomize G to A

1.Sample B & szm', short Gaussian R € ZZ”'X”I(’%CI,

2. Define A = B G

G - BR

|l
o

A is uniform by leftover hash lemmal!
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Leftover Hash Lemma (oversmph

f|ed) I




Leftover Hash Lemma oversimp\ified)
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if m'~ nloggqg, then,

(B,BR)~ (B,U)
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Let B € Z;™" unifoom & R € Z xnlogq  Gaussian *‘f' |

If m"~nlogg, then,
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Step 2: Randomize G to A

Have A = o G -BR

Define: R is a trapdoor for A with tagH & Z’;X",

R

f A -
i

]=H.G
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Step 2: Randomize G to A

Have A — B G - BR

Define: R is a trapdoor for A withtagH € Z2"*",

A [R] —H-G
I
Basis S Trapdoor R
for for A

A~(G)
3



Step 2: Randomize G to A

Have A — B G - BR

Define: R is a trapdoor for A withtagH € Z2"*",

A [R] —H-G
|
Basis S Trapdoor R Basis S,
for for A for
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Step 3: Reduce /' &' to /e &6’

Suppose Ris a trapdoor for A with tag T e 2",

R
A - =G
Inverting LWE

Want:

e Given b'=s'A +¢€ mod ¢

e Find unique (s, e)
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Step 3: Reduce /' &' to /e &6’

Suppose Ris a trapdoor for A with tag T e 2",

R
A - =G
Inverting LWE
Want: Compute:
L. R =’ e’ R mo
e Given b'=s'A+¢ mod g P _I] o I] .

1; € [—q/4.q/4)

e Find unique (s, e) Works if €'
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Step 3: Reduce /i s:'to /' g6

Inverting SIS A [lﬂ =G
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Step 3: Reduce /i s:'to /' g6

Inverting SIS

Want:

e Given u=f,(x) =AXx mod g

e Sample
X'« =fi'(w

WIth prob o« exp( —|Ix'|1*/07)
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+
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Step 3: Reduce /' s'to /6 &6

Inverting SIS A [lﬂ =G

Want: Compute:

o Given u=/f,(x) =AXx mod g Sample z« fg'(w)

e Sample R
x' < = fy'(u) Output X = [I] Z

with prob  « exp( —||x/||*/6?) Then,

+

R
ot A-x=A- 2z=G-z=u
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e+ 4 ¢+
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Step 3: Reduce /i’ &'to /6’ &'

R
Are we done? A- H =G
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R
Are we done? A- H =G

Compute:

Sample z « fg'(u)

Output Xx= [l;] 3 /

Then,

R

A-x=A-
X [1

]1=i}z=u
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Step 3: Reduce /i’ &'to /6’ &'

R
Are we done? A- H =G
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R

A-x=A-
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Step 3: Reduce /' si'to e &6’
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Want to output spherical Gaussian!
Covariance Matrix s°1
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Want to output spherical Gaussian! 3 "
Covariance Matrix s°I

https://www.elegantthemes.com/

Fix using perturbation method [P’10]
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Step 3: Reduce /' si'to e &6’
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Want to output spherical Gaussian!
Covariance Matrix s°1

https://www.elegantthemes.com/

Fix using perturbation method [P’10]

Convolution of ’ 4 \

Gaussians
RR! + (S2I-RRY) = $21 Check
To fix covariance: A. Rl ¢
® Generate perturbation vector p with covariance (521 — RRY) |
R
® Sample spherical zsuchthatGz=u—-A p A-x=Ap+A I] 'z
R
® Output X =P+ 1| 2 =Ap+Gz=u

35



Takeaway for Applications
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Llet B e ngm', uniform R & ZZ”‘/X”Iqu, Gaussian

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion
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|dentity Based Encryption (IBE)

In short...........

Public Key Encryption in which ANY
arbitrary string can be public key!




IBE: How does it work?

Key Server
e Master Secret
e Public Parameters

2 Requests private key, Rec.:eives
authenticates Private Key
for bob@iitm.ac.in 3

Bob

Alice encrypts with Bob decrypts with 4
bob®@iitm.ac.in Private Key




ldentity Based Encryption

Security
Parameter A

% Public Params PP

aster secret key MSK

tecret key SK
Message

"

Identity ID %

Message
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Bit of History

* Big open problem — posed in 1984 by Shamir, first
solution in 2001 by Boneh and Franklin

* First solution uses pairings

*» Beautiful solution using only CDH by Dottling & Garg (2017)
+ We’ll see solution from lattices
* Main challenge?

* Need for MSK?
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Get instance of
hard problem H

PK

o

@ ID1I , ID2, ID3, .. IDm

S dip1 , dip2 s dip3 s -y dipm

mO0, m1
<
Pick b random, C* = Enc( m_b, ID*)
>
«

Output G as Guess b’
answer for H <

Attacker wins if | Pr[b=b’] - ¥2 | 1s non-negligible
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* Ch. needs to be able to answer private key
queries of Ad.

* Ch. should not be able to answer query for id’
(hence can’t have master trapdoor)

* Ch. should be able to generate challenge
ciphertext so that Ad’s answer is useful.
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* Recall Ae =u mod g hard to invert

* Encrypt (A, u) :

» Secret: e, Public : A, u { A }’e\

U mod

Encryption

* Pick random vector s matrix A

» Co=AT S + noise

» C,=UT S + noise + msg

» Decrypt (e) :

» eT ¢y —C, = msg + noise



Regev PKE

* Recall A e =u mod g hard to invert

* Encrypt (A, U) :

* Decrypt (e) :

» Secret: e, Public : A, u { A }fe\

U mod

Encryption

* Pick random vector s matrix A

» Co=AT S + noise

» C,=UT S + noise + msg

Small only
if eis small

» el ¢, —C; = msg + noise
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GPV IBE

+ Want to embed vector id in ciphertext and secret key.
* How to generate public parameters?

* Must be independent of id (why?)

* Must “morph” into id dependent PK for Regev

» Let u,=H(id) where H is random oracle

+ Want: Perform Regev PKE with PK A, u
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Random Oracle

* Random oracle model assumes that well-chosen hash H
(SHAS3, say) behaves “like a random function”

* On any input, gives random output
* Repeated input, same output

+ Very useful for practical schemes

* Proof in ROM allows to “program” H — gives exponential
space to reduction!

4 e W . -
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GPV IBE

+ Reecall u,=H(id) where H is random oracle

+ Key:small e, s.t. Aey, =u,(mod q)

How to sample?

+ Construction? Proof?
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GPV IBE

Secret: Ta, Public : A

Use trapdoor!

+ Extract(Ta, id) : Set uig= H(id). Find e short s.t. A eig = Uia mod g

+ Encrypt (A, Id) :

+ Pick random vector s
+ C,=AT s + noise

+ C,=Uid’ S + noise + msg

+ Decrypt (€id) :

# €id! C;— C; = MSg + noise
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Proof Idea

Selective game: reduction knows id* from beginning
Need:

Answer adversary key queries for any id # id*

Unable to answer key query for id*

Embed LWE challenge into CT for id*
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+ Sample random bit b.
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Challenge CT for id*

»* Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

+ “Program" H(id*) = u. Note u random so consistent with ROM!
+ Sample random bit b.
+ Set challenge CT as co = AT s + noise, ci= uT s + noise + My

* Now, adversary sees exactly the LWE challenge: if random
then b is info-theoretically hidden. No advantage!

* Its success translates to success for reduction/challenger!

%
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Key Queries

+ Need:
+ Answer adversary key queries for any id # id*

+ Unable to answer key query for id*

How?

Sample your own eiqg and set uid = A eig mod g.

“Program” H(id) = uis. Recall (from yesterday) uis random!

+ Upon hash query on id, return uig.

Upon key query on id, return ejq
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Standard Model?

+ ROM proof great first step but unrealistic

+ ROM cannot be instantiated [BBPO3] ...

+ (Contrived counter-examples

+ Proof easy because exponential space to “program”

+ Can we construct it without ROM?
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Standard Model

+ Want to embed vector id in ciphertext and secret key.

+ Let encryption matrix F,4y be publicly computable function

of id and public parameters.

+ Perform Regev PKE with encryption matrix F;,

+ Figure out way to compute short vector e such that

< Fy e

||
-

mod g
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Parameters: A, - LA L 1 G L

Master Secret Key: Trapdoor for A,

KeyGen for identity id :

Let Fig = [Aq I A,
< Fid - l = u mod g

Know how to compute trapdoor for “extended” matrix
[Ayl any]
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Encryption for id’ = Regev PKE on matrix F,,

** Pick random vector s

% Let Fy = [A, | A, + idxG]

“ C =uT s + noise + msg

% C’ =F,Ts + noise
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Std Model Identity Based Encryption [ABB10]
C, = UuTs + noise + m and C,= F,;'s + noise

Decryption : Regev decryption

<+ eTC,= (F,,e)Ts + noise

< Since F,, e =u mod g, we have

W = m + hoise from which we can recover m.
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Llet B e ngm', uniform R & ZZL’anogq, Gaussian m

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion

N

Developed

. Fy=[AJ AR + (id —id")G] n ABB0

- Can find basis for F,, given basis for G !

 Trapdoor vanishes for id = id’
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PP=A, A, G

Real System

MSK = Trapdoor for A,

A, = Randomly chosen

Indistinguishable

Encryption
matrix F, =[A/A+id.G]

Simulation

MSK =R

A, =A,R-id G

since R I1s random!
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Std Model Identity Based Encryption [ABB10]

PP=A,, A,, G
Real System Simulation
MSK = Trapdoor for A, MSK =R
A, = Randomly chosen A, =A,R—id G
Indistinguishable|since R is random!
Encryption Encryption |
matrix F, =[A,A,+id.G] matrix Fiy=[Ag | A;+id.G]
=[A, AR + (id -id ) G]
Secret Key = short vector in F Secret Key = short vector in F 4
MSK = Key for any id Trapdoor for G = Key for id # id’




The matrix R

- Matrix R : each column randomly and
independently chosen from {+1, -1}™

. (A, A,) indistinguishable from (A, AR)

by leftover hash lemma

- Roughly states that R has enough entropy to make
A R look like A,
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Generalizing to Inner Product (kswos)

1 Key:y=(Yy, .o Vo)
CT : x=(x, ..., X,)

Ciphertext Hides
Attributes X

Functionf(xy) = 1If <x.y>=0

O otherwise

Supports:

- OR — Bob OR Alice OR,4(z) =1ifz=AORz=B
p2)=A-2)(B -2

*CNF/DNF formulas of bounded size
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< A1 > < A2
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Master Secret Key: Trapdoor for A

% Define F, = [AIZyA]

>l = .modq



Generalizing to Inner Product (arvi1)

X Parameters for Ix| = lyl = 4:

< A1 > < A2 - < A3 > < A4 > < A >
Master Secret Key: Trapdoor for A
< Define F, = [Al2yA]

< A *zyiAi > l

— mod g




Generalizing to Inner Product (arvi1)




Generalizing to Inner Product (arvi1)

Encryption for vector x = (X; X, X5 X,)




Generalizing to Inner Product (arvi1)

Encryption for vector x = (X; X, X5 X,)

* Pick random vector s

“ C =uT s + noise + msg

* C’ = ATs + noise




Generalizing to Inner Product (arvi1)
Encryption for vector x = (X; X, X5 X,)
< Pick random vector s
“ C =uT s + noise + msg

* C’ = ATs + noise

% Set C, = (A + x G)T s + noise
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Decryption C.= (A, + x; G)T s + noise
(CT,, SK)) :

C’ = AT s + noise

< A < zyiAi > ey — U mod g

- AL 7
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Decryption C.= (A, + x; G)T s + noise
(CT, SKY) : C’ = AT s + noise
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Generalizing to Inner Product (arvi1)

Decryption C.= (A, + x; G)T s + noise
(CT, SKY) : C’ = AT s + noise
< A < zyIAI > ey = u mOd q

SetC,=2y,C
= (2 yiAi+Z%i G)'s + 2 y. noise

[CIC,] =[AlZy,A]'s +noise

But this is what we have the key for !
Perform Regev Decryption.
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Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

C =uT s +noise + msg, C’=ATs + noise
C. =(A +x G)T s + noise

Previously: Could evaluate on CT to obtain

C = (A, +<x, y>G)T s + noise

<X, y> "

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

Generalize to arbitrary f?

Ci = (As + (x) G)T s + noise
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Handling Multiplication BcG+14]

Recall CHIGHIANSA

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise
Key Observation: x may be used in evaluation !

+ (A1 +X%,G) GT(-Ay) =(A; G ) - X2)

(As + X5 G) (Xy) = (XX2 +X:1X; G
= (Agz + XXz G)
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C,=(A;+Xx,G)Ts+noise C,=(A,+X,G)Ts +noise

Then G ,=RTC;+x,C;
= (A, + X4X, G)T s + noise
A =A, G (-A)

G-1 (-A,) and x, are small and do not affect noise !

Also have C =uTs + noise + msg, C’=ATs + noise

If x,x, =0,then C’| C,,,, =[AlA,,]Ts + noise
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If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

-~ ~

Key + A + A12 ey, ¥ mOdq
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~ - ~
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If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

a N ~N ~ N

Key <« A + A12 ey, Y modq
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Perform Regev Decryption
C =uT s + noise + msg
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If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

a N ~N ~ N

Key <« A + A12 ey, Y modq

- > 7

Perform Regev Decryption
C =uT s + noise + msg

(e,)T[C 1 C.y 0]l =(en)T[ATAL]TS + (e4,)TNOISE = UT S + NOISe

= Nnoise + msg
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More Generally Bac+14...

There exist “small” /H\f,x, H, such that:

[A, —x,G]...... A, —xG1H;=[A]...|A]H ~f(x) G

Recall C. = (A, + x; G)T s + noise

LHS implies that As
HL[C...... C,1=I[A,—f(x) G]"s + hoise
Keygen provides f 1 1 BB e
matching key i A <> As j & = u mod g

" ~

\ -

Perform Regev Decryption as usual
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Security
Parameter, A (PK, MSK)

» SetUp

>

l MSK

» KeyGen —

EE E;D%D-af

Skf

PK,x

v

Message m

Encrypt

:

Ciphertext CTx(m)

l

>

Decrypt

———»mif f(x) =1, else L

Attribute based Encryption (ABE) iswos




Security Definition

>

sk(f,) s-k(f9) ....... sk(f.,,) ;l

My, My wherefi(x)=0

"yd Jasualeyd
Py Auesionpy

Choose random b. Return ct* = Enc( PK, x*, m)

>
Guess b’

Attacker wins if | Pr{b=b’| - /2| is non-negligible




Security: Challenges

*Challenger needs to be able to answer private key
queries of Adversary: much more complex!

*Challenger can’t have master trapdoor(Trapdoor for A)

* Must embed LWE challenge into challenge ciphertext
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Strategy: Key Queries

- Need TD for [A | A; ] when f(x*) # O.
¢ Af - [Aq]c — f(x*)G] : _et H — f(X*)
* Recall

let A € ngm' uniform, R € ZZ‘/X”Iqu small

Then A AR-HG

admits LWE and SIS inversion.
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