
Lattice Based Cryptography:
Tools and Applications

Shweta Agrawal
IIT Madras

Computing on Encrypted Data
Personalised Medicine

 “The dream for tomorrow’s medicine is
to understand the links between DNA
and disease — and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic data and
medical records secure while still
enabling the massive, cloud-based
analyses needed to make meaningful
associations.”

2

Check Hayden, E. (2015). Nature, 519, 400-401.

Computing on Encrypted Data
Personalised Medicine

 “The dream for tomorrow’s medicine is
to understand the links between DNA
and disease — and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic data and
medical records secure while still
enabling the massive, cloud-based
analyses needed to make meaningful
associations.”

2

Check Hayden, E. (2015). Nature, 519, 400-401.

Doesn’t FHE solve exactly this?

Prof. Bob wants to store encrypted file so that:

• Other Professors or admin assistants of CS
group can open it

• Encrypt file for each of them?

• If someone quits or new person joins? Re-
encrypt ?

• Organizational nightmare !

Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

What he really wants:
Encryption for formula

Access Control on Encrypted Data

OR

Professors AND

Admin
CS Group

Prof. Bob wants to store encrypted file so that:

What he really wants:
Encryption for formula

Access Control on Encrypted Data

What do we want?

What do we want?

What do we want?

OR

PROF. AND

Admin CS Group

What do we want?

What do we want?

PROF OR {Admin AND CS}

What do we want?

PROF OR {Admin AND CS}

What do we want?

Key Authority

PROF OR {Admin AND CS}

What do we want?

Key Authority

PROF OR {Admin AND CS}

What do we want?

Key Authority

PROF OR {Admin AND CS}

What do we want?

Key Authority

PROF OR {Admin AND CS}

PROF

What do we want?

Key Authority

PROF OR {Admin AND CS}

PROF

CS Admin

What do we want?

Key Authority

PROF OR {Admin AND CS}

PROF

CS Admin

What do we want?

Key Authority

PROF OR {Admin AND CS}

PROF

CS Admin

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

Attacker

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

Attacker

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

Attacker

What do we want?

PROF OR {Admin AND CS}

PROF

CS Admin

Attacker

What do we want?

PROF OR {Admin AND CS}

✗

PROF

CS Admin

Attacker

5

Need New Tools & Techniques!
Main Tool: Lattice Trapdoors

Trapdoor Functions

6

Trapdoor Functions

6

Generate (f, T)

Trapdoor Functions

6

Generate
f : D → R,

(f, T)

Trapdoor Functions

6

Generate
f : D → R,

(f, T)

One Way

D

Trapdoor Functions

6

Generate
f : D → R,

(f, T)

One Way

RD

Trapdoor Functions

6

Generate
f : D → R,

(f, T)

One Way

RD

Trapdoor Functions

6

x

Generate
f : D → R,

(f, T)

One Way

RD

Trapdoor Functions

6

x
y

Easy

Generate
f : D → R,

(f, T)

One Way

f

RD

Trapdoor Functions

6

x
y

Easy

Hard

Generate
f : D → R,

(f, T)

One Way

f

RD

Trapdoor Functions

6

x
y

Easy

Hard

Easy given T

Generate
f : D → R,

(f, T)

One Way

f

7

Short Integer Solution Problem

Given matrix A, find “short” (low norm) vector x such that

A
x 0=n

m

m n

Let

mod q

A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

A x = 0 mod q ∈ ℤn
q

8

Learning With Errors Problem
Distinguish “noisy inner products” from uniform

Fix uniform s Zq
n

a1 , b1 = <a1,s> + e1
a2 , b2 = <a2,s> + e2

am , bm = <am,s>+ em

vs

ai uniform Zq
n , ei ~ ϕ Zq ai uniform Zq

n , bi uniform Zq∈∈ ∈

∈

∈

Lattice Based One Way Functions

9

Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

Lattice Based One Way Functions

Based on SIS

• Short x, surjective

• CRHF if SIS is hard [Ajt96…]

9

Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

fA(x) = A x mod q ∈ ℤn
q

Lattice-Based One-Way Functions

I Public key
h
· · · A · · ·

i
2 Zn⇥m

q for q = poly(n), m = ⌦(n log q).

fA(x) = Ax mod q 2 Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = s
t
A+ e

t mod q 2 Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: ⇤?(A) = {x 2 Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e

5 / 17

Lattice Based One Way Functions

Based on SIS

• Short x, surjective

• CRHF if SIS is hard [Ajt96…]

9

Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

gA(s, e) = stA + et mod q ∈ ℤm
qfA(x) = A x mod q ∈ ℤn

q

Lattice-Based One-Way Functions

I Public key
h
· · · A · · ·

i
2 Zn⇥m

q for q = poly(n), m = ⌦(n log q).

fA(x) = Ax mod q 2 Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = s
t
A+ e

t mod q 2 Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: ⇤?(A) = {x 2 Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e

5 / 17

Based on LWE

• Very short e, injective

• OWF if LWE is hard [Reg05…]

Lattice-Based One-Way Functions

I Public key
h
· · · A · · ·

i
2 Zn⇥m

q for q = poly(n), m = ⌦(n log q).

fA(x) = Ax mod q 2 Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = s
t
A+ e

t mod q 2 Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: ⇤?(A) = {x 2 Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e

5 / 17
Image Credit: MP12 slides

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

• Given

• Find unique

gA(s, e) = stA + et mod q

(s, e)

And

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

OR

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

D R

x y

OR

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

D R

x y

Same Distribution (Discrete Gaussian, Uniform) !

OR

Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

10

• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Generate (x, y) in two equivalent ways

D R

x y

D R

x y

Same Distribution (Discrete Gaussian, Uniform) !

OR

Latter distribution
needs lattice
trapdoors!

What do these trapdoors look like?

12

Lattice Trapdoors (Type 1):
Geometric View

12

Lattice Trapdoors (Type 1):
Geometric View

v1

v2

12

Lattice Trapdoors (Type 1):
Geometric View

v1

v2

v’2
v’1

12

Lattice Trapdoors (Type 1):
Geometric View

Multiple Bases

v1

v2

v’2
v’1

13

Parallelopipeds

14

Parallelopipeds

15

T

Good Basis

15“Quite short” and “nearly orthogonal”

T

Good Basis

15

What’s my
closest lattice

point?

“Quite short” and “nearly orthogonal”

T

Good Basis

16

Good Basis

T
V

16

Good Basis

T
V

Output center of parallelopipid containing T

16

Good Basis
Declared
closest
point

T
V

Output center of parallelopipid containing T

16

Good Basis
Declared
closest
point

Pretty Accurate…

T
V

Output center of parallelopipid containing T

17

Bad Basis

18

Bad Basis

V

18

Bad BasisDeclared
closest
point

V

18

Bad Basis
Closer
Lattice
point

Declared
closest
point

V

18

Bad Basis
Closer
Lattice
point

Declared
closest
point

V

Output center of parallelopipid containing T

18

Bad Basis
Closer
Lattice
point

Declared
closest
point

V

Not So Accurate…
Output center of parallelopipid containing T

19

Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary

(bad) basis
• Some hard lattice problems are easy given

a good basis
• Will exploit this asymmetry

19

Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary

(bad) basis
• Some hard lattice problems are easy given

a good basis
• Will exploit this asymmetry

Use Short Basis as Cryptographic Trapdoor!

20

Lattice Trapdoors (Type 1)

20

Lattice Trapdoors (Type 1)
Inverting Our Function

20

Lattice Trapdoors (Type 1)

Recall
Want

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting Our Function

20

Lattice Trapdoors (Type 1)

Recall
Want

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

The Lattice

Inverting Our Function

20

Lattice Trapdoors (Type 1)

Recall
Want

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

The Lattice

Inverting Our Function

Λ = {x : Ax = 0 mod q} ⊆ ℤm
q

20

Lattice Trapdoors (Type 1)

Recall
Want

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

The Lattice

Inverting Our Function

Λ = {x : Ax = 0 mod q} ⊆ ℤm
q

Short basis for lets us sample from
with correct distribution!

f −1
A (u)Λ

Two Questions

1. How to get short basis

Two Questions

1. How to get short basis

Two Questions

1. How to get short basis

2. How to use short basis

Two Questions

Lattice Trapdoors (Type 2)

Lattice Trapdoors (Type 2)

Lattice Trapdoors (Type 2)

 Not a short basis but

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful
• More efficient

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful
• More efficient
• Better parameters

Lattice Trapdoors (Type 2)

 Not a short basis but
• Just as powerful
• More efficient
• Better parameters
• Implies Type 1 trapdoors

23

Type 2 Trapdoors [MP12]

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

23

Type 2 Trapdoors [MP12]

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

 Design
 for Gadget Matrix G
 (fifl

f −1
G , g−1

G

1

23

Type 2 Trapdoors [MP12]

Randomize G ↔ A via
nice unimodular
transformation

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

 Design
 for Gadget Matrix G
 (fifl

f −1
G , g−1

G

1 2

23

Type 2 Trapdoors [MP12]

Randomize G ↔ A via
nice unimodular
transformation

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

 Design
 for Gadget Matrix G
 (fifl

f −1
G , g−1

G
Reduce

to

f −1
A , g−1

A

f −1
G , g−1

G

1 2 3

23

Type 2 Trapdoors [MP12]

Randomize G ↔ A via
nice unimodular
transformation

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

 Design
 for Gadget Matrix G
 (fifl

f −1
G , g−1

G
Reduce

to

f −1
A , g−1

A

f −1
G , g−1

G

Transformation in Step 2 is the trapdoor!

1 2 3

24

Step 1: for Gadget G
fG(x) = G x mod q ∈ ℤn

q gG(s, e) = stG + et mod q ∈ ℤm
qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet

 Invert LWE: find

• Get lsb(s) from
• Then get next bit of s and so on.
• Works as long as every

s ∈ Zq s.t. s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)

25

Step 1: for Gadget G
fG(x) = G x mod q ∈ ℤn

q gG(s, e) = stG + et mod q ∈ ℤm
qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet

 Invert LWE: find

• Get lsb(s) from
• Then get next bit of s and so on.
• Works as long as every

s ∈ Zq s.t. s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)

26

Step 1: for Gadget G
fG(x) = G x mod q ∈ ℤn

q gG(s, e) = stG + et mod q ∈ ℤm
qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet

 Invert LWE: find

• Get lsb(s) from
• Then get next bit of s and so on.
• Works as long as every

 Invert SIS: sample Gaussian preimage x s.t.

• For choose
• Let k= 2.

u = ⟨g x⟩ mod q

s ∈ Zq s.t. s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)

i ∈ [0,…, k − 1], xi ← (2ℤ + u), u ← (u − xi)/2 ∈ ℤ
x0 ← (2z0 + u), u ← (u − 2z0 − u)/2 = − z0
x1 ← (2z1 − z0)
⟨g, x⟩ = 2z0 + u + 2(2z1 − z0) = u + 4z1 = u mod 4

Gaussian from
shifted lattice

2Z + u

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Want = 0 mod qS

27

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod qS

28

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

 S is Short Basis for

S

g = [1, 2, 4,⋯, 2k−1]

28

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

 S is Short Basis for

S

g = [1, 2, 4,⋯, 2k−1]

Define gadget G :

G = In ⊗ g ⋯ g ⋯
⋯ g ⋯

⋯ g ⋯

⋱
∈ ℤn×nk

q

28

Step 1: for Gadget G f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

 S is Short Basis for

S

g = [1, 2, 4,⋯, 2k−1]

 reduce to n parallel, offlf −1
G , g−1

G

Define gadget G :

G = In ⊗ g ⋯ g ⋯
⋯ g ⋯

⋯ g ⋯

⋱
∈ ℤn×nk

q

f −1
g , g−1

g

28

29

Step 2: Randomize G to A

29

Step 2: Randomize G to A
1. Sample B ∈ ℤn×m′￼

q , short Gaussian R ∈ ℤm′￼×n log q
q ,

29

Step 2: Randomize G to A

2. Define A = GB
I

I

-R

1. Sample B ∈ ℤn×m′￼
q , short Gaussian R ∈ ℤm′￼×n log q

q ,

29

Step 2: Randomize G to A

2. Define A = GB
I

I

-R

1. Sample B ∈ ℤn×m′￼
q , short Gaussian R ∈ ℤm′￼×n log q

q ,

= G - BRB

29

Step 2: Randomize G to A

2. Define A = GB
I

I

-R

1. Sample B ∈ ℤn×m′￼
q , short Gaussian R ∈ ℤm′￼×n log q

q ,

=

A is uniform by leftover hash lemma!

G - BRB

Shweta Agrawal
IIT Madras

Leftover Hash Lemma (oversimplified)

Shweta Agrawal
IIT Madras

Leftover Hash Lemma (oversimplified)

If

(B, BR) ≈ (B, U)

 Let B ∈ ℤn×m′￼
q R ∈ ℤm′￼×n log q

quniform & Gaussian

 then,m′￼≈ n log q,

 Let

Shweta Agrawal
IIT Madras

Leftover Hash Lemma (oversimplified)

If

(B, BR) ≈ (B, U)

 Let B ∈ ℤn×m′￼
q R ∈ ℤm′￼×n log q

quniform & Gaussian

 then,m′￼≈ n log q,

 Let

G - BRB Hence A = uniform

31

Step 2: Randomize G to A

31

Step 2: Randomize G to A

Have A = G - BRB

31

Step 2: Randomize G to A

Have A = G - BRB

Define: R is a trapdoor for A with tag H ∈ ℤn×n
q ,

A ⋅ [R
I] = H ⋅ GIf

31

Step 2: Randomize G to A

Have A = G - BRB

Define: R is a trapdoor for A with tag H ∈ ℤn×n
q ,

A ⋅ [R
I] = H ⋅ GIf

Λ⊥(G)

S
&

Basis
for

Trapdoor R
for A

31

Step 2: Randomize G to A

Have A = G - BRB

Define: R is a trapdoor for A with tag H ∈ ℤn×n
q ,

A ⋅ [R
I] = H ⋅ GIf

Λ⊥(G)

S
&

Basis
for

Trapdoor R
for A

Λ⊥(A)

SABasis
for

32

Step 3: Reduce to
Suppose R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I] = G

f −1
G , g−1

Gf −1
A , g−1

A

32

Step 3: Reduce to
Suppose R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I] = G

f −1
G , g−1

G

Inverting LWE

f −1
A , g−1

A

32

Step 3: Reduce to
Suppose R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I] = G

f −1
G , g−1

G

• Given

• Find unique

bt = stA + et mod q

(s, e)

Want:

Inverting LWE

f −1
A , g−1

A

32

Step 3: Reduce to
Suppose R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I] = G

f −1
G , g−1

G

bt ⋅ [R
I] = st ⋅ G + et ⋅ [R

I] mod q
• Given

• Find unique

bt = stA + et mod q

(s, e)

Want:

Inverting LWE

et ⋅ [R
I] ∈ [−q/4,q/4)

Compute:

Works if

f −1
A , g−1

A

33

A ⋅ [R
I] = G

f −1
G , g−1

G

Inverting SIS

f −1
A , g−1

AStep 3: Reduce to

33

A ⋅ [R
I] = G

f −1
G , g−1

G

Want:
• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting SIS

f −1
A , g−1

AStep 3: Reduce to

33

A ⋅ [R
I] = G

f −1
G , g−1

G

Want:
• Given

• Sample

 with prob

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp(−∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting SIS

A ⋅ x = A ⋅ [R
I] ⋅ z = G ⋅ z = u

x = [R
I] ⋅ z

Compute:
Sample

Output

z ← f −1
G (u)

Then,

f −1
A , g−1

AStep 3: Reduce to

34

Step 3: Reduce to
A ⋅ [R

I] = G

f −1
A , g−1

A f −1
G , g−1

G

Are we done?

34

Step 3: Reduce to
A ⋅ [R

I] = G

f −1
A , g−1

A f −1
G , g−1

G

A ⋅ x = A ⋅ [R
I] ⋅ z = G ⋅ z = u

x = [R
I] ⋅ z

Compute:
Sample

Output

z ← f −1
G (u)

Then,

Are we done?

34

Step 3: Reduce to
A ⋅ [R

I] = G

f −1
A , g−1

A f −1
G , g−1

G

A ⋅ x = A ⋅ [R
I] ⋅ z = G ⋅ z = u

x = [R
I] ⋅ z

Compute:
Sample

Output

z ← f −1
G (u)

Then,

Are we done?

Covariance of x leaks R!

34

Step 3: Reduce to
A ⋅ [R

I] = G

f −1
A , g−1

A f −1
G , g−1

G

A ⋅ x = A ⋅ [R
I] ⋅ z = G ⋅ z = u

x = [R
I] ⋅ z

Compute:
Sample

Output

z ← f −1
G (u)

Then,

Are we done?

Covariance of x leaks R!

Image Credit: Chris Peikert

A First Attempt

I Given u, sample z f�1
G (u) and output x =

⇥
R
I

⇤
z 2 f�1

A (u) ?

I x1 = Rz has a non-spherical Gaussian distribution of covariance

⌃ := Ex
⇥
x · xt

⇤
= Ez

⇥
R · zzt ·Rt

⇤
⇡ s2 ·RR

t.

Covariance can be measured — and it leaks R! (up to rotation)

12 / 18

35

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

35

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Want to output spherical Gaussian!
Covariance Matrix s2I

35

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10]
https://www.elegantthemes.com/

Want to output spherical Gaussian!
Covariance Matrix s2I

35

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10]
https://www.elegantthemes.com/

Want to output spherical Gaussian!
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of
Gaussians

35

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10]
https://www.elegantthemes.com/

Want to output spherical Gaussian!
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of
Gaussians

To fix covariance:
• Generate perturbation vector p with covariance

• Sample spherical z such that

• Output

(s2I − RRt)

G z = u − A p

x = p + [R
I] ⋅ z

35

Step 3: Reduce to f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10]
https://www.elegantthemes.com/

Want to output spherical Gaussian!
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of
Gaussians

To fix covariance:
• Generate perturbation vector p with covariance

• Sample spherical z such that

• Output

(s2I − RRt)

G z = u − A p

x = p + [R
I] ⋅ z

A ⋅ x = Ap + A [R
I] ⋅ z

A ⋅ [R
I] = G

Check

= Ap + Gz = u

Let A = G - BRB

A

B ∈ ℤn×m′￼
q ,

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

Takeaway for Applications

Applications

Applications

A word about notation

Identity Based Encryption (IBE)

Identity Based Encryption (IBE)

In short………..

Identity Based Encryption (IBE)

Public Key Encryption in which ANY
arbitrary string can be public key!

In short………..

IBE: How does it work?

Bob

Key Server
• Master Secret
• Public Parameters

Alice encrypts with
bob@iitm.ac.in

Receives
 Private Key
for bob@iitm.ac.in

Bob decrypts with
 Private Key

Alice

Requests private key,
authenticates

1

2

3

4

Setup

Extract

Encrypt Decrypt

Public Params PP

Master secret key MSK

Security
Parameter λ

Identity ID

Secret key SK

Message
 m Ciphertext

 C
Message
 m

Identity Based Encryption

41

Bit of History

41

Bit of History
❖ Big open problem — posed in 1984 by Shamir, first

solution in 2001 by Boneh and Franklin

41

Bit of History
❖ Big open problem — posed in 1984 by Shamir, first

solution in 2001 by Boneh and Franklin

❖ First solution uses pairings

❖ Beautiful solution using only CDH by Dottling & Garg (2017)

41

Bit of History
❖ Big open problem — posed in 1984 by Shamir, first

solution in 2001 by Boneh and Franklin

❖ First solution uses pairings

❖ Beautiful solution using only CDH by Dottling & Garg (2017)

❖ We’ll see solution from lattices

41

Bit of History
❖ Big open problem — posed in 1984 by Shamir, first

solution in 2001 by Boneh and Franklin

❖ First solution uses pairings

❖ Beautiful solution using only CDH by Dottling & Garg (2017)

❖ We’ll see solution from lattices

❖ Main challenge?

41

Bit of History
❖ Big open problem — posed in 1984 by Shamir, first

solution in 2001 by Boneh and Franklin

❖ First solution uses pairings

❖ Beautiful solution using only CDH by Dottling & Garg (2017)

❖ We’ll see solution from lattices

❖ Main challenge?

❖ Need for MSK?

IBE Security

Challenger Ch.

Adversary Ad.

IBE Security

Challenger Ch.

Adversary Ad.

Get instance of
hard problem H

IBE Security

Challenger Ch.

Adversary Ad.

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

m0, m1

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

m0, m1

Pick b random, C* = Enc(m_b, ID*)

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

Guess b’

m0, m1

Pick b random, C* = Enc(m_b, ID*)

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

ID*

IBE Security

Challenger Ch.

Adversary Ad.

PK

Guess b’

m0, m1

Pick b random, C* = Enc(m_b, ID*)

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

Output G as
answer for H

ID*

IBE Security

Attacker wins if | Pr[b=b’] - ½ | is non-negligible
Challenger Ch.

Adversary Ad.

PK

Guess b’

m0, m1

Pick b random, C* = Enc(m_b, ID*)

, dID2 , dID3 , …, dIDmdID1

 , ID2 , ID3 , …, IDmID1

Get instance of
hard problem H

Output G as
answer for H

ID*

43

Security Model: Key Points

43

Security Model: Key Points

43

Security Model: Key Points

• Ch. needs to be able to answer private key
queries of Ad.

43

Security Model: Key Points

• Ch. needs to be able to answer private key
queries of Ad.

43

Security Model: Key Points

• Ch. needs to be able to answer private key
queries of Ad.

• Ch. should not be able to answer query for id*

(hence can’t have master trapdoor)

43

Security Model: Key Points

• Ch. needs to be able to answer private key
queries of Ad.

• Ch. should not be able to answer query for id*

(hence can’t have master trapdoor)

43

Security Model: Key Points

• Ch. needs to be able to answer private key
queries of Ad.

• Ch. should not be able to answer query for id*

(hence can’t have master trapdoor)

• Ch. should be able to generate challenge
ciphertext so that Ad’s answer is useful.

43

Security Model: Key Points

• Ch. needs to be able to answer private key
queries of Ad.

• Ch. should not be able to answer query for id*

(hence can’t have master trapdoor)

• Ch. should be able to generate challenge
ciphertext so that Ad’s answer is useful.

44

 Regev PKE

44

 Regev PKE
❖ Recall A e = u mod q hard to invert

❖ Secret: e, Public : A, u

44

 Regev PKE

A e u mod q≡

❖ Recall A e = u mod q hard to invert

❖ Secret: e, Public : A, u

44

 Regev PKE

❖ Encrypt (A, u) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uT s + noise + msg

A e u mod q≡

❖ Recall A e = u mod q hard to invert

❖ Secret: e, Public : A, u

44

 Regev PKE

❖ Encrypt (A, u) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uT s + noise + msg

❖ Decrypt (e) :

❖ eT c0 – c1 = msg + noise

A e u mod q≡

❖ Recall A e = u mod q hard to invert

❖ Secret: e, Public : A, u

44

 Regev PKE

❖ Encrypt (A, u) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uT s + noise + msg

❖ Decrypt (e) :

❖ eT c0 – c1 = msg + noise

A e u mod q≡

❖ Recall A e = u mod q hard to invert

❖ Secret: e, Public : A, u

Encryption
matrix A

44

 Regev PKE

❖ Encrypt (A, u) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uT s + noise + msg

❖ Decrypt (e) :

❖ eT c0 – c1 = msg + noise

Small only
 if e is small

A e u mod q≡

❖ Recall A e = u mod q hard to invert

❖ Secret: e, Public : A, u

Encryption
matrix A

45

GPV IBE

45

GPV IBE
❖ Want to embed vector id in ciphertext and secret key.

45

GPV IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ How to generate public parameters?

❖ Must be independent of id (why?)

❖ Must “morph” into id dependent PK for Regev

45

GPV IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ How to generate public parameters?

❖ Must be independent of id (why?)

❖ Must “morph” into id dependent PK for Regev

❖ Let uid =H(id) where H is random oracle

45

GPV IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ How to generate public parameters?

❖ Must be independent of id (why?)

❖ Must “morph” into id dependent PK for Regev

❖ Let uid =H(id) where H is random oracle

❖ Want: Perform Regev PKE with PK A, uid

46

Random Oracle

46

Random Oracle
❖ Random oracle model assumes that well-chosen hash H

(SHA3, say) behaves “like a random function”

46

Random Oracle
❖ Random oracle model assumes that well-chosen hash H

(SHA3, say) behaves “like a random function”

❖ On any input, gives random output

46

Random Oracle
❖ Random oracle model assumes that well-chosen hash H

(SHA3, say) behaves “like a random function”

❖ On any input, gives random output

❖ Repeated input, same output

46

Random Oracle
❖ Random oracle model assumes that well-chosen hash H

(SHA3, say) behaves “like a random function”

❖ On any input, gives random output

❖ Repeated input, same output

❖ Very useful for practical schemes

46

Random Oracle
❖ Random oracle model assumes that well-chosen hash H

(SHA3, say) behaves “like a random function”

❖ On any input, gives random output

❖ Repeated input, same output

❖ Very useful for practical schemes

❖ Proof in ROM allows to “program” H — gives exponential
space to reduction!

47

GPV IBE

47

GPV IBE
❖ Recall uid =H(id) where H is random oracle

47

GPV IBE
❖ Recall uid =H(id) where H is random oracle

❖ Key: small eid s.t. A eid = uid (mod q)

47

GPV IBE
❖ Recall uid =H(id) where H is random oracle

❖ Key: small eid s.t. A eid = uid (mod q)

mod q

key

eid uid≡A

47

GPV IBE
❖ Recall uid =H(id) where H is random oracle

❖ Key: small eid s.t. A eid = uid (mod q)

❖ Construction? Proof?

mod q

key

eid uid≡A

How to sample?

48

GPV IBE

48

GPV IBE
Secret: TA, Public : A

48

GPV IBE

❖ Extract(TA, id) : Set uid = H(id). Find e short s.t. A eid = uid mod q

Secret: TA, Public : A

48

GPV IBE

❖ Extract(TA, id) : Set uid = H(id). Find e short s.t. A eid = uid mod q

Secret: TA, Public : A
Use trapdoor!

48

GPV IBE

❖ Extract(TA, id) : Set uid = H(id). Find e short s.t. A eid = uid mod q

❖ Encrypt (A, id) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uidT s + noise + msg

Secret: TA, Public : A
Use trapdoor!

48

GPV IBE

❖ Extract(TA, id) : Set uid = H(id). Find e short s.t. A eid = uid mod q

❖ Encrypt (A, id) :

❖ Pick random vector s

❖ c0 = AT s + noise

❖ c1 = uidT s + noise + msg

❖ Decrypt (eid) :

❖ eidT c0 – c1 = msg + noise

Secret: TA, Public : A
Use trapdoor!

49

Proof Idea

49

Proof Idea
❖ Selective game: reduction knows id* from beginning

49

Proof Idea
❖ Selective game: reduction knows id* from beginning

❖ Need:

❖ Answer adversary key queries for any id id*

❖ Unable to answer key query for id*

❖ Embed LWE challenge into CT for id*

≠

50

Challenge CT for id*

50

Challenge CT for id*

❖ Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

50

Challenge CT for id*

❖ Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

❖ “Program" H(id*) = u. Note u random so consistent with ROM!

50

Challenge CT for id*

❖ Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

❖ “Program" H(id*) = u. Note u random so consistent with ROM!

❖ Sample random bit b.

50

Challenge CT for id*

❖ Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

❖ “Program" H(id*) = u. Note u random so consistent with ROM!

❖ Sample random bit b.

❖ Set challenge CT as c0 = AT s + noise, c1= uT s + noise + mb

50

Challenge CT for id*

❖ Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

❖ “Program" H(id*) = u. Note u random so consistent with ROM!

❖ Sample random bit b.

❖ Set challenge CT as c0 = AT s + noise, c1= uT s + noise + mb

❖ Now, adversary sees exactly the LWE challenge: if random
then b is info-theoretically hidden. No advantage!

50

Challenge CT for id*

❖ Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

❖ “Program" H(id*) = u. Note u random so consistent with ROM!

❖ Sample random bit b.

❖ Set challenge CT as c0 = AT s + noise, c1= uT s + noise + mb

❖ Now, adversary sees exactly the LWE challenge: if random
then b is info-theoretically hidden. No advantage!

❖ Its success translates to success for reduction/challenger!

51

Key Queries

51

Key Queries
❖ Need:

❖ Answer adversary key queries for any id id*

❖ Unable to answer key query for id*

≠

How?

51

Key Queries
❖ Need:

❖ Answer adversary key queries for any id id*

❖ Unable to answer key query for id*

≠

How?

51

Key Queries
❖ Need:

❖ Answer adversary key queries for any id id*

❖ Unable to answer key query for id*

≠

❖ Sample your own eid and set uid = A eid mod q.

How?

51

Key Queries
❖ Need:

❖ Answer adversary key queries for any id id*

❖ Unable to answer key query for id*

≠

❖ Sample your own eid and set uid = A eid mod q.

❖ “Program” H(id) = uid. Recall (from yesterday) uid random!

How?

51

Key Queries
❖ Need:

❖ Answer adversary key queries for any id id*

❖ Unable to answer key query for id*

≠

❖ Sample your own eid and set uid = A eid mod q.

❖ “Program” H(id) = uid. Recall (from yesterday) uid random!

❖ Upon hash query on id, return uid.

How?

51

Key Queries
❖ Need:

❖ Answer adversary key queries for any id id*

❖ Unable to answer key query for id*

≠

❖ Sample your own eid and set uid = A eid mod q.

❖ “Program” H(id) = uid. Recall (from yesterday) uid random!

❖ Upon hash query on id, return uid.

❖ Upon key query on id, return eid

52

Standard Model?

52

Standard Model?

❖ ROM proof great first step but unrealistic

52

Standard Model?

❖ ROM proof great first step but unrealistic

❖ ROM cannot be instantiated [BBP03] …

❖ Contrived counter-examples

52

Standard Model?

❖ ROM proof great first step but unrealistic

❖ ROM cannot be instantiated [BBP03] …

❖ Contrived counter-examples

❖ Proof easy because exponential space to “program”

52

Standard Model?

❖ ROM proof great first step but unrealistic

❖ ROM cannot be instantiated [BBP03] …

❖ Contrived counter-examples

❖ Proof easy because exponential space to “program”

❖ Can we construct it without ROM?

53

Standard Model

53

Standard Model
❖ Want to embed vector id in ciphertext and secret key.

53

Standard Model
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function
of id and public parameters.

53

Standard Model
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function
of id and public parameters.

❖ Perform Regev PKE with encryption matrix Fid

53

Standard Model
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function
of id and public parameters.

❖ Perform Regev PKE with encryption matrix Fid

❖ Figure out way to compute short vector e such that

53

Standard Model
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function
of id and public parameters.

❖ Perform Regev PKE with encryption matrix Fid

❖ Figure out way to compute short vector e such that

Fid e u mod q≡

54

Std Model Identity Based Encryption [ABB10]

54

Parameters: A0 G uA1

Std Model Identity Based Encryption [ABB10]

54

Parameters:

Master Secret Key: Trapdoor for A0

A0 G uA1

Std Model Identity Based Encryption [ABB10]

54

Parameters:

Master Secret Key: Trapdoor for A0

KeyGen for identity id :

A0 G uA1

Std Model Identity Based Encryption [ABB10]

54

Parameters:

Master Secret Key: Trapdoor for A0

KeyGen for identity id :

A0 G uA1

Let Fid = [A0 | A1 + id×G]

Std Model Identity Based Encryption [ABB10]

54

Parameters:

Master Secret Key: Trapdoor for A0

KeyGen for identity id :

mod q

key

e u≡Fid

A0 G uA1

Let Fid = [A0 | A1 + id×G]

Std Model Identity Based Encryption [ABB10]

54

Parameters:

Master Secret Key: Trapdoor for A0

KeyGen for identity id :

mod q

key

e u≡Fid

A0 G uA1

Let Fid = [A0 | A1 + id×G]

Know how to compute trapdoor for “extended” matrix
[A0| any]

Std Model Identity Based Encryption [ABB10]

55

Std Model Identity Based Encryption [ABB10]

55

Encryption for id’ = Regev PKE on matrix Fid

Std Model Identity Based Encryption [ABB10]

55

❖ Pick random vector s

❖ Let Fid = [A0 | A1 + id×G]

❖ C = uT s + noise + msg

❖ C’ = Fid
Ts + noise

Encryption for id’ = Regev PKE on matrix Fid

Std Model Identity Based Encryption [ABB10]

56

C0 = uTs + noise + m and C1= Fid
Ts + noise

Std Model Identity Based Encryption [ABB10]

56

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Std Model Identity Based Encryption [ABB10]

56

❖ Let w = C0 – eTC1

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Std Model Identity Based Encryption [ABB10]

56

❖ Let w = C0 – eTC1

❖ eTC1= (Fid e)Ts + noise

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Std Model Identity Based Encryption [ABB10]

56

❖ Let w = C0 – eTC1

❖ eTC1= (Fid e)Ts + noise

❖ Since Fid e = u mod q, we have

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Std Model Identity Based Encryption [ABB10]

56

❖ Let w = C0 – eTC1

❖ eTC1= (Fid e)Ts + noise

❖ Since Fid e = u mod q, we have

w = m + noise from which we can recover m.

C0 = uTs + noise + m and C1= Fid
Ts + noise

Decryption : Regev decryption

Std Model Identity Based Encryption [ABB10]

57

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id*

57

Std Model Identity Based Encryption [ABB10]

• Don’t have basis for A0

Simulation: Let challenge identity = id*

57

Std Model Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

Simulation: Let challenge identity = id*

57

Std Model Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Simulation: Let challenge identity = id*

57

Std Model Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

57

Std Model Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Fid = [A0| A1 +id G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

57

Std Model Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Fid = [A0| A1 +id G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

• Fid
 = [A0| A0R + (id –id*)G]

57

Std Model Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Fid = [A0| A1 +id G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

• Fid
 = [A0| A0R + (id –id*)G]

• Need to find basis for Fid given basis for G
57

Std Model Identity Based Encryption [ABB10]

• Don’t have basis for A0

• Have basis for G

• Let A1 = [A0R – id* ×G]

Fid = [A0| A1 +id G]

Random low norm
 matrix

Simulation: Let challenge identity = id*

• Fid
 = [A0| A0R + (id –id*)G]

• Need to find basis for Fid given basis for G
57

Std Model Identity Based Encryption [ABB10]

58

Std Model Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

58

Std Model Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

MP12

• Fid
 = [A0| A0R + (id –id*)G]

58

Std Model Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

MP12

• Fid
 = [A0| A0R + (id –id*)G]

• Can find basis for Fid given basis for G !

58

Std Model Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

MP12

• Fid
 = [A0| A0R + (id –id*)G]

• Can find basis for Fid given basis for G !

58

Std Model Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

Developed
in ABB10

MP12

• Fid
 = [A0| A0R + (id –id*)G]

• Can find basis for Fid given basis for G !

• Trapdoor vanishes for id = id*

58

Std Model Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

Developed
in ABB10

MP12

59

Real System Simulation

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen A1 = A0R – id* G

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen A1 = A0R – id* G

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

A1 = A0R – id* G

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Secret Key = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Secret Key = short vector in Fid Secret Key = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Secret Key = short vector in Fid Secret Key = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

MSK ➔ Key for any id

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]

59

PP = A0, A1, G
Real System Simulation

MSK = Trapdoor for A0 MSK = R

A1 = Randomly chosen

Encryption
matrix Fid = [A0|A1+id.G]

Secret Key = short vector in Fid Secret Key = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]

 = [A0 | A0R + (id -id*)G]

A1 = A0R – id* G

MSK ➔ Key for any id Trapdoor for G ➔ Key for id ≠ id*

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]

60

The matrix R
• Matrix R : each column randomly and

independently chosen from {+1, -1}m

• (A0, A1) indistinguishable from (A0, A0R)

 by leftover hash lemma

• Roughly states that R has enough entropy to make
A0R look like A1

61

Generalizing to inner products (AFV11)

62

Generalizing to Inner Product (KSW08)

Key : y = (y1, …, yn)

Function f(x, y) = 1 If <x . y> = 0

0 otherwise

CT : x = (x1, …, xn)

62

Generalizing to Inner Product (KSW08)

Key : y = (y1, …, yn)

Supports:
• OR –- Bob OR Alice

•CNF/DNF formulas of bounded size

Function f(x, y) = 1 If <x . y> = 0

0 otherwise

CT : x = (x1, …, xn)

ORA,B(z) = 1 if z = A OR z = B

p(z) = (A − z)(B − z)

62

Generalizing to Inner Product (KSW08)

Key : y = (y1, …, yn)

Supports:
• OR –- Bob OR Alice

•CNF/DNF formulas of bounded size

Function f(x, y) = 1 If <x . y> = 0

0 otherwise

CT : x = (x1, …, xn)
Ciphertext Hides

Attributes xi

ORA,B(z) = 1 if z = A OR z = B

p(z) = (A − z)(B − z)

63

Generalizing to Inner Product (AFV11)

63

❖ Parameters for |x| = |y| = 4:

A1 A2 A3 A4 A u

Generalizing to Inner Product (AFV11)

63

❖ Parameters for |x| = |y| = 4:

❖ Master Secret Key: Trapdoor for A

A1 A2 A3 A4 A u

Generalizing to Inner Product (AFV11)

63

❖ Parameters for |x| = |y| = 4:

❖ Master Secret Key: Trapdoor for A

A1 A2 A3 A4 A u

❖ Define Fy = [A |ΣyiAi]

Generalizing to Inner Product (AFV11)

63

❖ Parameters for |x| = |y| = 4:

❖ Master Secret Key: Trapdoor for A

A1 A2 A3 A4 A u

mod qey u≡

ΣyiAiA

❖ Define Fy = [A |ΣyiAi]

Generalizing to Inner Product (AFV11)

63

❖ Parameters for |x| = |y| = 4:

❖ Master Secret Key: Trapdoor for A

A1 A2 A3 A4 A u

key

mod qey u≡

ΣyiAiA

❖ Define Fy = [A |ΣyiAi]

Generalizing to Inner Product (AFV11)

64

Generalizing to Inner Product (AFV11)

64

Encryption for vector x = (x1 x2 x3 x4) :

Generalizing to Inner Product (AFV11)

64

❖ Pick random vector s

❖ C = uT s + noise + msg

❖ C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

Generalizing to Inner Product (AFV11)

64

❖ Pick random vector s

❖ C = uT s + noise + msg

❖ C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

❖ Set Ci = (Ai + xi G)T s + noise

Generalizing to Inner Product (AFV11)

65

Decryption
(CTx, SKy) :

Generalizing to Inner Product (AFV11)

65

Ci = (Ai + xi G)T s + noiseDecryption
(CTx, SKy) :

Generalizing to Inner Product (AFV11)

65

Ci = (Ai + xi G)T s + noiseDecryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

65

Ci = (Ai + xi G)T s + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

65

Set Cy = Σ yi Ci

 = (Σ yi Ai + Σ yi xi G)Ts + Σ yi noise

Ci = (Ai + xi G)T s + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

65

Set Cy = Σ yi Ci

 = (Σ yi Ai + Σ yi xi G)Ts + Σ yi noise✕

Ci = (Ai + xi G)T s + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

65

Set Cy = Σ yi Ci

 = (Σ yi Ai + Σ yi xi G)Ts + Σ yi noise✕

Ci = (Ai + xi G)T s + noise

[C’|Cy] = [A | Σ yi Ai] Ts + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

65

Set Cy = Σ yi Ci

 = (Σ yi Ai + Σ yi xi G)Ts + Σ yi noise✕

But this is what we have the key for !
Perform Regev Decryption.

Ci = (Ai + xi G)T s + noise

[C’|Cy] = [A | Σ yi Ai] Ts + noise

mod qey u≡ ΣyiAiA

Decryption
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)

Generalizing to circuits (BGG+14)

67

Recall Ciphertext Structure

67

Encryption for vector x = (x1 x2 x3 x4) :
Recall Ciphertext Structure

67

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :
Recall Ciphertext Structure

67

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

67

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

67

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

 C<x, y> = (Ay + <x, y> G)T s + noise

67

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

 C<x, y> = (Ay + <x, y> G)T s + noise

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

67

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

 C<x, y> = (Ay + <x, y> G)T s + noise

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

Generalize to arbitrary f?

67

C = uT s + noise + msg, C’ = ATs + noise

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure

Previously: Could evaluate on CT to obtain

 C<x, y> = (Ay + <x, y> G)T s + noise

 Cf(x) = (Af + f(x) G)T s + noise

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

Generalize to arbitrary f?

68

Handling Multiplication [BGG+14]

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 C2 = (A2 + x2 G)T s + noise

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

 C2 = (A2 + x2 G)T s + noise

Want

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

G G-1 (A) = ARecall

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)

G G-1 (A) = ARecall

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)

 = (A1 G-1 (-A2) - x1 A2)

G G-1 (A) = ARecall

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)

 = (A1 G-1 (-A2) - x1 A2)

 = (x1 A2 + x1x2 G)

G G-1 (A) = ARecall

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)
+ = (A1 G-1 (-A2) - x1 A2)

 = (x1 A2 + x1x2 G)

G G-1 (A) = ARecall

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)
+ = (A1 G-1 (-A2) - x1 A2)

 = (x1 A2 + x1x2 G)

G G-1 (A) = ARecall

✕
✕

68

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = (A12 + x1x2 G)T s + noise

Key Observation: x may be used in evaluation !

 C2 = (A2 + x2 G)T s + noise

Want

(A1 + x1 G)

(A2 + x2 G)

G-1 (-A2)

(x1)
+ = (A1 G-1 (-A2) - x1 A2)

 = (x1 A2 + x1x2 G)

 = (A12 + x1x2 G)

G G-1 (A) = ARecall

✕
✕

69

Handling Multiplication [BGG+14]

69

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 C2 = (A2 + x2 G)T s + noise

69

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 C2 = (A2 + x2 G)T s + noise
R = G-1 (-A2)Let

69

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = RT C1 + x1 C2
 = (A12 + x1x2 G)T s + noise
 A12 = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

R = G-1 (-A2)Let

69

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = RT C1 + x1 C2
 = (A12 + x1x2 G)T s + noise
 A12 = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

G-1 (-A2) and x1 are small and do not affect noise !

R = G-1 (-A2)Let

69

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = RT C1 + x1 C2
 = (A12 + x1x2 G)T s + noise
 A12 = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

G-1 (-A2) and x1 are small and do not affect noise !

R = G-1 (-A2)Let

C = uT s + noise + msg, C’ = ATs + noise Also have

69

 C1 = (A1 + x1 G)T s + noise

Handling Multiplication [BGG+14]

 Cx1 x2 = RT C1 + x1 C2
 = (A12 + x1x2 G)T s + noise
 A12 = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

G-1 (-A2) and x1 are small and do not affect noise !

R = G-1 (-A2)Let

C = uT s + noise + msg, C’ = ATs + noise Also have
 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

70

Handling Multiplication [BGG+14]

70

Handling Multiplication [BGG+14]

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

70

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

70

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

70

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

70

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

C = uT s + noise + msg

70

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

C = uT s + noise + msg
-

70

Handling Multiplication [BGG+14]

mod qe12 u≡A12AKey

 If x1x2 = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

C = uT s + noise + msg
-

 = noise + msg

71

More Generally [BGG+14]…

71

More Generally [BGG+14]…

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

71

More Generally [BGG+14]…

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

71

More Generally [BGG+14]…

 Recall Ci = (Ai + xi G)T s + noise

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

71

More Generally [BGG+14]…

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

71

More Generally [BGG+14]…

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that
̂H T
f,x [C1 |…… |Cn] = [Af − f(x) G]Ts + noise

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

71

More Generally [BGG+14]…

mod qef u≡AfAKeygen provides
matching key

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that
̂H T
f,x [C1 |…… |Cn] = [Af − f(x) G]Ts + noise

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟

71

More Generally [BGG+14]…

mod qef u≡AfAKeygen provides
matching key

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that
̂H T
f,x [C1 |…… |Cn] = [Af − f(x) G]Ts + noise

[A1 − x1G |…… |An − xnG] ̂H f,x = [A1 |… |An] Hf − f(x) G

There exist “small” such that: ̂H f,x, Hf

Af⏟
Perform Regev Decryption as usual

72

Generalizes to all circuits [BGG+14]

72

Generalizes to all circuits [BGG+14]

Encrypt

72

Generalizes to all circuits [BGG+14]

Encrypt

KeyGen

72

Generalizes to all circuits [BGG+14]

Encrypt

KeyGen Decrypt

72

Generalizes to all circuits [BGG+14]

Encrypt

KeyGen Decrypt

SetUp

72

Generalizes to all circuits [BGG+14]

Encrypt

KeyGen Decrypt

SetUp

Attribute based Encryption (ABE) [SW05]

Security Definition

Attacker wins if | Pr[b=b’] - ½ | is non-negligible

Challenger Ch.

Adversary Ad.

PK

Guess b’

m0, m1

Choose random b. Return ct* = Enc(PK, x*, mb)

f1, f2 ……fm
sk(f1), sk(f2),……sk(fm)

 where fi(x*)=0

x*

74

Security: Challenges

•Challenger needs to be able to answer private key
queries of Adversary: much more complex!

•Challenger can’t have master trapdoor(Trapdoor for A)

• Must embed LWE challenge into challenge ciphertext

75

Strategy: Challenge CT

75

Strategy: Challenge CT
• Let x* be challenge attributes.

75

Strategy: Challenge CT
• Let x* be challenge attributes.

75

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

75

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

75

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

75

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

75

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

• When x = x*, challenge CT becomes (ARi)T s + noise

75

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

• When x = x*, challenge CT becomes (ARi)T s + noise

75

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

• When x = x*, challenge CT becomes (ARi)T s + noise

• Can be computed from LWE challenge

75

Strategy: Challenge CT
• Let x* be challenge attributes.

• As before, set Ai = [ARi – xi
* G]

• Ci = (Ai + xi G)T s + noise = (ARi + (xi – xi
*)G)T s + noise

• When x = x*, challenge CT becomes (ARi)T s + noise

• Can be computed from LWE challenge

76

Strategy: Key Queries

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key mod qef u≡AfA

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key mod qef u≡AfA

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key mod qef u≡AfA

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key

• Need TD for [A | Af] when f(x*) not 0.

mod qef u≡AfA

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key

• Need TD for [A | Af] when f(x*) not 0.

mod qef u≡AfA

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key

• Need TD for [A | Af] when f(x*) not 0.

• Follows from MP12

mod qef u≡AfA

76

Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf

• Recall key

• Need TD for [A | Af] when f(x*) not 0.

• Follows from MP12

mod qef u≡AfA

77

• Need TD for [A | Af] when f(x*) 0.
• Af = [ARf – f(x*)G] . Let H = f(x*).
• Recall

Then AR - H G A

 Let A ∈ ℤn×m′￼
q R ∈ ℤm′￼×n log q

q uniform, small

admits LWE and SIS inversion.

Strategy: Key Queries
≠

Open Problems

Open Problems

• Ciphertext Policy ABE from LWE

Open Problems

• Ciphertext Policy ABE from LWE
• Broadcast Encryption from LWE

Open Problems

• Ciphertext Policy ABE from LWE
• Broadcast Encryption from LWE
• Better parameters

Open Problems

• Ciphertext Policy ABE from LWE
• Broadcast Encryption from LWE
• Better parameters
• Support uniform models of computation from LWE

Open Problems

• Ciphertext Policy ABE from LWE
• Broadcast Encryption from LWE
• Better parameters
• Support uniform models of computation from LWE
• Adaptive Security

Open Problems

Thank You!
Image Credits : Hans Hoffman, Joan Mitchell, Lynn Drexler

• Ciphertext Policy ABE from LWE
• Broadcast Encryption from LWE
• Better parameters
• Support uniform models of computation from LWE
• Adaptive Security

