Lattlce Based Cryptography
Tools ana Apphcaﬂons

Shvveta A rawal
[T Madras

Computing on Encrypted Data
Personalised Medicine

“The dream for tomorrow’s medicine is
to understand the links between DNA
and disease — and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic data and
medical records secure while still z
enabling the massive, cloud-based long haired, skinny Kid I married 25 years ago.
aﬂa|yses needed tO make meanlngfL” I need a DNA sample to make sure it’s still you.”
associations.”

Check Hayden, E. (2015). Nature, 519, 400-401.

Computing on Encrypted Data
Personalised Medicine

“The dream for tomorrow’s medicine is
to understand the links between DNA
and disease — and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic data and
medical records secure while still z
enabling the massive, cloud-based long haired, skinny Kid I married 25 years ago.
aﬂa|yses ﬂeeded tO make meanlngfL” I need a DNA sample to make sure it’s still you.”
associations.”

Check Hayden, E. (2015). Nature, 519, 400-401.

[Doesn’t FHE solve exactly this? }

_— e W . .

Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

* Other Professors or admin assistants of CS
group can open it

* Encrypt file for each of them?

* |t someone quits or new person joins? Re-
encrypt ?

* Organizational nightmare !

Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

What he really wants:
Encryption for formula

Access Control on Encrypted Data

Prof. Bob wants to store encrypted file so that:

What he really wants:
Encryption for formula

Professors @

CS Group

Admin

What do we want?

What do we want?

What do we want?

CORY
RO, SAND)

Admin CS Group

What do we want?

What do we want?

PROF OR {Admin AND CS}

¥

Q\

What do we want?

PROF OR {Admin AND CS}

What do we want?

PROF OR {Admin AND CS}

Key Authority

4 e W . -

What do we want?

PROF OR {Admin AND CS}

Key Authority

..""‘ B . A 2

What do we want?

PROF OR {Admin AND CS}

Key Authority

..""‘ B . A 2

What do we want?

PROF OR {Admin AND CS}

Key Authority

..""‘ B . A 2

What do we want?

PROF OR {Admin AND CS}

CS Admin

Key Authority

..""‘ B . A 2

What do we want?

PROF OR {Admin AND CS}

CS Admin

Key Authority

..""‘ B . A 2

What do we want?

PROF OR {Admin AND CS}

CS Admin

Key Authority

..""‘ B . A 2

What do we want?

PROF OR {Admin AND CS}

PROF

-~

What do we want?

PROF OR {Admin AND CS}

What do we want?

PROF OR {Admin AND CS}

What do we want?

PROF OR {Admin AND CS}

What do we want?

PROF OR {Admin AND CS}

What do we want?

PROF OR {Admin AND CS}

PROF

Need New Tools & Techmques'

SO TEEARTy Y AR ONE
I\/Iam Tool Lattice Trapdoors

Trapdoor Functions

Trapdoor Functions

Generate (f, T)

Trapdoor Functions

Generate (f, T)
f:D — R,

Trapdoor Functions

Generate (. T)
f:D — R, One Way

Trapdoor Functions

Generate (. T)
f:D — R, One Way

D

Trapdoor Functions

Generate (f,T)
f:D — R, One Way

D R

Trapdoor Functions

Generate (f,T)
f:D — R, One Way

D R

Trapdoor Functions

Generate (f,T)
f:D — R, One Way

D R

f Easy

— T~

Trapdoor Functions

Generate (f,T)
f:D — R, One Way

Trapdoor Functions

Generate (f,T)
f:D — R, One Way

D R

f Easy

— \

Easy given T

Short Integer Solution Problem

Let A € Z™, g = poly(n), m = Q(nlog g)

Given matrix A, find “short” (low norm) vector x such that

Ax=0 modg €Z,

~ B\ (~)

n A « |lm = 0 | n mod q

Learning With Errors Problem

Distinguish “noisy inner products” from uniform

Fix uniform s eZq“

? ?
a,, b, =<a,s>+e, a’; , b’
? ?
| VS |
i i
I !
? ?
a ,b =<a_ s>+e_ ', by
a, uniforme 2", e, ~ ¢ € Z, g, uniformeZ.", b; uniform&Z,

8

Lattice Based One Way Functions

Public Key A € 7)™, g = poly(n), m = Q(nlog q)

Lattice Based One Way Functions
Public Key A € 7", g = poly(n), m = Q(nlog q)

Based on SIS

fAX)=AXx modgqg € ZZ

e Short X, surjective
e CRHF if SIS is hard [Ajt96...]

(0, q)

J(4:0)

Lattice Based One Way Functions

Public Key A € 7)™, g = poly(n), m = Q(nlog q)

Based on SIS Based on LWE
fA(X) =AX modg € ZZ gA(S, e) = S'’A +e mod q € ZZQ
e Short X, surjective e \ery short e, injective
e CRHF if SIS is hard [Ajt96...] e OWF if LWE is hard [Reg05...]
(0, q)
[J (an) L 2 I (] /f\
| Atls |
| (] [] | \ly |
//T\\x I | O% |
o / O \ . . (q:.O)
\\ // J(2:0)
A 4 9

Image Credit: MP12 slides

Inverting functions for Crypto

e Given u=f,(x) =AXx mod ¢
e Sample

X'« = fl(u

with prob « exp(—||x’||*/¢?)

+ +
+H R
oA b T A
+ i =+ o+
+h+ Ty ¥ +
+ ++ ++ + t ¥ + + b = an ++ + +++ ++ +t

+
D s e i S S St
e R R T S S S LI S S + +
-i:'_+++++++++++++ +

And

e Given g,(s,e) =s’A+¢ mod g

e Find unique (s, e)

10

Inverting functions for Crypto

e Given u=f,(x) =AX mod g

e Sample
X'« = fy'(w

with prob « exp(—||x’||*/¢?)

10

Inverting functions for Crypto

e Given u=f,(x) =AX mod g

e Sample
X'« = fy'(w

with prob « exp(—||x’||*/¢?)

+

+ ++
+
T4+
+ + + F
+
+ o+ F
M S
+
i+
+ +
+ +
P F b e
w4t g e
+ + + + 5 +
+ o P S S
+ 4 + .+ *’&#‘#ﬁ:"ﬂ*ﬁﬁ** i ot L
bt Vi + ety
A L — + AP
A LT L
AR T S T
+ + + + o+ L+
+o+ + Ty e + T+
e e L N Lt
+o4+ 4+ + + + + + + o+ Rl AL S M S
+ o+ + + ++++++++++++
P AT T T

Preimage Sampleable Trapdoor Functions!

10

Inverting functions for Crypto

e Given u=f,(x) =AX mod g

e Sample
X'« = fy'(w

with prob « exp(—||x’||*/¢?)

o +
+ + S +
+o4+ A+ A+ o+ + +
AT LA A T4t

P A T

Preimage Sampleable Trapdoor Functions!

10

Inverting functions for Crypto

e Given u=f,(x) =AX mod g

e Sample
X'« = fy'(w

with prob « exp(—||x’||*/¢?)

+

+ ++
+
T4+
+ + + F
+
+ o+ F
M S
+
i+
+ +
+ +
P F b e
w4t g e
+ + + + 5 +
+ o P S S
+ 4 + .+ *’&#‘#ﬁ:"ﬂ*ﬁﬁ** i ot L
bt Vi + ety
A L — + AP
A LT L
AR T S T
+ + + + o+ L+
+o+ + Ty e + T+
e e L N Lt
+o4+ 4+ + + + + + + o+ Rl AL S M S
+ o+ + + ++++++++++++
P AT T T

Preimage Sampleable Trapdoor Functions!

10

Inverting functions for Crypto

e Given u=f,(x) =AX mod g

e Sample
X'« = fy'(w

with prob « exp(—||x’||*/¢?)

+

+ ++
+
T4+
+ + + F
+
+ o+ F
M S
+
i+
+ +
+ +
P F b e
w4t g e
+ + + + 5 +
+ o P S S
+ 4 + .+ *’&#‘#ﬁ:"ﬂ*ﬁﬁ** i ot L
bt Vi + ety
A L — + AP
A LT L
AR T S T
+ + + + o+ L+
+o+ + Ty e + T+
e e L N Lt
+o4+ 4+ + + + + + + o+ Rl AL S M S
+ o+ + + ++++++++++++
P AT T T

Preimage Sampleable Trapdoor Functions!

OR

10

Inverting functions for Crypto

e Given u=f,(x) =AXx mod ¢

e Sample
X'« =filw

with prob « exp(—||x’||*/¢?)

+

+ ++
+
*t oy
+H o4y oF
+
+ o+ F
T R .
+
f+
+ +
* ++ + 'f-f H 4+ +¢+
+ '+ 4 + +
+ot t#‘++1::+ +¢4'~*' R
ottt b T B AR,
+
+“;+‘!;+++ﬁ'-'|_-,_ﬁ-*‘1~++ —— + L F -l:;t;.f#
+itht e + A
L - +t ++++++
A UL S - 2 + At
R A e e I i Lt s
tt+‘+-+-+t-+*-+-++-|-++ Pt T T e

Preimage Sampleable Trapdoor Functions!

10

Inverting functions for Crypto

e Given u=f,(x) =AX mod g

e Sample
X'« = fy'(w

with prob « exp(—||x’||*/¢?)

+

+ ++
+
T4+
+ + + F
+
+ o+ F
M S
+
i+
+ +
+ +
P F b e
w4t g e
+ + + + 5 +
+ o P S S
+ 4 + .+ *’&#‘#ﬁ:"ﬂ*ﬁﬁ** i ot L
bt Vi + ety
A L — + AP
A LT L
AR T S T
+ + + + o+ L+
+o+ + Ty e + T+
e e L N Lt
+o4+ 4+ + + + + + + o+ Rl AL S M S
+ o+ + + ++++++++++++
P AT T T

Preimage Sampleable Trapdoor Functions!

10

Inverting functions for Crypto

e Given u=f,(x) =AX mod g

e Sample
X'« = fy'(w

with prob « exp(—||x’||*/¢?)

+
+. ++
+

+ +
+’**‘++++
+
+ o+ F
+++++¢ 4
+
i+
+ +
+ + + &+
¥ +
+4 + .{}'++'#++

T+ +
+ + + + 5 +
+ 1o i o SRS
byt Wﬂﬁ&ﬂﬁﬁﬂ* Hadhe LA
++++++++++ﬁ; VN N +t 4t

+ o+ A + L+
A AL R SRR
+o+ 4+ g) +HT 4
AR S i 4
it Ty - i T
+,+_ .+ + + + F + + + + ot T
N +

Latter distribution
needs lattice
trapdoors!

Preimage Sampleable Trapdoor Functions!

10

apdoors ook like”?

P ’ \ | .‘
! *)
) ! ', - b 5 N\
. - N . o
» . . “ y
. » ‘.

What do these tr

Lattice Trapdoors (Type 1):
Geometric View

Lattice Trapdoors (Type 1):
Geometric View

o o o o o o
o o o o o o
o o o o o o
o o o o o
0 O o€ O 0
Vo

Lattice Trapdoors (Type 1):
Geometric View

o) o) o) o) o) o)
o) o) o) o) o) o)
o) o) o) o) o) o)
o) V’1 o) o)
O O o€ O 0
Vo

Lattice Trapdoors (Type 1):
Geometric View

Parallelopipeds

Parallelopipeds

~ o) ~ e O S~ e o) ~ O
\ O ~ O
~) S~ ()
~ O . O
O ~ o) ~ O S~ O S~ ® ~ ®

Good Basis

Good Basis

What's my
closest lattice
point?

Good Basis

Good Basis

@ @ To. @ @ @
@ @ .v @ @ @

Good Basis

Declared
closest
point

Good Basis

Declared
closest
point

Good Basis

Output center of parallelopipid containing T
Pretty Accurate... 16

Bad Basis

~ O ~ e O S~ O ~ o) ~ O
O
\ O ~ O
~ () N ()
~ o) T O

Bad Basis

Declared
closest
point

Bad Basis

Declared
closest
point

Bad Basis

Closer
Lattice
point

o) ~ o)
~ . ™~ .
~ o) o) T o)

Declared
closest
point

Bad Basis

Closer
Lattice
point

Declared
closest
point

Bad Basis

Closer
Lattice
point

O ~ O

- O g - O
~ 0 @ - 0
) S~) S~ @ ~ (] ~ @) S~ @)

Output center of parallelopipid containing T
Not So Accurate...

Basis quality and Hardness

- SVP, CVP, SIS (...) hard given arbitrary
(bad) basis

- Some hard lattice problems are easy given
a good basis

» Wil exploit this asymmetry

19

Basis quality and Hardness

- SVP, CVP, SIS (...) hard given arbitrary
(bad) basis

- Some hard lattice problems are easy given
a good basis

» Wil exploit this asymmetry

19

Lattice Trapdoors (Type 1)

Lattice Trapdoors (Type 1)

Lattice Trapdoors (Type 1

Recall u=/\(x)=AXx mod g e ey 2
Want

X'« =fiw

with prob o exp(=[Ix'l|*/c%)

+
+ ¢

+ + +
+o4+ L+ + -+

Lattice Trapdoors (Type 1

Recall u=/,x)=Ax mod g
Want

X'« =fiw

with prob o exp(=[Ix'l|*/c%)

+
+p +4+
+ +
+~#++++
+
+ o+ F
M
+
SR
+++_:'+~i++ +r
i
Maadt
+

+
+ + +h Tt +
M NI P T o s T
o+ 4 o+ +h T ++*‘_1:Fﬂ:+++*4= +h 4ty
++++++++++-b-f‘lﬂ'-""m'Ft"'F R =SS AN Hat

o+ G
+otnt +++'i; + 4

+
+4t+ T+ + 4
+1+ Ty + L+ -
+ + ¥ -
P s o +
RATE I + ++ ++ ++ ++ T ++ ++ i ++':_ +—}; R ++-:. +-+_-'_
PR

Lattice Trapdoors (Type 1

+

+y 4
+ +
oy + .t
+ o+ +F
= = MR
Recall u=/,(x)=Ax mod g TR
* +++ _:. 'ﬁ- B + +-Fh'
st 4 + T+ F
Fast T T Vs
Want At

: + PR AL
+o+0+ - ++T ¥
[= _A I u +-+-i-+-*-_l-++++++++ : + +++++++t.+t+
X e S A
+,+,+ + + + F + + 4T+ ++ 4

with prob o exp(=[Ix'l|*/c%)

it e+ + " A
+ + o+ o o Ty
Wttt T e e ey

+++++++++++ + + 4+

A={x:Ax=0 mod g} C Z]

Lattice Trapdoors (Type 1)

Inverting Our Function

)
+ v

Recall u=/,x)=Ax modgq *
+ + + +

Want

X'« = fil(uw

with prob « exp(—[Ix|*/c?)

The Lattice

A={x:Ax=0 mod g} C Z7

Short basis for A lets us sample from /;'(w)
with correct distribution!

20

Two Questions

Two Questions

Two Questions

Two Questions

—

1. How to get short basis

2. How to use short basis

Lattice Trapdoors (Type 2)

Lattice Trapdoors (Type 2)

Lattice Trapdoors (Type 2)

Not a short basis but

Lattice Trapdoors (Type 2)

Not a short basis but

- Just as powerful

Lattice Trapdoors (Type 2)

Not a short basis but

- Just as powerful

- More efficient

Lattice Trapdoors (Type 2)

Not a short basis but
- Just as powerful

- More efficient

- Better parameters

Lattice Trapdoors (Type 2)

Not a short basis but
- Just as powerful

- More efficient

- Better parameters

- Implies Type 1 trapdoors

Type 2 Trapdoors [MP12]

Recall /A®=Ax modg €Z] and ga(s,e) =s'A+e modg € Z]

Type 2 Trapdoors [MP12]

Recall /A®=Ax modg €Z] and ga(s,e) =s'A+e modg € Z]

Design fg'» &G
for Gadget Matrix G
(fixed, public, offline)

Type 2 Trapdoors vpiz)

Recall /A®=Ax modg €Z] and ga(s,e) =s'A+e modg € Z]

Design fg's &G Randomize G « A via
for Gadget Matrix G nice unimodular
(fixed, public, offline) transformation

Type 2 Trapdoors vpiz)

Recall /A®=Ax modg €Z] and ga(s,e) =s'A+e modg € Z]

Reduce

Design fg's &G Randomize G « A via
for Gadget Matrix G nice unimodular
(fixed, public, offline) transformation

Type 2 Trapdoors vpiz)

Recall /A®=Ax modg €Z] and ga(s,e) =s'A+e modg € Z]

Reduce

Design fg's &G Randomize G « A via
for Gadget Matrix G nice unimodular
(fixed, public, offline) transformation

Step 1: /o sc for Gadget G

Recall /c®)=Gx modqg € Z; and gg(s.e) =s'G+e mod g € Z)

Let ¢g=2¢ and g=I1,2,4,,2"1ez

Invert LWE: find s€Z, s.t. s-g+e=[s+¢,25+e, - 2 s+ ¢_|]

Step 1: /o sc for Gadget G

Recall /c®)=Gx modqg € Z; and gg(s.e) =s'G+e mod g € Z)

Let ¢g=2¢ and g=I1,2,4,,2"1ez

Invert LWE: find s€Z, s.t. s-g+e=[s+¢,25+e, - 2 s+ ¢_|]

® Get Isb(s) from 2k-1¢ 4 e
® Then get next bit of s and so on.
® \\orks as long as every e; € [—q/4,q/4)

Step 1: /o sc for Gadget G

Recall /c®)=Gx modqg € Z; and gg(s.e) =s'G+e mod g € Z)

Let ¢g=2¢ and g=I1,2,4,,2"1ez

Invert LWE: find s€Z, s.t. s-g+e=[s+¢;25+e, - 2 s+ ¢_]

® Get Isb(s) from 2k-1¢ 4 e
® Then get next bit of s and so on.
® \\Vorks as long as every e; € [—q/4,q/4)

Invert SIS: sample Gaussian preimage x s.t.~ u = (g x) mod ¢

® For i €[0,....,k—1], choose x; « 2Z+u), u <~ u—x)l2e€”Z
® letk=2. x, < 2z+u), u < (u—2zy—u)/2 =—z
x; < (221 — z¢)
(8, X) =270+ u+22z,—zp) =u+4z;=u mod 4
20

Step 1: /o sc for Gadget G

Waﬂt g = [19 29 47'"9 2k_1]

= 0O modqg

Step 1: /o sc for Gadget G

NOte g = [19 29 47'"9 2k_1]

= 0O modqg

28

Step 1: /o sc for Gadget G

NOte g = [19 2’ 4?'"9 2k_1]

= 0O modqg

28

Step 1: /o sc for Gadget G

Note g=I1,2,4,-, 2]

= 0 modq

Define gadgetG: G=1,@g &7 c 7k

28

Step 1: /o sc for Gadget G

Note g=I1,2,4,-, 2]

= 0 modq

Define gadgetG: G=1,@g &7 c 7k

28

Step 2: Randomize G to A

29

Step 2: Randomize G to A

1.Sample B & ngm', short Gaussian R € ZZ”'X”I(’%CI,

29

Step 2: Randomize G to A

1.Sample B & Z’;X””’, short Gaussian R € ZZ"'X”IOgCI,

2 Define A = B G

29

Step 2: Randomize G to A

1.Sample B & Z’;X””’, short Gaussian R € ZZ"'X”IOgCI,

2 Define A = B G

G - BR

|l
o

29

Step 2: Randomize G to A

1.Sample B & szm', short Gaussian R € ZZ”'X”I(’%CI,

2. Define A = B G

G - BR

|l
o

A is uniform by leftover hash lemmal!

29

Leftover Hash Lemma (oversmph

f|ed) I

Leftover Hash Lemma oversimp\ified)

7
’ - N s ."1
q

M

) y
g

’

.
% ,
’e " -
N
" .

¥
- .’ Ly

if m'~ nloggqg, then,

(B,BR)~ (B,U)

aP -.

o y
' 4 » 4
. . . "‘-

\

5 l . ‘bV J v
<

!/ . . \
Let B € Z;™" unifoom & R € Z xnlogq Gaussian *‘f' |

If m"~nlogg, then,

(B,U)
i\ “ T

(B,BR) ~

Step 2: Randomize G to A

31

Step 2: Randomize G to A

Have A — B G - BR

31

Step 2: Randomize G to A

Have A = o G -BR

Define: R is a trapdoor for A with tagH & Z’;X",

R

f A -
i

]=H.G

31

Step 2: Randomize G to A

Have A — B G - BR

Define: R is a trapdoor for A withtagH € Z2"*",

A [R] —H-G
I
Basis S Trapdoor R
for for A

A~(G)
3

Step 2: Randomize G to A

Have A — B G - BR

Define: R is a trapdoor for A withtagH € Z2"*",

A [R] —H-G
|
Basis S Trapdoor R Basis S,
for for A for

31

Step 3: Reduce /' &' to /e &6’

Suppose Ris a trapdoor for A with tag T e 2",

AH:G

9

Step 3: Reduce /' &' to /e &6’
Suppose Ris a trapdoor for A with tag T e 2",

AH:G

Inverting LWE

9

Step 3: Reduce /' &' to /e &6’

Suppose Ris a trapdoor for A with tag T e 2",

R
A - =G
Inverting LWE

Want:

e Given b'=s'A +¢€ mod ¢

e Find unique (s, e)

9

Step 3: Reduce /' &' to /e &6’

Suppose Ris a trapdoor for A with tag T e 2",

R
A - =G
Inverting LWE
Want: Compute:
L. R =’ e’ R mo
e Given b'=s'A+¢ mod g P _I] o I] .

1; € [—q/4.q/4)

e Find unique (s, e) Works if €'

9

Step 3: Reduce /i s:'to /' g6

Inverting SIS A [lﬂ =G

33

Step 3: Reduce /i s:'to /' g6

Inverting SIS

Want:

e Given u=f,(x) =AXx mod g

e Sample
X'« =fi'(w

WIth prob o« exp(—|Ix'|1*/07)

+ +
N + T+
p? + tt R+ 4T
+
T s A Ay
+hat ++*h t o 4 +h 4

+
+ ++"_'*_+++-+_-'_'*.'4.‘t|. + 4 T tk_'-_!;_,_t A
AR +7
+h+ F e + ot
AT + + ot
4t ey 4+ 4 +++++++++++
++++++++++++++++++++++++++++++++++ +H 4ty
BT S A

33

Step 3: Reduce /' s'to /6 &6

Inverting SIS A [lﬂ =G

Want: Compute:

o Given u=/f,(x) =AXx mod g Sample z« fg'(w)

e Sample R
x' < = fy'(u) Output X = [I] Z

with prob « exp(—||x/||*/6?) Then,

+

R
ot A-x=A- 2z=G-z=u
+ o+ L
e+ 4 ¢+
4+ +

+'+ + i
+ +
P +1~++-F**+

N + Tt 4
+ + + + 5 L +
+ T4 + o+

+ o+ + o+ mﬁ‘l—rm##ﬁ#* 1 ATt

4t ot oD + it
+H ot Lt ” + ++

SRS : o

¥

A
¥t 1+
Hat e T — B
+t e+ T e ATt AR LA

o+
+o+ S ST i T
T I e e e S S LI S L
Tt i T ESEE

Step 3: Reduce /i’ &'to /6’ &'

R
Are we done? A- H =G

34

Step 3: Reduce /i’ &'to /6’ &'

R
Are we done? A- H =G

Compute:

Sample z « fg'(u)

Output Xx= [l;] 3 /

Then,

R

A-x=A-
X [1

]1=i}z=u

34

Step 3: Reduce /i’ &'to /6’ &'

R
Are we done? A- H =G

Compute:

Sample z « fg'(u)

Output Xx= [l;] 3 /

Then,

R

A-x=A-
X [1

]1=i}z=u

34

1 —1
) gG

Ja

> 2 to

I

- Reduce

Step 3

Are we done?

Compute:

- <t
e 4p)
e
(@] h
Q
2
. + 5
S S
+ H 5% ¥
: AR
R M+++++++ ..._..- E m.w
I AR Re :
..'...T + &)
| Tt
— " E
i
el
X
[
Il
N
N
~ .
B ——
T -
L—
S~
1 ||
N e
) i _
o o -
- + @
o D) e
»n O =

Step 3: Reduce /' si'to e &6’

35

Step 3: Reduce /i’ &'to /6’ g

Want to output spherical Gaussian!
Covariance Matrix s°1

35

Step 3: Reduce /' si'to e &6’

Want to output spherical Gaussian! 3 "
Covariance Matrix s°I

https://www.elegantthemes.com/

Fix using perturbation method [P’10]

35

Step 3: Reduce /' si'to e &6’

Want to output spherical Gaussian! 3 "
Covariance Matrix s°I

https://www.elegantthemes.com/

RR' + (S2I-RRY = 21

Fix using perturbation method [P’10]

Convolution of ' + \

(Gaussians

35

Step 3: Reduce /' si'to e &6’

Want to output spherical Gaussian!
Covariance Matrix s°1

https://www.elegantthemes.com/

Fix using perturbation method [P’10]

Convolution of ’ 4 \

(Gaussians

RR' + (S2I-RRY = 21

To fix covariance:
® Generate perturbation vector p with covariance (521 — RRY)

® Sample sphericalzsuchthatGz=u—-A p

R

| ”

® Output X=Pp +

35

Step 3: Reduce /' si'to e &6’

Want to output spherical Gaussian!
Covariance Matrix s°1

https://www.elegantthemes.com/

Fix using perturbation method [P’10]

Convolution of ’ 4 \

Gaussians
RR! + (S2I-RRY) = $21 Check
To fix covariance: A. Rl ¢
® Generate perturbation vector p with covariance (521 — RRY) |
R
® Sample spherical zsuchthatGz=u—-A p A-x=Ap+A I] 'z
R
® Output X =P+ 1| 2 =Ap+Gz=u

35

Takeaway for Applications

\!

P ANt U?i;(\‘ ¢
L‘l .- ‘Q“z .. E . | .!‘
- '.) ' S -‘;"_d" £

(S

Llet B e ngm', uniform R & ZZ”‘/X”Iqu, Gaussian

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion

il oed

|dentity Based Encryption (IBE)

|dentity Based Encryption (IBE)

In short...........

|dentity Based Encryption (IBE)

In short...........

Public Key Encryption in which ANY
arbitrary string can be public key!

IBE: How does it work?

Key Server
e Master Secret
e Public Parameters

2 Requests private key, Rec.:eives
authenticates Private Key
for bob@iitm.ac.in 3

Bob

Alice encrypts with Bob decrypts with 4
bob®@iitm.ac.in Private Key

ldentity Based Encryption

Security
Parameter A

% Public Params PP

aster secret key MSK

tecret key SK
Message

"

Identity ID %

Message

Bit of History

Bit of History

* Big open problem — posed in 1984 by Shamir, first
solution in 2001 by Boneh and Franklin

Bit of History

* Big open problem — posed in 1984 by Shamir, first
solution in 2001 by Boneh and Franklin

* First solution uses pairings

*» Beautiful solution using only CDH by Dottling & Garg (2017)

Bit of History

* Big open problem — posed in 1984 by Shamir, first
solution in 2001 by Boneh and Franklin

* First solution uses pairings

*» Beautiful solution using only CDH by Dottling & Garg (2017)

+ We’ll see solution from lattices

Bit of History

* Big open problem — posed in 1984 by Shamir, first
solution in 2001 by Boneh and Franklin

* First solution uses pairings

*» Beautiful solution using only CDH by Dottling & Garg (2017)

+ We’ll see solution from lattices

* Main challenge?

Bit of History

* Big open problem — posed in 1984 by Shamir, first
solution in 2001 by Boneh and Franklin

* First solution uses pairings

*» Beautiful solution using only CDH by Dottling & Garg (2017)
+ We’ll see solution from lattices
* Main challenge?

* Need for MSK?

o T ‘ o
—p Su. .

Get instance of
hard problem H

A
=
—
M
>

({Jo!
M
=
O
-

o
rm
W
D
O
-
—
—r
<

)
) i

>
Q
<
1)
)
1%
Q)
D)
<
>
o

Get instance of
hard problem H

—
O

oo
rm
WL
(D
e
C
-
—r
<

yoH Jasuaneyd
‘PY AJesioApy

Get instance of
hard problem H

A
>
=
()
-

v
D
=
()
>

IBE Security

PK

<3

v

‘PY AJesioApy

Get instance of
hard problem H

(D)
-
Q'i
)
>
(Jo]
D
=
O
-

GO
[Tl
N
D
N
C
=

d

»

v

‘PY AJesioApy

Get instance of
hard problem H

(D)
-
Q'i
)
>
(Jo]
D
=
O
-

oo
[T
N
- (D
O
-
-
—r
<

—
7\

ID1 , ID2, ID3, ..

dIDl / dIDZ / dID3 /o

5

> 5

n

, IDm =
<<

>

-/ dIDm -

>

Get instance of
hard problem H

(D)
-
Q'i
)
>
(Jo]
D
=
O
-

oo
T
W
D
N
C
-

ID1

dIDl / dIDZ / dID3 /o

. 1D2,

]| =
A~ Y

D3, ..

5

g

, IDm =
<<

>

-/ dIDm -

»

>

Get instance of
hard problem H

(D)
-
Q'i
)
>
(Jo]
D
=
O
-

oo
T
W
D
N
C
-

ID1

dIDl / dIDZ / dID3 /o

]| =
A~ Y

_ID2, ID3, ..

mO0, m1

5

g

, IDm =
<<

>

-/ dIDm -

»

>

Get instance of
hard problem H

(D)
-
Q'i
)
>
(Jo]
D
=
O
-

<

oo
M
Ve
- (D
®
C
—
—r
<

PK
&
>
ID1 , ID2, ID3, .., IDmM 3
>
o

dIDl / dIDZI dID3I XY dIDm

>

mO0, m1

Pick b random, C* = Enc(m_b, ID*)

>
«

Get instance of
hard problem H

IBE Security

5 > 2.
Q)
% IDI , ID2, ID3, .. IDm 2
>
5 dip1 , dip2, dip3 s s Aipm =

mO0, m1

<
Pick b random, C* = Enc(m_b, ID*)

Guess b’

Get instance of
hard problem H

IBE Security

PK

(@ >
5 > 2.
Q)
% IDI , ID2, ID3, .. IDm 2
>
5 dip1 , dip2, dip3 s s Aipm =

mO0, m1

<
Pick b random, C* = Enc(m_b, ID*)

Output G as
answer for H <

Guess b’

Get instance of
hard problem H

PK

o

@ ID1I , ID2, ID3, .. IDm

S dip1 , dip2 s dip3 s -y dipm

mO0, m1
<
Pick b random, C* = Enc(m_b, ID*)
>
«

Output G as Guess b’
answer for H <

Attacker wins if | Pr[b=b’] - ¥2 | 1s non-negligible

Security Model: Key Points

Security Model: Key Points

Security Model: Key Points

* Ch. needs to be able to answer private key
queries of Ad.

Security Model: Key Points

* Ch. needs to be able to answer private key
queries of Ad.

Security Model: Key Points

* Ch. needs to be able to answer private key
queries of Ad.

* Ch. should not be able to answer query for id’
(hence can’t have master trapdoor)

Security Model: Key Points

* Ch. needs to be able to answer private key
queries of Ad.

* Ch. should not be able to answer query for id’
(hence can’t have master trapdoor)

Security Model: Key Points

* Ch. needs to be able to answer private key
queries of Ad.

* Ch. should not be able to answer query for id’
(hence can’t have master trapdoor)

* Ch. should be able to generate challenge
ciphertext so that Ad’s answer is useful.

m (:) g \) ‘y (2))
e . “I‘- - t ‘ - : --

Security Model: Key Points

* Ch. needs to be able to answer private key
queries of Ad.

* Ch. should not be able to answer query for id’
(hence can’t have master trapdoor)

* Ch. should be able to generate challenge
ciphertext so that Ad’s answer is useful.

m (:) g \) ‘y (2))
e . “I‘- - t ‘ - : --

Regev PKE

Regev PKE

+ Recall A e = u mod g hard to invert

+ Secret: e, Public : A, u

Regev PKE

+ Recall A e = u mod g hard to invert

U mod

)
I

+ Secret: e, Public : A, u { A }

Regev PKE

* Recall Ae =u mod g hard to invert

+ Secret: e, Public : A, u { A }fe\ M mod g

* Encrypt (A, u) :

* Pick random vector s
¢+ Cy=AT S + noise

¢+ C,=UT S + noise + msg

Regev PKE

* Recall Ae =u mod g hard to invert

+ Secret: e, Public : A, u { A } e M mod g

* Encrypt (A, u) :

* Pick random vector s
¢+ Cy=AT S + noise

¢+ C,=UT S + noise + msg

» Decrypt (e) :

» eT cy—C; = msg + hoise

Regev PKE

* Recall Ae =u mod g hard to invert

* Encrypt (A, u) :

» Secret: e, Public : A, u { A }’e\

U mod

Encryption

* Pick random vector s matrix A

» Co=AT S + noise

» C,=UT S + noise + msg

» Decrypt (e) :

» eT ¢y —C, = msg + noise

Regev PKE

* Recall A e =u mod g hard to invert

* Encrypt (A, U) :

* Decrypt (e) :

» Secret: e, Public : A, u { A }fe\

U mod

Encryption

* Pick random vector s matrix A

» Co=AT S + noise

» C,=UT S + noise + msg

Small only
if eis small

» el ¢, —C; = msg + noise

GPV IBE

GPV IBE

+ Want to embed vector id in ciphertext and secret key.

GPV IBE

+ Want to embed vector id in ciphertext and secret key.
* How to generate public parameters?

* Must be independent of id (why?)

* Must “morph” into id dependent PK for Regev

GPV IBE

+ Want to embed vector id in ciphertext and secret key.
* How to generate public parameters?
* Must be independent of id (why?)

* Must “morph” into id dependent PK for Regev

» Let u,=H(id) where H is random oracle

GPV IBE

+ Want to embed vector id in ciphertext and secret key.
* How to generate public parameters?

* Must be independent of id (why?)

* Must “morph” into id dependent PK for Regev

» Let u,=H(id) where H is random oracle

+ Want: Perform Regev PKE with PK A, u

. ol I
’ ‘“)a’\ N 3
= “.I‘,'\‘ t ‘ . 2

Random Oracle

Random Oracle

* Random oracle model assumes that well-chosen hash H
(SHAS3, say) behaves “like a random function”

Random Oracle

* Random oracle model assumes that well-chosen hash H
(SHAS3, say) behaves “like a random function”

* On any input, gives random output

Random Oracle

* Random oracle model assumes that well-chosen hash H
(SHAS3, say) behaves “like a random function”

* On any input, gives random output

* Repeated input, same output

Random Oracle

+ Random oracle model assumes that well-chosen hash H
(SHAS3, say) behaves “like a random function”

* On any input, gives random output

* Repeated input, same output

+ Very useful for practical schemes

Random Oracle

* Random oracle model assumes that well-chosen hash H
(SHAS3, say) behaves “like a random function”

* On any input, gives random output
* Repeated input, same output

+ Very useful for practical schemes

* Proof in ROM allows to “program” H — gives exponential
space to reduction!

4 e W . -

GPV IBE

GPV IBE

+ Reecall u,=H(id) where H is random oracle

GPV IBE

» Recall u,,=H(id) where H is random oracle

» Key:smalle,s.t. Ae, =u,(mod Q)

GPV IBE

» Recall u,,=H(id) where H is random oracle

» Key:smalle,s.t. Ae, =u,(mod Q)

Uas | mod g

GPV IBE

+ Reecall u,=H(id) where H is random oracle

+ Key:small e, s.t. Aey, =u,(mod q)

How to sample?

+ Construction? Proof?

GPV IBE

GPV IBE

Secret: Ta, Public : A

GPV IBE

Secret: Ta, Public : A

« Extract(Ta, id) : Set uig = H(id). Find e short s.t. A eiq = uis mod q

GPV IBE

Secret: Ta, Public : A

Use trapdoor!

“ Extract(Ta, id) : Set uig = H(id). Find e short s.t. A eid = uig mod g

GPV IBE

Secret: Ta, Public : A

Use trapdoor!

+ Extract(Ta, id) : Set uig= H(id). Find e short s.t. A eig = Uia mod g

+ Encrypt (A, Id) :

+ Pick random vector s
+ C,=AT s + noise

+ C,=Uid’ S + noise + msg

GPV IBE

Secret: Ta, Public : A

Use trapdoor!

+ Extract(Ta, id) : Set uig= H(id). Find e short s.t. A eig = Uia mod g

+ Encrypt (A, Id) :

+ Pick random vector s
+ C,=AT s + noise

+ C,=Uid’ S + noise + msg

+ Decrypt (€id) :

€id! C;— C; = MSg + noise

Proof Idea

Proof Idea

» Selective game: reduction knows id* from beginning

Proof Idea

Selective game: reduction knows id* from beginning
Need:

Answer adversary key queries for any id # id*

Unable to answer key query for id*

Embed LWE challenge into CT for id*

Challenge CT for id*

Challenge CT for id*

* Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

Challenge CT for id*

»* Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

+ “Program" H(id*) = u. Note u random so consistent with ROM!

Challenge CT for id*

»* Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

+ “Program" H(id*) = u. Note u random so consistent with ROM!

+ Sample random bit b.

Challenge CT for id*

»* Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

* “Program" H(id*) = u. Note u random so consistent with ROM!

»* Sample random bit b.

» Set challenge CT as co = AT s + noise, ci= U s + noise + My

Challenge CT for id*

»* Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

+ “Program" H(id*) = u. Note u random so consistent with ROM!
+ Sample random bit b.
+ Set challenge CT as co = AT s + noise, ci= uT s + noise + My

* Now, adversary sees exactly the LWE challenge: if random
then b is info-theoretically hidden. No advantage!

— g W, . v

Challenge CT for id*

»* Receive (A, AT s + noise), (u, uT s + noise) from LWE
challenger

+ “Program" H(id*) = u. Note u random so consistent with ROM!
+ Sample random bit b.
+ Set challenge CT as co = AT s + noise, ci= uT s + noise + My

* Now, adversary sees exactly the LWE challenge: if random
then b is info-theoretically hidden. No advantage!

* Its success translates to success for reduction/challenger!

%
O e T T Y o P ey S
! e) ! . &»H -) . VM —
S o) - E(ESNE T T 4 in'e L oy

Key Queries

Key Queries

+ Need:

+ Answer adversary key queries for any id # id*

+ Unable to answer key query for id*

Key Queries

+ Need:
+ Answer adversary key queries for any id # id*

+ Unable to answer key query for id*

How?

Key Queries

+ Need:
+ Answer adversary key queries for any id # id*

+ Unable to answer key query for id*

How?

Sample your own eiqg and set uid = A eig mod g.

Key Queries

+ Need:
+ Answer adversary key queries for any id # id*

+ Unable to answer key query for id*

How?

Sample your own eiqg and set uid = A eig mod g.

“Program” H(id) = uis. Recall (from yesterday) uis random!

Key Queries

+ Need:
+ Answer adversary key queries for any id # id*

+ Unable to answer key query for id*

How?

Sample your own eiqg and set uid = A eig mod g.

“Program” H(id) = uis. Recall (from yesterday) uis random!

+ Upon hash query on id, return uig.

Key Queries

+ Need:
+ Answer adversary key queries for any id # id*

+ Unable to answer key query for id*

How?

Sample your own eiqg and set uid = A eig mod g.

“Program” H(id) = uis. Recall (from yesterday) uis random!

+ Upon hash query on id, return uig.

Upon key query on id, return ejq

Standard Model?

Standard Model?

OM proof great first step but unrealistic

Standard Model?

+ ROM proof great first step but unrealistic

+ ROM cannot be instantiated [BBPO3] ...

+ (Contrived counter-examples

Standard Model?

+ ROM proof great first step but unrealistic

+ ROM cannot be instantiated [BBPO3] ...

+ (Contrived counter-examples

+ Proof easy because exponential space to “program”

Standard Model?

+ ROM proof great first step but unrealistic

+ ROM cannot be instantiated [BBPO3] ...

+ (Contrived counter-examples

+ Proof easy because exponential space to “program”

+ Can we construct it without ROM?

Standard Model

Standard Model

+ Want to embed vector id in ciphertext and secret key.

Standard Model

+ Want to embed vector id in ciphertext and secret key.

+ Let encryption matrix F4 be publicly computable function
of id and public parameters.

Standard Model

+ Want to embed vector id in ciphertext and secret key.

+ Let encryption matrix F,4y be publicly computable function

of id and public parameters.

+ Perform Regev PKE with encryption matrix F;,

Standard Model

+ Want to embed vector id in ciphertext and secret key.

+ Let encryption matrix F,4y be publicly computable function

of id and public parameters.

+ Perform Regev PKE with encryption matrix F;,

+ Figure out way to compute short vector e such that

Standard Model

+ Want to embed vector id in ciphertext and secret key.

+ Let encryption matrix F,4y be publicly computable function

of id and public parameters.

+ Perform Regev PKE with encryption matrix F;,

+ Figure out way to compute short vector e such that

< Fy e

||
-

mod g

Std Model Identity Based Encryption [ABB10]

Std Model Identity Based Encryption [ABB10]

Parameters: IA,

~N r 3 r ~
> < A1 > < G > u
7 . 7 & 7

Std Model Identity Based Encryption [ABB10]

(‘

Parameters: A, - LA L 1 G L

-

Master Secret Key: Trapdoor for A,

Std Model Identity Based Encryption [ABB10]

Parameters: A, - LA L 1 G L

Master Secret Key: Trapdoor for A,

KeyGen for identity id :

Std Model Identity Based Encryption [ABB10]

(‘

Parameters: A, - LA L 1 G L

-

Master Secret Key: Trapdoor for A,

KeyGen for identity id :
Let F, = [A, | A, + idxG]

Std Model Identity Based Encryption [ABB10]

r ~N

Parameters: A, - LA L 1 G L

.

Master Secret Key: Trapdoor for A,

KeyGen for identity id :

: Fid . | € — U mod g

Std Model Identity Based Encryption [ABB10]

Parameters: A, - LA L 1 G L

Master Secret Key: Trapdoor for A,

KeyGen for identity id :

Let Fig = [Aq I A,
< Fid - l = u mod g

Know how to compute trapdoor for “extended” matrix
[Ayl any]

Std Model Identity Based Encryption [ABB10]

Std Model Identity Based Encryption [ABB10]

Encryption for id’ = Regev PKE on matrix F,,

Std Model Identity Based Encryption [ABB10]

Encryption for id’ = Regev PKE on matrix F,,

** Pick random vector s

% Let Fy = [A, | A, + idxG]

“ C =uT s + noise + msg

% C’ =F,Ts + noise

Std Model Identity Based Encryption [ABB10]

C,= uTs + noise + m and C,= F,'s + noise

Std Model Identity Based Encryption [ABB10]

C,= uTs + noise + m and C,= F,'s + noise

Decryption : Regev decryption

Std Model Identity Based Encryption [ABB10]
C, = UuTs + noise + m and C,= F,;'s + noise

Decryption : Regev decryption

Std Model Identity Based Encryption [ABB10]
C, = UuTs + noise + m and C,= F,;'s + noise

Decryption : Regev decryption

<+ eTC,= (F,,e)Ts + noise

Std Model Identity Based Encryption [ABB10]
C, = UuTs + noise + m and C,= F,;'s + noise

Decryption : Regev decryption

<+ eTC,= (F,,e)Ts + noise

< Since F,, e =u mod g, we have

Std Model Identity Based Encryption [ABB10]
C, = UuTs + noise + m and C,= F,;'s + noise

Decryption : Regev decryption

<+ eTC,= (F,,e)Ts + noise

< Since F,, e =u mod g, we have

W = m + hoise from which we can recover m.

Std Model Identity Based Encryption [ABB10]

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

- Don’t have basis for A,

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

- Don’t have basis for A,

- Have basis for G

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

- Don’t have basis for A,

- Have basis for G

. LetA, =[A,R —id" xG]

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

- Don’t have basis for A,

Random low norm

« Have basis for G Tt

. LetA, =[A,R —id" xG]

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

Fig = (Al Ay +1d G2

Random low norm

« Have basis for G Tt

- Don’t have basis for A,

. LetA, =[A,R —id" xG]

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

Fig = [Ag] Ay +1d GP

Random low norm

« Have basis for G Tt

- Don’t have basis for A,

. LetA, =[A,R —id" xG]

. F =[AJ AR + (id —id")G]

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

Fiqg= [Ag| A; 11d G

Random low norm

« Have basis for G Tt

- Don’t have basis for A,

. LetA, =[A,R —id" xG]

. F =[AJ AR + (id —id")G]

- Need to find basis for F,, given basis for G

Std Model Identity Based Encryption [ABB10]

Simulation: Let challenge identity = id’

Fiqg= [Ag| A; 11d G

Random low norm

« Have basis for G Tt

- Don’t have basis for A,

. LetA, =[A,R —id" xG]

. F =[AJ AR + (id —id")G]

- Need to find basis for F,, given basis for G

Std Model Identity Based Encryption [ABB10]

Llet B e ngm', uniform R & Zg”'xnlogq, Gaussian

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion

N

Std Model Identity Based Encryption [ABB10]

Llet B e ngm', uniform R & ngz’anogq, Gaussian m

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion

N

Std Model Identity Based Encryption [ABB10]

Llet B e ngm', uniform R & Zg”'xnlogq, Gaussian m

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion

N

. Fy=[AJ AR + (id —id")G]

Std Model Identity Based Encryption [ABB10]

Llet B e ngm', uniform R & ZZ"X”Iqu, Gaussian m

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion

N

. Fy=[AJ AR + (id —id")G]

- Can find basis for F,, given basis for G !

Std Model Identity Based Encryption [ABB10]

Llet B e ngm', uniform R & ZZL’anogq, Gaussian m

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion

N

Developed

. Fy=[AJ AR + (id —id")G] n ABB0

- Can find basis for F,, given basis for G !

Std Model Identity Based Encryption [ABB10]

Llet B e ngm', uniform R & ZZL’anogq, Gaussian m

Let A = B G - BR

Then, A uniform, admits LWE and SIS inversion

N

Developed

. Fy=[AJ AR + (id —id")G] n ABB0

- Can find basis for F,, given basis for G !

 Trapdoor vanishes for id = id’

Std Model Identity Based Encryption [ABB10]

Real System Simulation

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation

MSK = Trapdoor for A,

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation

MSK = Trapdoor for A, MSK =R

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation

MSK = Trapdoor for A, MSK =R

A, = Randomly chosen

Std Model Identity Based Encryption [ABB10]
PP=A, A, G
Real System Simulation
MSK = Trapdoor for A, MSK =R

A, = Randomly chosen A, =A,R—id G

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation
MSK = Trapdoor for A, MSK =R
A, = Randomly chosen A, =A,R—id G

Indistinguishable|since R is random!

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation
MSK = Trapdoor for A, MSK =R
A, = Randomly chosen A, =A,R—id G

Indistinguishable|since R is random!

Encryption
matrix F, =[A/A+id.G]

Std Model Identity Based Encryption [ABB10]
PP=A, A, G

Real System

MSK = Trapdoor for A,

A, = Randomly chosen

Indistinguishable

Encryption
matrix F, =[A/A+id.G]

Simulation

MSK =R

A, =A,R-id G

since R I1s random!

Encryption
matrix F.,=[Ay| A;+id.G]

=[A, AR + (id -id) G]

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation
MSK = Trapdoor for A, MSK =R
A, = Randomly chosen A, =A,R—id G

Indistinguishable|since R is random!

Encryption Encryption |
matrix Fy =[AlA,+id.G] matrix Fiy = [Ag | A¢+id.C]
=[A, AR + (id -id) G]

Secret Key = short vector in F

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation
MSK = Trapdoor for A, MSK =R
A, = Randomly chosen A, =A,R—id G
Indistinguishable|since R is random!
Encryption Encr_yption |
matrix F,, =[A,A,+id.G] matrix Fiy = [Ag | A+id.G]
=[A, AR + (id -id) G]
Secret Key = short vector in F Secret Key = short vector in F,

Std Model Identity Based Encryption [ABB10]

PP=A, A, G
Real System Simulation
MSK = Trapdoor for A, MSK =R
A, = Randomly chosen A, =A,R—id G
Indistinguishable|since R is random!
Encryption Encr_yption |
matrix F, =[A,A, +id.G] matrix Fig = [Aq| A;+id.G]
=[A, AR + (id -id) G]
Secret Key = short vector in F Secret Key = short vector in F,
MSK = Key for any id

Std Model Identity Based Encryption [ABB10]

PP=A,, A,, G
Real System Simulation
MSK = Trapdoor for A, MSK =R
A, = Randomly chosen A, =A,R—id G
Indistinguishable|since R is random!
Encryption Encryption |
matrix F, =[A,A,+id.G] matrix Fiy=[Ag | A;+id.G]
=[A, AR + (id -id) G]
Secret Key = short vector in F Secret Key = short vector in F 4
MSK = Key for any id Trapdoor for G = Key for id # id’

The matrix R

- Matrix R : each column randomly and
independently chosen from {+1, -1}™

. (A, A,) indistinguishable from (A, AR)

by leftover hash lemma

- Roughly states that R has enough entropy to make
A R look like A,

’
\ A &
?’.‘ <, : -
Iy' L
4 r \ :
g t .
. ¥ \ 4
’ \\ »
! " . h) ' Q
) » N \' :
- !
'
!) : -

5>

Generalizin

3 a L ’
4 N 4 -~ o‘._ 4 ’.\
.) 254 8) - E <>’ s 5
e b . - fe e) A
F . : o ’
- ; »)
a7 o : ' K . o~ -
y “y g - » T " "\ 3 J \
3 - » N s ‘.
\ . O 'l:» % A \
. v . 5 .
i { : !
¢ "
5 2 . ' oy " . \
o’ N - L P .
- - h 5 »
= . o'’ ¢ e A | \ 5
.. » [.
‘->~ s A (oy ‘
5 - [
|)

g to Inner pro

- T > - -
X TR
PR A -
h -’, -
. ’. -

ducts

-
~

(AFV11)

e ey

Generalizing to Inner Product (kswos)

f Key:y=(y1!---!yn)
CT : x=(x, ..., X,)

Function f(x.y) = 11f <x.y>=0

O otherwise

Generalizing to Inner Product (kswos)

1 Key:y=(Yy, .o Vo)
CT : x=(x, ..., X,)

Functionf(xy) = 1If <x.y>=0

O otherwise

Supports:
* OR — Bob OR Alice OR,z(z)=1itz=AORz=B
p) =(A—-2)(B—12z)

*CNF/DNF formulas of bounded size

Generalizing to Inner Product (kswos)

1 Key:y=(Yy, .o Vo)
CT : x=(x, ..., X,)

Ciphertext Hides
Attributes X

Functionf(xy) = 1If <x.y>=0

O otherwise

Supports:

- OR — Bob OR Alice OR,4(z) =1ifz=AORz=B
p2)=A-2)(B -2

*CNF/DNF formulas of bounded size

Generalizing to Inner Product (arvi1)

Generalizing to Inner Product (arvi1)

X Parameters for Ix| = lyl = 4:

~ ~ ~ ~ ~ N ~ ~ - ~N

<A1 > < A2 > < A3 > < A4> <A >

- 7 . 7 - 7 \ 7 - 7

Generalizing to Inner Product (arvi1)

4:

X Parameters for Ixl = lyl

A

Master Secret Key: Trapdoor for A

™~

>

7

<

f‘

A

'\

>

7

<

As

> <

8 A4 o

A

Generalizing to Inner Product (arvi1)

X Parameters for Ix| = lyl = 4:

<A1 > < A2 > < A3 > < A4> <A >
Master Secret Key: Trapdoor for A
< Define F, = [Al2yA]

Generalizing to Inner Product (arvi1)

LS

< A1 > < A2

>

<

’ Parameters for Ixl = lyl

> <

- ~ -
< / ~

Ay

4:

~
J

Master Secret Key: Trapdoor for A

% Define F, = [AIZyA]

>l = .modq

Generalizing to Inner Product (arvi1)

X Parameters for Ix| = lyl = 4:

< A1 > < A2 - < A3 > < A4 > < A >
Master Secret Key: Trapdoor for A
< Define F, = [Al2yA]

< A *zyiAi > l

— mod g

Generalizing to Inner Product (arvi1)

Generalizing to Inner Product (arvi1)

Encryption for vector x = (X; X, X5 X,)

Generalizing to Inner Product (arvi1)

Encryption for vector x = (X; X, X5 X,)

* Pick random vector s

“ C =uT s + noise + msg

* C’ = ATs + noise

Generalizing to Inner Product (arvi1)
Encryption for vector x = (X; X, X5 X,)
< Pick random vector s
“ C =uT s + noise + msg

* C’ = ATs + noise

% Set C, = (A + x G)T s + noise

Generalizing to Inner Product (arvi1)

Decryption
(CT,, SK)) :

Generalizing to Inner Product (arvi1)

Decryption C.= (A, + x; G)T s + noise
(CT,, SK)) :

Generalizing to Inner Product (arvi1)

Decryption C.= (A, + x; G)T s + noise
(CT,, SK)) :

C’ = AT s + noise

Generalizing to Inner Product (arvi1)

Decryption C.= (A, + x; G)T s + noise
(CT,, SK)) :

C’ = AT s + noise

< A < zyiAi > ey — U mod g

- AL 7

Generalizing to Inner Product (arvi1)

Decryption C.= (A, + x; G)T s + noise
(CT, SKY) : C’ = AT s + noise
< A < zyIAI > ey = u mOd q

SetC,=2y,C
= (ZyA+2y x G)'s+ 3y noise

Generalizing to Inner Product (arvi1)

Decryption C.= (A, + x; G)T s + noise
(CT, SKY) : C’ = AT s + noise
< A < zyIAI > ey = u mOd q

SetC,=2y,C
= (2 yiAi+Z%i G)'s + 2 y. noise

Generalizing to Inner Product (arvi1)

Decryption C.= (A, + x; G)T s + noise
(CT, SKY) : C’ = AT s + noise
< A < zyIAI > ey = u mOd q

SetC,=2y,C
= (2 yiAi+Z%i G)'s + 2 y. noise

[CIC,] =[AlZy A]l's+noise

Generalizing to Inner Product (arvi1)

Decryption C.= (A, + x; G)T s + noise
(CT, SKY) : C’ = AT s + noise
< A < zyIAI > ey = u mOd q

SetC,=2y,C
= (2 yiAi+Z%i G)'s + 2 y. noise

[CIC,] =[AlZy,A]'s +noise

But this is what we have the key for !
Perform Regev Decryption.

Generalizing to circuits (BGG+14)

s

Petp

T L b " 5 E
! ik o)

.:' o 'o"',-"..’ " \'

Recall Ciphertext Structure

Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

C =uTs + noise + msg, C’=ATs + noise

Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

C =uTs + noise + msg, C’=ATs + noise
C. =(A +x G)T s + noise

Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

C =uT s +noise + msg, C’=ATs + noise
C. =(A +x G)T s + noise

Previously: Could evaluate on CT to obtain

Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

C =uT s +noise + msg, C’=ATs + noise
C. =(A +x G)T s + noise

Previously: Could evaluate on CT to obtain

C = (A, +<x, y> G)T s + noise

<X, y> "

Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

C =uT s +noise + msg, C’=ATs + noise
C. =(A +x G)T s + noise

Previously: Could evaluate on CT to obtain

C = (A, +<x, y> G)T s + noise

<X, y> "

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

C =uT s +noise + msg, C’=ATs + noise
C. =(A +x G)T s + noise

Previously: Could evaluate on CT to obtain

C = (A, +<x, y>G)T s + noise

<X, y> "

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

Generalize to arbitrary f?

Recall Ciphertext Structure
Encryption for vector x = (X; X, X5 X,)

C =uT s +noise + msg, C’=ATs + noise
C. =(A +x G)T s + noise

Previously: Could evaluate on CT to obtain

C = (A, +<x, y>G)T s + noise

<X, y> "

When <x, y> = 0, obtain CT that encodes f alone,
Keygen may compute matching key

Generalize to arbitrary f?

Ci = (As + (x) G)T s + noise

Handling Multiplication BcG+14]

Handling Multiplication BcG+14]

C,=(A; +X, G)T s + noise

Handling Multiplication BcG+14]

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Handling Multiplication BcG+14]

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise

Handling Multiplication BcG+14]

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise

Key Observation: x may be used in evaluation !

Handling Multiplication BcG+14]

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise
Want C,, ., = (A, + XX, G)Ts + noise

Key Observation: x may be used in evaluation !

(A; + x; G)

Handling Multiplication BcG+14]

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise
Want C,, ., = (A, + XX, G)Ts + noise

Key Observation: x may be used in evaluation !

(A; + x; G)
(As + X, G)

Handling Multiplication BcG+14]

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise
Want C,, ., = (A, + XX, G)Ts + noise

Key Observation: x may be used in evaluation !

(A + x4 G) G (-Ay)
(Ao + X, G)

Handling Multiplication BcG+14]

Recall CHIGHIANSA

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise
Key Observation: x may be used in evaluation !

(A + x4 G) G (-Ay)
(Ao + X, G)

Handling Multiplication BcG+14]

Recall CHIGHIANSA

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise
Key Observation: x may be used in evaluation !

(A + x4 G) G (-Ay)
(A, + X, G) (X4)

Handling Multiplication BcG+14]

Recall CHIGHIANSA

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise
Key Observation: x may be used in evaluation !

Ay +%,G) GT(-Ay)) =(A; G (-Ay) - X1 Ay)
(Az + X, G) (x)

Handling Multiplication BcG+14]

Recall CHIGHIANSA

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise
Key Observation: x may be used in evaluation !

(A1 +X%,G) GT(-Ay)) =(A GT(-Ay) - X, Ay
(A, + X, G) (X,) = (X A, + X;X, G)

Handling Multiplication BcG+14]

Recall CHIGHIANSA

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise
Key Observation: x may be used in evaluation !

n (A1 +X%,G) GT(-Ay)) =(A GT(-Ay) - X, Ay
(A, + X, G) (X,) = (X A, + X;X, G)

Handling Multiplication BcG+14]

Recall CHIGHIANSA

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise

Key Observation: x may be used in evaluation !

+ (A1 +X%,G) GT(-Ay) =(A; G) - X2)
(As + X5 G) (Xy) = (XX2 +X:1X; G

Handling Multiplication BcG+14]

Recall CHIGHIANSA

C,=(A;+X,G)Ts+noise C,=(A,+X,G)Ts + noise

Want C,, ., = (A, + XX, G)Ts + noise
Key Observation: x may be used in evaluation !

+ (A1 +X%,G) GT(-Ay) =(A; G) - X2)

(As + X5 G) (Xy) = (XX2 +X:1X; G
= (Agz + XXz G)

Handling Multiplication BcG+14]

Handling Multiplication BcG+14]

C,=(A;+Xx,G)Ts+noise C,=(A,+X,G)Ts +noise

Handling Multiplication BcG+14]

C,=(A;+Xx,G)Ts+noise C,=(A,+X,G)Ts +noise

Handling Multiplication BcG+14]

C,=(A;+Xx,G)Ts+noise C,=(A,+X,G)Ts +noise

Then C,,,=RTC,+x,C,
= (A, + X;X, G)T s + noise
A =A; G (-Ay)

Handling Multiplication BcG+14]

C,=(A;+Xx,G)Ts+noise C,=(A,+X,G)Ts +noise

Then G ,=RTC;+x,C;
= (A, + X4X, G)T s + noise
A =A, G (-A)

G-1 (-A,) and x, are small and do not affect noise !

Handling Multiplication BcG+14]

C,=(A;+Xx,G)Ts+noise C,=(A,+X,G)Ts +noise

Then C,,,=RTC,+x,C,
= (A, + X4X, G)T s + noise
A =A, G (-A,)

G-1 (-A,) and x, are small and do not affect noise !

Also have C =uTs + noise + msg, C’=ATs + noise

Handling Multiplication BcG+14]

C,=(A;+Xx,G)Ts+noise C,=(A,+X,G)Ts +noise

Then G ,=RTC;+x,C;
= (A, + X4X, G)T s + noise
A =A, G (-A)

G-1 (-A,) and x, are small and do not affect noise !

Also have C =uTs + noise + msg, C’=ATs + noise

If x,x, =0,then C’| C,,,, =[AlA,,]Ts + noise

Handling Multiplication BcG+14]

Handling Multiplication BcG+14]

If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

Handling Multiplication BcG+14]

If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

Key -

f

A

~

<

7

- Ay

'\

.J

mod g

Handling Multiplication BcG+14]

If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

Key + A + A12 ey, ¥ mOdq

- > 7

N ~ ~

Perform Regev Decryption

Handling Multiplication BcG+14]

If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

-~ ~

Key + A + A12 ey, ¥ mOdq

J

~ - ~

. 7

Perform Regev Decryption

(e,)T[C 1 C.y 0]l =(en)T[ATAL]TS + (e4,)TNOISE = UT S + NOISe

Handling Multiplication BcG+14]

If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

a N ~N ~ N

Key <« A + A12 ey, Y modq

- > 7

Perform Regev Decryption
C =uT s + noise + msg

(e,)T[C 1 C.y 0]l =(en)T[ATAL]TS + (e4,)TNOISE = UT S + NOISe

Handling Multiplication BcG+14]

If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

a N ~N ~ N

Key <« A + A12 ey, Y modq

- > 7

Perform Regev Decryption
C =uT s + noise + msg

(e,)T[C 1 C.y 0]l =(en)T[ATAL]TS + (e4,)TNOISE = UT S + NOISe

Handling Multiplication BcG+14]

If x;x, =0,thenC’| C,, ., =[AlA,,]Ts + noise

a N ~N ~ N

Key <« A + A12 ey, Y modq

- > 7

Perform Regev Decryption
C =uT s + noise + msg

(e,)T[C 1 C.y 0]l =(en)T[ATAL]TS + (e4,)TNOISE = UT S + NOISe

= Nnoise + msg

More Generally Bac+14...

More Generally Bac+14...

There exist “small” /H\f,x, H, such that:

[A, —x,G]...... A, —xG1H;=[A]...|A]H ~f(x) G

More Generally Bac+14...

There exist “small” /H\f,x, H, such that:

[A, —x,G]...... A, —xG1H;=[A]...|A]H ~f(x) G

As

More Generally Bac+14...

There exist “small” /H\f,x, H, such that:

[A, —x,G]...... A, —xG1H;=[A]...|A]H ~f(x) G

Recall C. = (A, + x; G)T s + noise

As

More Generally Bac+14...

There exist “small” /H\f,x, H, such that:

[A, —x,G]...... A, —xG1H;=[A]...|A]H ~f(x) G

Recall C. = (A, + x; G)T s + noise

LHS implies that A

More Generally Bac+14...

There exist “small” /H\f,x, H, such that:

[A, —x,G]...... A, —xG1H;=[A]...|A]H ~f(x) G

Recall C. = (A, + x; G)T s + noise

LHS implies that A
HL[C...... |C, 1= [A;—f(x) GI"s + hoise

More Generally Bac+14...

There exist “small” /H\f,x, H, such that:

[A, —x,G]...... A, —xG1H;=[A]...|A]H ~f(x) G

Recall C. = (A, + x; G)T s + noise

LHS implies that As
HL[C...... C,1=I[A,—f(x) G]"s + hoise
Keygen provides f 1 1 BB e
matching key i A <> As j & = u mod g

More Generally Bac+14...

There exist “small” /H\f,x, H, such that:

[A, —x,G]...... A, —xG1H;=[A]...|A]H ~f(x) G

Recall C. = (A, + x; G)T s + noise

LHS implies that As
HL[C...... C,1=I[A,—f(x) G]"s + hoise
Keygen provides f 1 1 BB e
matching key i A <> As j & = u mod g

" ~

\ -

Perform Regev Decryption as usual

Generalizes to all circuits Baa+14]

Generalizes to all circuits Baa+14]

Message m
\ 4

PK,x

» Encrypt —I

Ciphertext CTx(m)

Generalizes to all circuits Baa+14]

Message m
\ 4

» Encrypt —I

Ciphertext CTx(m)

PK,x

l MSK

» KeyGen | — Skf

Generalizes to all circuits Baa+14]

Message m
\ 4

» Encrypt —I

Ciphertext CTx(m)

l MSK l |

» Decrypt ——» m if f(x) =1, else L

PK,x

» KeyGen | — Skf

Generalizes to all circuits Baa+14]

. Message m
Security v

Parameter, A (PK, MSK) PK, x
» Encrypt —I

» SetUp
Ciphertext CTy(m)

l MSK | |

» Decrypt ——» m if f(x) =1, else L

>

»f KeyGen [skf

Generalizes to all circuits Baa+14]

Security
Parameter, A (PK, MSK)

» SetUp

>

l MSK

» KeyGen —

EE E;D%D-af

Skf

PK,x

v

Message m

Encrypt

:

Ciphertext CTx(m)

l

>

Decrypt

———»mif f(x) =1, else L

Attribute based Encryption (ABE) iswos

Security Definition

>

sk(f,) s-k(f9) sk(f.,,) ;l

My, My wherefi(x)=0

"yd Jasualeyd
Py Auesionpy

Choose random b. Return ct* = Enc(PK, x*, m)

>
Guess b’

Attacker wins if | Pr{b=b’| - /2| is non-negligible

Security: Challenges

*Challenger needs to be able to answer private key
queries of Adversary: much more complex!

*Challenger can’t have master trapdoor(Trapdoor for A)

* Must embed LWE challenge into challenge ciphertext

Strategy: Challenge CT

Strategy: Challenge CT

* Let x* be challenge attributes.

Strategy: Challenge CT

* Let x* be challenge attributes.

Strategy: Challenge CT

* Let x* be challenge attributes.

 As before, set A, = [AR, — x” G]

Strategy: Challenge CT

* Let x* be challenge attributes.

 As before, set A, = [AR, — x” G]

Strategy: Challenge CT

* Let x* be challenge attributes.

 As before, set A, = [AR, — x” G]

« C. = (A + X G)Ts + noise = (AR, + (x,—x)G)T s + noise

Strategy: Challenge CT

* Let x* be challenge attributes.

 As before, set A, = [AR, — x” G]

« C. = (A + X G)Ts + noise = (AR, + (x,—x)G)T s + noise

Strategy: Challenge CT

* Let x* be challenge attributes.

 As before, set A, = [AR, — x” G]

« C. = (A + X G)Ts + noise = (AR, + (x,—x)G)T s + noise

« When x = x*, challenge CT becomes (AR)T s + noise

Strategy: Challenge CT

* Let x* be challenge attributes.

 As before, set A, = [AR, — x” G]

« C. = (A + X G)Ts + noise = (AR, + (x,—x)G)T s + noise

« When x = x*, challenge CT becomes (AR)T s + noise

Strategy: Challenge CT

* Let x* be challenge attributes.

 As before, set A = [AR - X" (]
« C. = (A + X G)Ts + noise = (AR, + (x,—x)G)T s + noise

« When x = x*, challenge CT becomes (AR)T s + noise

* Can be computed from LWE challenge

Strategy: Challenge CT

* Let x* be challenge attributes.

 As before, set A = [AR - X" (]
« C. = (A + X G)Ts + noise = (AR, + (x,—x)G)T s + noise

« When x = x*, challenge CT becomes (AR)T s + noise

* Can be computed from LWE challenge

Strategy: Key Queries

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

+Recallkey 1 A 7 As e u| modd

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

+Recallkey 1 A 7 As e u| modd

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

+Recallkey 1 A 7 As e u| modd

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

<

+Recallkey 1 A 7 As e u| modd

« Need TD for [A | A;] when f(x) not O.

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

<

+Recallkey 1 A 7 As e u| modd

« Need TD for [A | A;] when f(x) not O.

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

<

+Recallkey 1 A 7 As e u| modd

« Need TD for [A | A;] when f(x) not O.

e Follows from MP12

Strategy: Key Queries

. Let x* be challenge attributes, set A = [AR. - x" (]

« Can show A, = [AR, - {(x)G] for “small” R;

<

+Recallkey 1 A 7 As e u| modd

« Need TD for [A | A;] when f(x) not O.

e Follows from MP12

Strategy: Key Queries

- Need TD for [A | A;] when f(x*) # O.
¢ Af - [Aq]c — f(x*)G] : _et H — f(X*)
* Recall

let A € ngm' uniform, R € ZZ‘/X”Iqu small

Then A AR-HG

admits LWE and SIS inversion.

° tg\
OEY

7

) | §

. t)
1

-’/

| + Ciphertext Policy ABE from LWE

| + Ciphertext Policy ABE from LWE
v * Broadcast Encryption from LWE

| + Ciphertext Policy ABE from LWE
v * Broadcast Encryption from LWE
* Better parameters

Open Problems

@

t

’E‘"“a S ‘ I :
(e 1

| + Ciphertext Policy ABE from LWE
v * Broadcast Encryption from LWE

* Better parameters
B * Support uniform models of computation from LWE

s " o { % Open Problems i .
L SNY (¢ e > 42 . & .
7 Wy s', ’i«""’\ 1 = . I b
. \ (= . k

| + Ciphertext Policy ABE from LWE
v * Broadcast Encryption from LWE
* Better parameters
B * Support uniform models of computation from LWE
* Adaptive Security

| + Ciphertext Policy ABE from LWE
v * Broadcast Encryption from LWE
* Better parameters

B * Support uniform models of computation from LWE
* Adaptive Security

