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Computing on Encrypted Data
Personalised Medicine

   “The dream for tomorrow’s medicine is 
to understand the links between DNA 
and disease — and to tailor therapies 
accordingly. But scientists have a 
problem: how to keep genetic data and 
medical records secure while still 
enabling the massive, cloud-based 
analyses needed to make meaningful 
associations.”

2

Check Hayden, E. (2015).  Nature, 519, 400-401. 
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Doesn’t FHE solve exactly this?



Prof. Bob wants to store encrypted file so that:

• Other Professors or admin assistants of CS 
group can open it 

• Encrypt file for each of them? 

• If someone quits or new person joins? Re-
encrypt ? 

• Organizational nightmare !

Access Control on Encrypted Data
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What do we want?

PROF OR {Admin AND CS}

✗

PROF

CS Admin

Attacker
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Need New Tools & Techniques!
Main Tool: Lattice Trapdoors
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Short Integer Solution Problem

Given matrix A, find “short” (low norm) vector x such that  

A
x 0=n

m

m n

Let

mod q

A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

A x = 0 mod q ∈ ℤn
q
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Learning With Errors Problem
Distinguish “noisy inner products” from uniform 

Fix uniform s    Zq
n   

a1 , b1 = <a1,s> + e1  
a2 , b2 = <a2,s> + e2 

am , bm = <am,s>+ em 

vs

ai uniform     Zq
n , ei ~ ϕ     Zq  ai uniform    Zq

n , bi uniform    Zq∈∈ ∈

∈

∈
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Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)



Lattice Based One Way Functions

Based on SIS


•  Short x, surjective 


•  CRHF if SIS is hard [Ajt96…]
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Public Key A ∈ ℤn×m
q , q = 𝗉𝗈𝗅𝗒(n), m = Ω(n log q)

fA(x) = A x mod q ∈ ℤn
q

Lattice-Based One-Way Functions

I Public key
h
· · · A · · ·

i
2 Zn⇥m

q for q = poly(n), m = ⌦(n log q).

fA(x) = Ax mod q 2 Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . . ]

gA(s, e) = s
t
A+ e

t mod q 2 Zm
q

(“very short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: ⇤?(A) = {x 2 Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

O

(0, q)

(q, 0)

a1

a2

Ats

e
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Image Credit: MP12 slides



Inverting functions for Crypto
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• Given                                      

• Sample  

    with prob 

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp( −∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O
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• Find unique   

gA(s, e) = stA + et mod q

(s, e)

And
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OR

Latter distribution 
needs lattice 
trapdoors!



What do these trapdoors look like?
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Lattice Trapdoors (Type 1): 
Geometric View
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Lattice Trapdoors (Type 1): 
Geometric View

v1
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v’2
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Lattice Trapdoors (Type 1): 
Geometric View

Multiple Bases

v1

v2

v’2
v’1
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Parallelopipeds 
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Parallelopipeds
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T

Good Basis
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What’s my 
closest lattice 

point?

“Quite short” and “nearly orthogonal”

T

Good Basis



16

Good Basis

T
V
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T
V

Output center of parallelopipid  containing T
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Declared 
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Good Basis
Declared 
closest 
point

Pretty Accurate…

T
V

Output center of parallelopipid  containing T
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Bad Basis
Closer 
Lattice 
point

Declared 
closest 
point

V

Output center of parallelopipid containing T
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Bad Basis
Closer 
Lattice 
point

Declared 
closest 
point

V

Not So Accurate…
Output center of parallelopipid containing T
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Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary 

(bad) basis 
• Some hard lattice problems are easy given 

a good basis 
• Will exploit this asymmetry
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Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary 

(bad) basis 
• Some hard lattice problems are easy given 

a good basis 
• Will exploit this asymmetry

Use Short Basis as Cryptographic Trapdoor!
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Inverting Our Function

Λ = {x : Ax = 0 mod q} ⊆ ℤm
q
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The Lattice

Inverting Our Function

Λ = {x : Ax = 0 mod q} ⊆ ℤm
q

Short basis for     lets us sample from  
with correct distribution! 

f −1
A (u)Λ
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1. How to get short basis 

2. How to use short basis 

Two Questions
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Lattice Trapdoors (Type 2)

  Not a short basis but
• Just as powerful
• More efficient
• Better parameters
• Implies Type 1 trapdoors
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Type 2 Trapdoors [MP12]

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and
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Type 2 Trapdoors [MP12]

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

  Design  
  for Gadget Matrix G 
 (fifl

f −1
G , g−1

G

1
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Type 2 Trapdoors [MP12]

Randomize G ↔ A via 
nice unimodular 
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Type 2 Trapdoors [MP12]

Randomize G ↔ A via 
nice unimodular 
transformation

fA(x) = A x mod q ∈ ℤn
q

gA(s, e) = stA + et mod q ∈ ℤm
qRecall and

  Design  
  for Gadget Matrix G 
 (fifl

f −1
G , g−1

G
Reduce 

to 
 

f −1
A , g−1

A

f −1
G , g−1

G

Transformation in Step 2 is the trapdoor!

1 2 3
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Step 1:            for Gadget G 
fG(x) = G x mod q ∈ ℤn

q gG(s, e) = stG + et mod q ∈ ℤm
qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet 

  Invert LWE: find 
  

• Get lsb(s) from  
• Then get next bit of s and so on.  
• Works as long as every 

 

  

  
     

s ∈ Zq  s.t.  s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)
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• Get lsb(s) from  
• Then get next bit of s and so on.  
• Works as long as every 
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qRecall and

and

f −1
G , g−1

G

g = [1, 2, 4,⋯, 2k−1] ∈ ℤ1×k
qq = 2kLet 

  Invert LWE: find 
  

• Get lsb(s) from  
• Then get next bit of s and so on.  
• Works as long as every 

 

  Invert SIS: sample Gaussian preimage x s.t.  

• For                             choose     
• Let k= 2.  

u = ⟨g x⟩ mod q

s ∈ Zq  s.t.  s ⋅ g + e = [s + e0, 2s + e1, ⋯ 2k−1s + ek−1]

2k−1s + ek−1

ei ∈ [−q/4,q/4)

i ∈ [0,…, k − 1], xi ← (2ℤ + u), u ← (u − xi)/2 ∈ ℤ
x0 ← (2z0 + u), u ← (u − 2z0 − u)/2 = − z0
x1 ← (2z1 − z0)
⟨g, x⟩ = 2z0 + u + 2(2z1 − z0) = u + 4z1 = u mod 4

Gaussian from 
shifted lattice  

2Z + u
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G

g = [1, 2, 4,⋯, 2k−1]Note 2
2

2

2

-1
-1

-1

⋱
⋱

2

= 0 mod q

          S is Short Basis for                          

S

g = [1, 2, 4,⋯, 2k−1]

                     reduce to n parallel, offlf −1
G , g−1

G

Define gadget G : 
  

G = In ⊗ g ⋯ g ⋯
⋯ g ⋯

⋯ g ⋯

⋱
∈ ℤn×nk

q

f −1
g , g−1

g
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Step 2: Randomize G to A 

2. Define  A = GB
I

I

-R

1. Sample B ∈ ℤn×m′￼
q , short Gaussian R ∈ ℤm′￼×n log q

q ,

=

A is uniform by leftover hash lemma!

G - BRB
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Leftover Hash Lemma (oversimplified)

If

( B, BR ) ≈ ( B, U )

 Let B ∈ ℤn×m′￼
q R ∈ ℤm′￼×n log q

quniform & Gaussian

 then,m′￼≈ n log q,

 Let

G - BRB Hence  A = uniform
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Step 2: Randomize G to A 

Have A = G - BRB

Define:  R is a trapdoor for A with tag H ∈ ℤn×n
q ,

A ⋅ [R
I ] = H ⋅ GIf

Λ⊥(G)

S
&

Basis        
for        

Trapdoor R
for A        

Λ⊥(A)

SABasis        
for        
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Step 3: Reduce         to                
Suppose  R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I ] = G

f −1
G , g−1

Gf −1
A , g−1

A



32

Step 3: Reduce         to                
Suppose  R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I ] = G

f −1
G , g−1

G

Inverting LWE

f −1
A , g−1

A



32

Step 3: Reduce         to                
Suppose  R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I ] = G

f −1
G , g−1

G

• Given                                      

• Find unique   

bt = stA + et mod q

(s, e)

Want:

Inverting LWE

f −1
A , g−1

A



32

Step 3: Reduce         to                
Suppose  R is a trapdoor for A with tag I ∈ ℤn×n

q ,

A ⋅ [R
I ] = G

f −1
G , g−1

G

bt ⋅ [R
I ] = st ⋅ G + et ⋅ [R

I ] mod q
• Given                                      

• Find unique   

bt = stA + et mod q

(s, e)

Want:

Inverting LWE

et ⋅ [R
I ] ∈ [−q/4,q/4)

Compute:

Works if

f −1
A , g−1

A
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A ⋅ [R
I ] = G

f −1
G , g−1

G

Want:
• Given                                      

• Sample  

    with prob 

u = fA(x) = A x mod q

x′￼← = f −1
A (u)

∝ exp( −∥x′￼∥2/σ2)

Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O
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I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x0) = Ax
0 mod q:

sample random x f�1
A (u)

with prob / exp(�kxk2/�2).

Invert
gA(s, e) = s

t
A+ e

t mod q:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of ⇤?(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

6 / 17

Inverting SIS

A ⋅ x = A ⋅ [R
I ] ⋅ z = G ⋅ z = u

x = [R
I ] ⋅ z

Compute:
Sample 

Output 

z ← f −1
G (u)

Then, 

f −1
A , g−1

AStep 3: Reduce         to                
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Step 3: Reduce         to                
A ⋅ [R

I ] = G

f −1
A , g−1

A f −1
G , g−1

G

A ⋅ x = A ⋅ [R
I ] ⋅ z = G ⋅ z = u

x = [R
I ] ⋅ z

Compute:
Sample 

Output 

z ← f −1
G (u)

Then, 

Are we done?

Covariance of x leaks R!

Image Credit: Chris Peikert

A First Attempt

I Given u, sample z f�1
G (u) and output x =

⇥
R
I

⇤
z 2 f�1

A (u) ?

I x1 = Rz has a non-spherical Gaussian distribution of covariance

⌃ := Ex
⇥
x · xt

⇤
= Ez

⇥
R · zzt ·Rt

⇤
⇡ s2 ·RR

t.

Covariance can be measured — and it leaks R! (up to rotation)

12 / 18
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Step 3: Reduce         to                f −1
A , g−1

A f −1
G , g−1

G

Fix using perturbation method [P’10] 
https://www.elegantthemes.com/

Want to output spherical Gaussian! 
Covariance Matrix s2I

‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance ⌃2 := s2 I�RR
t > 0.

2 Sample spherical z s.t. Gz = u�Ap.

3 Output x = p+
⇥
R
I

⇤
z. (Note: Ax = Ap+Gz = u.)

+ =

RR
t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of 
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• Generate perturbation vector p with covariance  

• Sample spherical z such that  

• Output 

(s2I − RRt)

G z = u − A p

x = p + [R
I ] ⋅ z
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⇥
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⇤
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t + (s2I�RR

t) = s2 I

Convolution⇤ Theorem

Algorithm generates a spherical discrete Gaussian over L?
u (A).

(⇤technically not a convolution, since step 2 depends on step 1.)

14 / 18

Convolution of 
Gaussians

To fix covariance: 
• Generate perturbation vector p with covariance  

• Sample spherical z such that  

• Output 

(s2I − RRt)

G z = u − A p

x = p + [R
I ] ⋅ z

A ⋅ x = Ap + A [R
I ] ⋅ z

A ⋅ [R
I ] = G

Check

= Ap + Gz = u



Let A = G - BRB

A

B ∈ ℤn×m′￼
q ,

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

Takeaway for Applications



Applications



Applications

A word about notation



Identity Based Encryption (IBE)



Identity Based Encryption (IBE)

In short………..



Identity Based Encryption (IBE)

Public Key Encryption in which ANY 
arbitrary string can be public key!

In short………..



IBE: How does it work?

Bob

Key Server 
• Master Secret 
• Public Parameters

Alice encrypts with 
bob@iitm.ac.in

Receives 
 Private Key 
for bob@iitm.ac.in

Bob decrypts with 
 Private Key

Alice

Requests private key, 
authenticates

1

2

3

4



Setup

Extract

Encrypt Decrypt

Public Params PP

Master secret key MSK

Security 
Parameter λ

Identity ID

Secret key SK

Message 
     m Ciphertext 

       C
Message 
     m

Identity Based Encryption
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Bit of History
❖ Big open problem — posed in 1984 by Shamir, first 

solution in 2001 by Boneh and Franklin

❖ First solution uses pairings

❖ Beautiful solution using only CDH by Dottling & Garg (2017)

❖ We’ll see solution from lattices

❖ Main challenge?

❖ Need for MSK?
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IBE Security

Attacker wins if  | Pr[b=b’] - ½ |   is non-negligible  
Challenger  Ch.

Adversary  Ad.

PK

Guess b’ 

m0, m1 

Pick b random, C* = Enc( m_b, ID*)

,  dID2 ,  dID3 , …,  dIDmdID1

  ,  ID2 ,   ID3 ,  …,  IDmID1   

Get instance of 
hard problem H

Output G as 
answer for H

ID* 
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 Regev PKE

❖ Encrypt (A, u) : 

❖ Pick random vector s

❖ c0 = AT s + noise 

❖ c1 = uT s + noise + msg 

❖ Decrypt (e) : 

❖ eT c0 – c1 = msg + noise

Small only
 if  e is small

A e u mod q≡

❖ Recall A e = u mod q hard to invert

❖ Secret: e, Public : A, u

Encryption 
matrix A
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GPV IBE
❖ Want to embed vector id in ciphertext and secret key.

❖ How to generate public parameters?

❖ Must be independent of id (why?)

❖ Must “morph” into id dependent PK for Regev

❖ Let uid =H(id) where H is random oracle

❖ Want: Perform Regev PKE with PK A,  uid  
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Random Oracle
❖ Random oracle model assumes that well-chosen hash H 

(SHA3, say) behaves “like a random function”

❖ On any input, gives random output 

❖ Repeated input, same output

❖ Very useful for practical schemes

❖ Proof in ROM allows to “program” H — gives exponential 
space to reduction!
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GPV IBE
❖ Recall uid =H(id) where H is random oracle

❖ Key: small eid s.t. A eid  = uid (mod q)

❖ Construction? Proof?

mod q

key

eid uid≡A

How to sample?
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GPV IBE

❖ Extract(TA, id) : Set uid = H(id). Find e short s.t. A eid = uid mod q

❖ Encrypt (A, id) : 

❖ Pick random vector s

❖ c0 = AT s + noise 

❖ c1 = uidT s + noise + msg 

❖ Decrypt (eid) : 

❖ eidT c0 – c1 = msg + noise

Secret: TA, Public : A
Use trapdoor!
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Proof Idea
❖ Selective game: reduction knows id* from beginning

❖ Need:

❖ Answer adversary key queries for any id  id*

❖ Unable to answer key query for id*

❖ Embed LWE challenge into CT for id*

≠
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Challenge CT for id*

❖ Receive  (A, AT s + noise), (u, uT s + noise) from LWE 
challenger

❖ “Program" H(id*) = u. Note u random so consistent with ROM!

❖ Sample random bit b. 

❖ Set challenge CT as c0 = AT s + noise, c1= uT s + noise + mb

❖ Now, adversary sees exactly the LWE challenge: if random 
then b is info-theoretically hidden. No advantage!

❖ Its success translates to success for reduction/challenger!
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51

Key Queries
❖ Need:

❖ Answer adversary key queries for any id  id*

❖ Unable to answer key query for id*

≠

❖ Sample your own eid and set uid = A eid mod q.

❖ “Program” H(id) = uid. Recall (from yesterday) uid random! 

❖ Upon hash query on id, return uid.

❖ Upon key query on id, return eid
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Standard Model?

❖ ROM proof great first step but unrealistic

❖ ROM cannot be instantiated [BBP03] …

❖ Contrived counter-examples

❖ Proof easy because exponential space to “program”

❖ Can we construct it without ROM?
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Standard Model
❖ Want to embed vector id in ciphertext and secret key.

❖ Let encryption matrix Fid be publicly computable function 
of id and public parameters.

❖ Perform Regev PKE with encryption matrix Fid

❖ Figure out way to compute short vector e such that

Fid e u mod q≡
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Parameters:

Master Secret Key: Trapdoor for A0 

KeyGen for identity id :

mod q

key

e u≡Fid

A0 G uA1
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Parameters:

Master Secret Key: Trapdoor for A0 

KeyGen for identity id :

mod q

key

e u≡Fid

A0 G uA1

Let Fid = [A0 | A1 + id×G]   

Know how to compute trapdoor for “extended” matrix 
[A0| any ]

Std Model Identity Based Encryption [ABB10]
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Encryption for id’ = Regev PKE on matrix Fid

Std Model Identity Based Encryption [ABB10]
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❖ Pick random vector s 

❖ Let Fid = [A0 | A1 + id×G]   

❖ C  = uT s + noise + msg

❖ C’ = Fid
Ts + noise

Encryption for id’ = Regev PKE on matrix Fid

Std Model Identity Based Encryption [ABB10]
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❖ Let w = C0 – eTC1    

❖ eTC1= (Fid e)Ts + noise

❖   Since Fid e = u mod q, we have 

C0 = uTs + noise + m and C1= Fid
Ts + noise    

Decryption : Regev decryption
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❖ Let w = C0 – eTC1    

❖ eTC1= (Fid e)Ts + noise

❖   Since Fid e = u mod q, we have 

w = m + noise from which we can recover m.

C0 = uTs + noise + m and C1= Fid
Ts + noise    

Decryption : Regev decryption

Std Model Identity Based Encryption [ABB10]
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• Fid
 = [A0| A0R  + (id –id*)G]

• Can find basis for Fid given basis for G !

• Trapdoor vanishes for id = id*

58

Std Model Identity Based Encryption [ABB10]

Let A = G - BRB

A

 Let B ∈ ℤn×m′￼
q , R ∈ ℤm′￼×n log q

q , uniform Gaussian

 Then, uniform, admits LWE and SIS inversion

f −1
A , g−1

A

Developed 
in ABB10

MP12



59

Real System Simulation 

Std Model Identity Based Encryption [ABB10]



59

PP = A0, A1, G
Real System Simulation 

Std Model Identity Based Encryption [ABB10]



59

PP = A0, A1, G
Real System Simulation 

MSK            = Trapdoor for A0

Std Model Identity Based Encryption [ABB10]



59

PP = A0, A1, G
Real System Simulation 

MSK            = Trapdoor for A0 MSK            = R

Std Model Identity Based Encryption [ABB10]



59

PP = A0, A1, G
Real System Simulation 

MSK            = Trapdoor for A0 MSK            = R

A1                       = Randomly chosen

Std Model Identity Based Encryption [ABB10]



59

PP = A0, A1, G
Real System Simulation 

MSK            = Trapdoor for A0 MSK            = R

A1                       = Randomly chosen A1                       = A0R – id* G

Std Model Identity Based Encryption [ABB10]



59

PP = A0, A1, G
Real System Simulation 

MSK            = Trapdoor for A0 MSK            = R

A1                       = Randomly chosen A1                       = A0R – id* G

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]



59

PP = A0, A1, G
Real System Simulation 

MSK            = Trapdoor for A0 MSK            = R

A1                       = Randomly chosen

Encryption 
matrix  Fid  = [A0|A1+id.G]
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A1                       = Randomly chosen
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Secret Key   = short vector in Fid Secret Key   = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]   

 = [A0 | A0R + (id -id*)G]

A1                       = A0R – id* G

MSK ➔ Key for any id

Indistinguishable since R is random!
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PP = A0, A1, G
Real System Simulation 

MSK            = Trapdoor for A0 MSK            = R

A1                       = Randomly chosen

Encryption 
matrix  Fid  = [A0|A1+id.G]

Secret Key   = short vector in Fid Secret Key   = short vector in Fid

Encryption
matrix Fid = [A0 | A1+id.G]   

 = [A0 | A0R + (id -id*)G]

A1                       = A0R – id* G

MSK ➔ Key for any id Trapdoor for G ➔ Key for id ≠ id* 

Indistinguishable since R is random!

Std Model Identity Based Encryption [ABB10]
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The matrix R
• Matrix R : each column randomly and 

independently chosen from {+1, -1}m

• (A0, A1) indistinguishable from  (A0, A0R)

     by leftover hash lemma  

• Roughly states that R has enough entropy to make 
A0R look like A1
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Generalizing to Inner Product (KSW08)

Key : y = (y1, …, yn)

Supports: 
• OR –- Bob OR Alice  

•CNF/DNF formulas of bounded size

Function f( x, y)  = 1 If  <x . y> = 0

0   otherwise

CT  :  x = (x1, …, xn)
Ciphertext Hides 

Attributes xi

ORA,B(z) = 1 if z = A OR z = B

p(z) = (A − z)(B − z)
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❖ Pick random vector s 

❖ C  = uT s + noise + msg

❖ C’ = ATs + noise 

Encryption for vector x = (x1 x2 x3 x4) :
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❖ Pick random vector s 

❖ C  = uT s + noise + msg

❖ C’ = ATs + noise 

Encryption for vector x = (x1 x2 x3 x4) :

❖ Set Ci = (Ai + xi G)T s + noise

Generalizing to Inner Product (AFV11)
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Decryption 
(CTx, SKy) : 

Generalizing to Inner Product (AFV11)
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Ci = (Ai + xi G)T s + noise

mod qey u≡ ΣyiAiA

Decryption 
(CTx, SKy) : C’ = AT s + noise
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Set Cy = Σ yi Ci

     =  (Σ yi Ai + Σ yi xi G )Ts + Σ yi noise

Ci = (Ai + xi G)T s + noise

mod qey u≡ ΣyiAiA

Decryption 
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Set Cy = Σ yi Ci

     =  (Σ yi Ai + Σ yi xi G )Ts + Σ yi noise✕

Ci = (Ai + xi G)T s + noise

[ C’|Cy ]    = [A | Σ yi Ai ] Ts + noise

mod qey u≡ ΣyiAiA

Decryption 
(CTx, SKy) : C’ = AT s + noise
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Set Cy = Σ yi Ci

     =  (Σ yi Ai + Σ yi xi G )Ts + Σ yi noise✕

But this is what we have the key for ! 
Perform Regev Decryption.

Ci = (Ai + xi G)T s + noise

[ C’|Cy ]    = [A | Σ yi Ai ] Ts + noise

mod qey u≡ ΣyiAiA

Decryption 
(CTx, SKy) : C’ = AT s + noise

Generalizing to Inner Product (AFV11)
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C  = uT s + noise + msg,  C’ = ATs + noise 

Encryption for vector x = (x1 x2 x3 x4) :

 Ci = (Ai + xi G)T s + noise

Recall Ciphertext Structure 

Previously: Could evaluate on CT to obtain  

 C<x, y> = (Ay + <x, y> G)T s + noise

 Cf(x) = (Af + f(x) G)T s + noise

When <x, y> = 0, obtain CT that encodes f alone,  
Keygen may compute matching key

Generalize to arbitrary f?
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 Cx1 x2 = RT C1 + x1 C2 
           = (A12 + x1x2 G)T s + noise
   A12  = A1 G-1 (-A2)

 C2 = (A2 + x2 G)T s + noise

Then

G-1 (-A2) and x1 are small and do not affect noise !

R = G-1 (-A2)Let

C  = uT s + noise + msg,  C’ = ATs + noise Also have
 If x1x2  = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise 
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mod qe12 u≡A12AKey

 If x1x2  = 0, then C’ | Cx1 x2 = [A | A12]Ts + noise 

Perform Regev Decryption

 (e12)T [C’ | Cx1 x2] = (e12)T [A | A12]Ts + (e12)T noise = uT s + noise

 

C  = uT s + noise + msg 
-

    = noise + msg 
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More Generally [BGG+14]…

mod qef u≡AfAKeygen provides 
matching key

 Recall Ci = (Ai + xi G)T s + noise

 LHS implies that
̂H T
f,x [ C1 |…… |Cn ] = [Af − f(x) G]Ts + noise

[ A1 − x1G |…… |An − xnG ] ̂H f,x = [ A1 |… |An] Hf − f(x) G

There exist “small”                such that:      ̂H f,x, Hf

Af⏟
Perform Regev Decryption as usual
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Generalizes to all circuits [BGG+14]

Encrypt

KeyGen Decrypt

SetUp

Attribute based Encryption (ABE) [SW05]



Security Definition

Attacker wins if  | Pr[b=b’] - ½ |   is non-negligible  

Challenger  Ch.

Adversary  Ad.

PK

Guess b’

m0, m1 

Choose random b. Return ct* = Enc( PK, x*, mb)

f1, f2 ……fm
sk(f1), sk(f2),……sk(fm)

       where fi(x*)=0

x*
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Security: Challenges

•Challenger needs to be able to answer private key   
queries of Adversary: much more complex!  

•Challenger can’t have master trapdoor(Trapdoor for A) 

• Must embed LWE challenge into challenge ciphertext 
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Strategy: Key Queries
• Let x* be challenge attributes, set Ai = [ARi – xi

* G]

• Can show Af = [ARf – f(x*)G] for “small” Rf 

• Recall key

• Need TD for [A | Af ] when f(x*) not 0. 

• Follows from MP12

mod qef u≡AfA
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• Need TD for [A | Af ] when f(x*)      0.  
• Af = [ARf – f(x*)G] . Let H = f(x*). 
• Recall

Then  AR - H G A

 Let A ∈ ℤn×m′￼
q R ∈ ℤm′￼×n log q

q uniform, small

admits LWE and SIS inversion.

Strategy: Key Queries
≠



Open Problems



Open Problems

• Ciphertext Policy ABE from LWE



Open Problems

• Ciphertext Policy ABE from LWE
•  Broadcast Encryption from LWE



Open Problems

• Ciphertext Policy ABE from LWE
•  Broadcast Encryption from LWE
• Better parameters



Open Problems

• Ciphertext Policy ABE from LWE
•  Broadcast Encryption from LWE
• Better parameters
• Support uniform models of computation from LWE



Open Problems

• Ciphertext Policy ABE from LWE
•  Broadcast Encryption from LWE
• Better parameters
• Support uniform models of computation from LWE
• Adaptive Security
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Thank You!
Image Credits : Hans Hoffman, Joan Mitchell, Lynn Drexler

• Ciphertext Policy ABE from LWE
•  Broadcast Encryption from LWE
• Better parameters
• Support uniform models of computation from LWE
• Adaptive Security


