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verify(crs, o, (x,y),m) — 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS
crs: A, ..., Ay
commit: 0 := Ay open : 7 := Hy,

verify: wissmalland [A; —x1G | -+ | A — x,G] - ™ = Ay — yG
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> learns f{x)

security.
efficiency. = alice sends x (faster than computing 1)

construction. digest = Ay,..., Ay, Ay
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A1 —x1G |- | Ay —xG] - Hyy = Ay — fx)G

2/3 & 3/3. lattice trapdoors & attribute-based encryption

// thank you & enjoy!



