encrypted computation
from lattices (/3

EEE Hoeteck Wee
NTT research

trrer B|G DATA

trrer B|G DATA

Q. privacy + utility?

1221
tireer BIG DATA
treeee

22222 :
ﬂ encrypted computation

Q. privacy + utility?

22222 :
ﬁ encrypted computation

3 notions

AR R Y ﬁ encrypted computation

3 notions from lattices

22222 :
ﬁ encrypted computation

3 notions + 1 equation

fully homomorphic encryption

encryption

syntax. enc(sk, -), dec(sk, -)

functionality.

encryption

syntax. enc(sk, -), dec(sk, -)

functionality. dec(sk, enc(sk,x)) = x

encryption

security. enc(sk, x) hides x

functionality.

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. enc(sk, x) il enc(sk, f{x)) homomorphic evaluation

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. enc(sk, x) il enc(sk, f{x))

[) .
' service
provider
user

N

sensitive data
health, financial

fully homomorphic encryption

security. enc(sk, x) hides x

functionality.

® encrypted input .
' service
provider
user
N

sensitive data
health, financial

fully homomorphic encryption

security.

functionality. enc(sk, x) il enc(sk, f{x))

® encrypted input .
' service
encrypted output provider
user yp P
N

sensitive data
health, financial

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. enc(sk, x) il enc(sk, f(x))

FHE for CIFCUItS from lattices

[Gentry 09, Brakerski Vaikuntanathan 11]

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. enc(sk, x) il enc(sk, f(x))

FHE for CIFCUItS from LWE

[Brakerski Vaikuntanathan 11]
(B, sB + ¢) ~. uniform

i e I —c—

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. enc(sk, x) il enc(sk, f(x))

FHE for CIFCUItS from LWE

[Gentry Sahai Waters 13]
(B, sB + e) ~. uniform

i e I —c—

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f(x)) 0

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) 0

sk

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) e

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) e

] T

t: eigenvector

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) e

| t I — Xl't

sk A;

t: eigenvector

enc(sk, x;)

enc(sk,x1), enc(sk, x2) N enc(sk,x; + x2), enc(sk, x1x2)

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) e

| t I — Xl't

sk A;

enc(sk, x;)

addition: t- (A1 + Az) = (x1 + x2)t

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) e

Lt |

sk A;

enc(sk, x;)

— Xl't

addition: t- (A1 + Az) = (x1 + x2)t

multiplication: t -

= x1x2t

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) e

| t I — Xl't

sk A;

enc(sk, x;)
addition: t- (A1 + Az) = (x1 + x2)t
multiplication: t - A{Ay = x1xot

LHS:xlt'AQZ...

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) e

| t I — Xl't

sk A;

enc(sk, x;)
addition: t- (A1 + Az) = (x1 + x2)t
multiplication: t - A{Ay = x1xot

polynomials: t - (A1A2 + A3zAy) = (x1x2 + x3x4)t

fully homomorphic encryption

security.

functionality. enc(sk,x) — enc(sk, f{x)) e

| t I — Xl't

sk A;

enc(sk, x;)
addition: t- (A1 + Az) = (x1 + x2)t
multiplication: t - A{Ay = x1xot

polynomials: t - f{Aq,. .., Ay) =flxa, ..., X))t
—_——

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. e + noise

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. e + noise
sk A;
enc(sk, x;)

addition: t- (A1 + Ag) = (x1 + x2)t

- proof. small + small = small

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. e + noise
sk A;
enc(sk, x;)

multiplication: t - A1 Ag % xqxot

- proof. small -Ag = big

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. enc(sk,x) — enc(sk,f(x)) e A; small

| t I ~ Xl't

sk A;

enc(sk, x;)

multiplication: t - A1 Ag % xqxot

- proof. small -Ag =

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. enc(sk,x) — enc(sk,f(x)) e A; small

| t I ~ Xl't

multiplication: t - A{Ay = x1x9t

- proof. small -Ag = small

fully homomorphic encryption

security. enc(sk, x) hides x

functionality. enc(sk,x) — enc(sk,f(x)) e A; small

| t I ~ Xl't

sk A;

enc(sk, x;)
addition: t- (A1 + Ag) = (x1 + x2)t
multiplication: t - A{Ay = x1x9t

polynomials: t - flA1, ..., Ap) = flx1,...,x)t
—_——

Ar

fully homomorphic encryption

[«] ~3[] @ Anidesx
sk A
e A small

enc(sk, x)

fully homomorphic encryption

]~ e
sk A e

enc(sk, x)

fully homomorphic encryption

O 1~ e

sk A

enc(sk, x)

fully homomorphic encryption

]~ e
sk A e

enc(sk, x)

(s —1) (B +xl> ~ xt
Et’_/ sB+e

fully homomorphic encryption

I;I ~ x eAhidesx\/
sk A e

enc(sk, x)

([))

fully homomorphic encryption

]~ o
sk A
eAsmaII

enc(sk, x)

([))

fully homomorphic encryption

e A small

— LSB

MSB

fully homomorphic encryption

e A small

LSB

(I 21 41 --- 11

MSB

fully homomorphic encryption

e A small

(I 2 41 --- %I G—I(M)

fully homomorphic encryption

]~ o
sk A
eAsmaII

enc(sk, x)

(s —1) (B +xl)zxt
%{_/ sB +e

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A
e A small v/

enc(sk, x)

B
(s —1)G'G_1< +xl>xxt
Y sB +e

A

fully homomorphic encryption

sk A

enc(sk, x)
new t
——
(s —1)G- ~xt

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A

enc(sk, x)

new t B new t
(s —1)G-G™! +xG | ~x'tG
M sB +e

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A
e A small v/

enc(sk, x)

(s —1) - ((?)—i—xG) ~ xtG
Ht’_/ sB+e

'

A

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A

enc(sk, x)

alternatively. t - A ~ x - tG

addition: t - (A1 + AQ) ~ (x1 —|—XQ) -tG

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A

enc(sk, x)

alternatively. t - A =~ x - tG
addition: t- (A + Ag) = (x1 + x2) - tG

multiplication: t - (A1 - G™1(Ag)) ~ x1x3 - tG

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A

enc(sk, x)

alternatively. t - A =~ x - tG
addition: t- (A + Ag) = (x1 + x2) - tG
multiplication: t - (A1 - G™1(Ag)) ~ x1x3 - tG

X1X2X3 = (X1XQ)X32 A - G_l(AQ) . G_I(Ag)

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A

enc(sk, x)

alternatively. t - A =~ x - tG
addition: t- (A + Ag) = (x1 + x2) - tG
multiplication: t - (A1 - G™1(Ag)) ~ x1x3 - tG

X1X9X3 = X1 (XQX3)2 A - G_l(AQ . G_l(Ag))

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A
e A small v/

enc(sk, x)

alternatively. t - A =~ x - tG
addition: t- (A + Ag) = (x1 + x2) - tG
multiplication: t - (A1 - G™1(Ag)) ~ x1x3 - tG

polynomials: t - Ar =~ f(x1,...,x¢) - tG error: degree - poly())

fully homomorphic encryption

I;I ~ x eAhidesx\/

sk A

enc(sk, x)

alternatively. t - A =~ x - tG
addition: t- (A + Ag) = (x1 + x2) - tG
multiplication: t - (A1 - G™1(Ag)) ~ x1x3 - tG

circuits: t - Af‘ %f(xl’ . 7xf) . tG error:)\O(depth)

eigenvectors, revisited

lemmal. t-A;=xt = t- Ar =flx)t

eigenvectors, revisited

lemmal. t-(A;—xI)=0 = t- (Ar—flX)I) =0

for any polynomial f; x = (x1,...,x¢)

eigenvectors, revisited
lemmal. t-(A;—xI)=0 = t- (Ar—flX)I) =0

lemmall. VA;
[Al —X11 ‘ | Ag—XgI] Af—f(x)I

[GSW13, BGGHNSVV14, GVW15, ..]

eigenvectors, revisited
lemmal. t-(A;—xI)=0 = t- (Ar—flX)I) =0

lemma ll. VA;,Vx,Vf,3 Hy,
[Al —x11 ‘ cee | Ay —XEI] : Hf,x = Af_f(x)l

[GSW13, BGGHNSVV14, GVW15, ..]

eigenvectors, revisited
lemmal. t-(A;—xI)=0 = t- (Ar—flX)I) =0

lemmalll. VA;, Vx, Vf, 3 Hy,
Ay —xi X |- | Ap —xed] - Hpy = Ar— fIX)I
[GSW13, BGGHNSVV14, GVW15, ...]
claim. lemma Il = lemmal|

proof. multiply both sides by t: observe 0 - Hy,, = 0

eigenvectors, revisited

lemma ll. VA;,Vx,Vf,3 Hy,
[Al —x11 ‘ cee | Ay —XZI] : Hf,x = Af_f(x)l

proof. handle 4+ and x

eigenvectors, revisited

lemma ll. VA;,Vx,Vf,3 Hy,
[Al —x11 ‘ cee | Ay —XEI] : Hf,x = Af_f(x)l

proof. handle +

[AlxllAQXQI]() :(A1—|—A2)—(X1+XQ)I

Ay

H+,x1 X2

eigenvectors, revisited

lemma ll. VA;,Vx,Vf,3 Hy,
[Al —x11 ‘ cee | Ay —XZI] : Hf,x = Af_f(x)l

proof. handle +

[Al—x11|A2—xQI] (I) :(Al —|—A2)—()C1+X2)I

H+,x1 X2

eigenvectors, revisited

lemma ll. VA;,Vx,Vf,3 Hy,

[Al —X11 ‘ ce | Ag —Xgl] . Hﬁx = Af—f(x)I
proof. handle X
[Al —X11 | A2 - XQI] () == A1A2 —x1x21
——
Ax

H X,X1,X9

eigenvectors, revisited

lemma ll. VA;,Vx,Vf,3 Hy,

[Al —X11 ‘ ce | Ag —Xgl] . Hﬁx = Af—f(x)I
proof. handle X
Ao
[Al —X11 | A2 - XQI] == A1A2 —x1x21
——
Ax

H X,X1,X9

eigenvectors, revisited

lemma ll. VA;,Vx,Vf,3 Hy,

[Al —X11 ‘ ce | Ag —Xgl] . Hﬁx = Af—f(x)I
proof. handle X
A
[Al —X11 | A2 - XQI] == A1A2 —x1x21
——
xll Ay

H X,X1,X9

eigenvectors, revisited”

lemma ll. VA;,Vx,Vf,3 Hy,
[Al —x11 ‘ cee | Ay —XEI] : Hf,x = Af_f(x)l

A, I |— A

eigenvectors, revisited”

lemma II*. VA;, Vx, Vf, 3 small Hy,

[Al —x1G | oo | Ay —XEG] : Hf,x = Af_f(x)G

Ai | —> Ai G

eigenvectors, revisited”
lemmal*. t-A; = x; - tG = t-Ar=flx) - tG

lemma II*. VA;, Vx, Vf, 3 small Hy,
[Al —X1G | tee ’ Ag —XZG] . Hﬁx = Af—f(x)G

claim. lemma II* = lemma I*

eigenvectors, revisited”
lemmal*. t-A; = x; - tG = t-Ar=flx) - tG

lemma II*. VA;, Vx, Vf, 3 small Hy,
[Al —X1G | s ’ Ag —XZG] . Hﬁx = Af—f(x)G
claim. lemma II* = lemma I*

proof. multiply both sides by t: observe small - Hy,, ~ 0

eigenvectors, revisited”

lemma II*. VA;, Vx, Vf, 3 small Hy,
[Al —X1G | tee ’ Ag —XZG] . Hﬁx = Af—f(x)G

proof. handle + and x

eigenvectors, revisited”

lemma II*. VA;, Vx, Vf, 3 small Hy,
[Al —X1G | cee ’ Ag —XZG] . Hﬁx = Af—f(x)G
proof. handle +

[Al —x1G | Aoy —XQG} (!) = (A1 +A2) — (x1 +X2)G

I

small

eigenvectors, revisited”

lemma II*. VA;, Vx, Vf, 3 small Hy,
[Al —X1G | tee ’ Ag —XZG] . Hﬁx = Af—f(x)G

proof. handle X

[Al — le | AQ — XQG} A1 — x1x2G
xll

small?

eigenvectors, revisited”

lemma II*. VA;, Vx,Vf, 3 small Hy,
A1 —x1G | - | Ay — xG] - Hy, = Ar— fix)G
proof. handle X
(G (A)) _
A1 —x1G | Ay — x2G] =A1G 1(Ag) — x1x2G
x11

small

eigenvectors, revisited”

lemma II*. VA;, Vx, Vf, 3 small Hy,
[Al —X1G | cee ’ Ag —XZG] . Hﬁx = Af—f(x)G
proof. handle X

G 1(Ay))
[Al —x1G | Aoy —XQG} = AG™ (Ag) —x1x20G
|

X1 A

small

eigenvectors, revisited”

lemma II*. VA;, Vx, Vf, 3 small Hy,
[Al —X1G | tee ’ Ag —XZG] . Hﬁx = Af—f(x)G

insight. A;, Ar € ZZXO(" logq)

eigenvectors, revisited”

lemma II*. VA;, Vx, Vf, 3 small Hy,
[Al —X1G | tee ’ Ag —XZG] . Hﬁx = Af—f(x)G

nxO0(nlogq)

insight. A;, Ar € Zg where n,log g = poly(\, depth)

functional commitment

commitment

commitment

B

commitment

commitment

—& + om —*

commitment opening

commitment

commit(crs, x) — (o, st) commitment, state

—& + om —*

commitment opening

commitment

commit(crs, x) — (o, st) commitment, state
open(st) — 7 opening

verify(crs, o, y, m) — 0/1

—& + om —*

commitment opening

commitment

commit(crs, x) — (o, st) commitment, state
open(st) — 7 opening

verify(crs, o, y, m) — 0/1

correctness. verify(crs, o, x,) = 1

commitment

commit(crs, x) — (o, st) commitment, state
open(st) — 7 opening

verify(crs, o, y, m) — 0/1

correctness. verify(crs, o, x,) = 1
binding. cannot produce o with openings g, 71 to yg # y1

hiding. o hides x

commitment

commit(crs, x) — (o, st) commitment, state
open(st) — 7 opening

verify(crs, o, y, m) — 0/1

correctness. verify(crs, o, x,) = 1
binding. cannot produce o with openings g, 71 to yg # y1

succinctness. |o| < |x]|

functional commitment

commit(crs, f) — (o, st)

g

commitment

functional commitment

commit(crs, f) — (o, st)

Ly + /W

commitment opening

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

Ly + /W

commitment opening

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

correctness. verify(crs, o, (x,f(x)),) =

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

correctness. verify(crs, o, (x,f(x)),) =

binding. cannot produce ¢ with openings x, g, 1 to yo # 11

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

correctness. verify(crs, o, (x,f(x)),) =
binding. cannot produce ¢ with openings x, g, 1 to yo # 11

succinctness. |o|, |7| < |f]

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS
crs: A, ..., Ay

here, x = (x1,...,x¢) € {0,1}, f: {0,1}¢ — {0,1}

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS
crs: A, ..., Ay

commit: 0 := Ay ie, [o| = poly(), depth)

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS
crs: A, ..., Ay

commit: 0 := Ay open : 7 := Hy,

functional commitment

commit(crs, f) — (o, st)
open(st,x) —

verify(crs, o, (x,y),m) — 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS
crs: A, ..., Ay
commit: 0 := Ay open : 7 := Hy,

verify: wissmalland [A; —x1G | -+ | A — x,G] - ™ = Ay — yG

laconic function evaluation

[Quach W Wichs 18, CDGGMP17]

[] [)
' 3 ¥
alice bob

x /

learns f{x)

laconic function evaluation

[Quach W Wichs 18, CDGGMP17]

[] [)
' digest '
alice < bob
X ciphertext /

> learns f{x)

laconic function evaluation

[Quach W Wichs 18, CDGGMP17]

[] [)
' digest '
alice < bob
X ciphertext /

> learns f{x)

security. ciphertext leaks only f{x) (nothing else about x)

laconic function evaluation

[Quach W Wichs 18, CDGGMP17]

[] [)
' digest '
alice < bob
X ciphertext /

> learns f{x)

security.

efficiency. = alice sends x (faster than computing 1)

laconic function evaluation

[Quach W Wichs 18, CDGGMP17]

[] [)
' digest '
alice < bob
X ciphertext /

> learns f{x)

security.
efficiency. = alice sends x (faster than computing 1)

NOTE. FHE requires more interaction

laconic function evaluation

[Quach W Wichs 18, CDGGMP17]

[] [)
' digest '
alice < bob
x A

> learns f{x)

security.
efficiency. = alice sends x (faster than computing 1)

construction. digest = Ay,..., Ay, Ay

conclusion

1/3. lattices = encrypted computation

[A1 —x1G | -+ | Ap — x/G] - Hp, = Ay — f(x)G

conclusion

1/3. lattices = encrypted computation

[A1 —x1G | -+ | Ap — x/G] - Hp, = Ay — f(x)G

2/3 & 3/3. lattice trapdoors & attribute-based encryption

conclusion

1/3. lattices = encrypted computation

A1 —x1G |- | Ay —xG] - Hyy = Ay — fx)G

2/3 & 3/3. lattice trapdoors & attribute-based encryption

// thank you & enjoy!

