
.

.

.

.

.

.

.

.

encrypted computation
from lattices (1/3)

Hoeteck Wee
NTT research

.

.

.

.

.

.

.

.

BIG DATA

.

.

.

.

.

.

.

.

BIG DATA
Q. privacy + utility?

.

.

.

.

.

.

.

.

BIG DATA
Q. privacy + utility?

encrypted computation

.

.

.

.

.

.

.

.

BIG DATA
Q. privacy + utility?

encrypted computation

3 notions

.

.

.

.

.

.

.

.

BIG DATA
Q. privacy + utility?

encrypted computation

3 notions from lattices

.

.

.

.

.

.

.

.

BIG DATA
Q. privacy + utility?

encrypted computation

3 notions + 1 equation

.

.

.

.

.

.

.

.

fully homomorphic encryption

functionality.

user

service
provider

sensitive data
health, financial

.

.

.

.

.

.

.

.

fully homomorphic encryption
syntax. enc(sk, ·), dec(sk, ·)

functionality.

user

service
provider

sensitive data
health, financial

.

.

.

.

.

.

.

.

fully homomorphic encryption
syntax. enc(sk, ·), dec(sk, ·)

functionality. dec(sk, enc(sk, x)) = x

user

service
provider

sensitive data
health, financial

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. dec(sk, enc(sk, x)) = x

user

service
provider

sensitive data
health, financial

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) eval,f7→ enc(sk, f(x)) homomorphic evaluation

user

service
provider

sensitive data
health, financial

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) eval,f7→ enc(sk, f(x))

user

service
provider

sensitive data
health, financial

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) eval,f7→ enc(sk, f(x))

user

service
provider

sensitive data
health, financial

encrypted input

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) eval,f7→ enc(sk, f(x))

user

service
provider

sensitive data
health, financial

encrypted input

encrypted output

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) eval,f7→ enc(sk, f(x))

FHE for circuits from lattices

[Gentry 09, Brakerski Vaikuntanathan 11]

(B, sB

+ e

)

≈c uniform

B
s

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) eval,f7→ enc(sk, f(x))

FHE for circuits from LWE
[Gentry 09, Brakerski Vaikuntanathan 11]

(B, sB+ e) ≈c uniform

B
s

+
e

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) eval,f7→ enc(sk, f(x))

FHE for circuits from LWE
[Gentry 09, Brakerski Vaikuntanathan 11, Gentry Sahai Waters 13]

(B, sB+ e) ≈c uniform

B
s

+
e

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

over Zq

enc(sk, x)

A
= x t

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

enc(sk, x)

A

= x t

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

enc(sk, x)

A
= x t

t: eigenvector

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

enc(sk, xi)

Ai
= xi t

t: eigenvector

enc(sk, x1), enc(sk, x2)
?7→ enc(sk, x1 + x2), enc(sk, x1x2)

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

enc(sk, xi)

Ai
= xi t

addition: t · (A1 + A2) = (x1 + x2)t

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

enc(sk, xi)

Ai
= xi t

addition: t · (A1 + A2) = (x1 + x2)t

multiplication: t ·

A1A2

= x1x2t

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

enc(sk, xi)

Ai
= xi t

addition: t · (A1 + A2) = (x1 + x2)t

multiplication: t · A1A2 = x1x2t

LHS= x1t · A2 = . . .

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

enc(sk, xi)

Ai
= xi t

addition: t · (A1 + A2) = (x1 + x2)t

multiplication: t · A1A2 = x1x2t

polynomials: t · (A1A2 + A3A4) = (x1x2 + x3x4)t

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 1

t
sk

enc(sk, xi)

Ai
= xi t

addition: t · (A1 + A2) = (x1 + x2)t

multiplication: t · A1A2 = x1x2t

polynomials: t · f(A1, . . . ,An)︸ ︷︷ ︸
Af

= f(x1, . . . , xn)t

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 2 + noise

t
sk

enc(sk, xi)

Ai
≈ xi t

addition: t · (A1 + A2) = (x1 + x2)t

multiplication: t · A1A2 = x1x2t

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 2 + noise

t
sk

enc(sk, xi)

Ai
≈ xi t

addition: t · (A1 + A2) ≈ (x1 + x2)t

– proof. small + small = small

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 2 + noise

t
sk

enc(sk, xi)

Ai
≈ xi t

addition: t · (A1 + A2) ≈ (x1 + x2)t

multiplication: t · A1A2 6≈ x1x2t

– proof. small ·A2 = big

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 3 Ai small

t
sk

enc(sk, xi)

Ai
≈ xi t

addition: t · (A1 + A2) ≈ (x1 + x2)t

multiplication: t · A1A2 6≈ x1x2t

– proof. small ·A2 = big

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 3 Ai small

t
sk

enc(sk, xi)

Ai
≈ xi t

addition: t · (A1 + A2) ≈ (x1 + x2)t

multiplication: t · A1A2 ≈ x1x2t

– proof. small ·A2 = small

.

.

.

.

.

.

.

.

fully homomorphic encryption
security. enc(sk, x) hides x

functionality. enc(sk, x) 7→ enc(sk, f(x)) 3 Ai small

t
sk

enc(sk, xi)

Ai
≈ xi t

addition: t · (A1 + A2) ≈ (x1 + x2)t

multiplication: t · A1A2 ≈ x1x2t

polynomials: t · f(A1, . . . ,Aℓ)︸ ︷︷ ︸
Af

≈ f(x1, . . . , xℓ)t

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x

3 A small

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x

3 A small

(s − 1)︸ ︷︷ ︸
t

(

 B

sB+ e

 + xI

)

≈ 0

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x

3 A small

(s − 1)︸ ︷︷ ︸
t

( B

sB+ e



+ xI

)
≈ 0

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x

3 A small

(s − 1)︸ ︷︷ ︸
t

( B

sB+ e

 + xI

)
≈ xt

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small

(s − 1)︸ ︷︷ ︸
t

( B

sB+ e

 + xI

)
≈ xt

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small

(s − 1)︸ ︷︷ ︸
t

( B

sB+ e

 + xI

)
≈ xt

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small

M × log q−→ LSB
...

MSB

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small

M = G(
I 2I 4I · · · q

2 I
) LSB

...

MSB

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small

M = G(
I 2I 4I · · · q

2 I
)
G−1(M)

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small

(s − 1)︸ ︷︷ ︸
t

G−1

( B

sB+ e

+ x I

)
≈ x tG

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

(s − 1)︸ ︷︷ ︸
t

G · G−1

( B

sB+ e

+ x I

)
︸ ︷︷ ︸

A

≈ x tG

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

new t︷ ︸︸ ︷
(s − 1)︸ ︷︷ ︸

t

G · G−1

( B

sB+ e

+ x I

)
︸ ︷︷ ︸

A

≈ x tG

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

new t︷ ︸︸ ︷
(s − 1)︸ ︷︷ ︸

t

G · G−1

( B

sB+ e

+ xG

)
︸ ︷︷ ︸

A

≈ x
new t︷︸︸︷
tG

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

(s − 1)︸ ︷︷ ︸
t

· G−1

( B

sB+ e

+ xG

)
︸ ︷︷ ︸

A

≈ x tG

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

alternatively. t · A ≈ x · tG

addition: t · (A1 + A2) ≈ (x1 + x2) · tG

multiplication: t · (A1 ·G−1(A2)) ≈ x1x2 · tG

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

alternatively. t · A ≈ x · tG

addition: t · (A1 + A2) ≈ (x1 + x2) · tG

multiplication: t · (A1 ·G−1(A2)) ≈ x1x2 · tG

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

alternatively. t · A ≈ x · tG

addition: t · (A1 + A2) ≈ (x1 + x2) · tG

multiplication: t · (A1 ·G−1(A2)) ≈ x1x2 · tG

x1x2x3 = (x1x2)x3: A1 ·G−1(A2) ·G−1(A3)

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

alternatively. t · A ≈ x · tG

addition: t · (A1 + A2) ≈ (x1 + x2) · tG

multiplication: t · (A1 ·G−1(A2)) ≈ x1x2 · tG

x1x2x3 = x1(x2x3): A1 ·G−1(A2 ·G−1(A3))

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

alternatively. t · A ≈ x · tG

addition: t · (A1 + A2) ≈ (x1 + x2) · tG

multiplication: t · (A1 ·G−1(A2)) ≈ x1x2 · tG

polynomials: t · Af ≈ f(x1, . . . , xℓ) · tG error: degree · poly(λ)

.

.

.

.

.

.

.

.

fully homomorphic encryption

t
sk

enc(sk, x)

A
≈ x t 2 A hides x✓

3 A small✓

alternatively. t · A ≈ x · tG

addition: t · (A1 + A2) ≈ (x1 + x2) · tG

multiplication: t · (A1 ·G−1(A2)) ≈ x1x2 · tG

circuits: t · Af ≈ f(x1, . . . , xℓ) · tG error: λO(depth)

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · Ai = xit ⇒ t · Af︸︷︷︸
f(A1,...,Aℓ)

= f(x)t

lemma II. ∀Ai

,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI]

·Hf,x =

Af − f(x)I

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

for any polynomial f, x = (x1, . . . , xℓ)

lemma II. ∀Ai

,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI]

·Hf,x =

Af − f(x)I

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai

,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI]

·Hf,x =

Af − f(x)I

[GSW13, BGGHNSVV14, GVW15, ...]

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

[GSW13, BGGHNSVV14, GVW15, ...]

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

[GSW13, BGGHNSVV14, GVW15, ...]

claim. lemma II⇒ lemma I

proof. multiply both sides by t: observe 0 ·Hf,x = 0

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

proof. handle+ and×

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

proof. handle+ and×

[A1 − x1I | A2 − x2I]

 I

I


︸ ︷︷ ︸
H+,x1,x2

= (A1 + A2︸ ︷︷ ︸
A+

)− (x1 + x2)I

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

proof. handle+ and×

[A1 − x1I | A2 − x2I]

 I

I


︸ ︷︷ ︸
H+,x1,x2

= (A1 + A2︸ ︷︷ ︸
A+

)− (x1 + x2)I

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

proof. handle+ and×

[A1 − x1I | A2 − x2I]

 A2

x1I


︸ ︷︷ ︸
H×,x1,x2

= A1A2︸ ︷︷ ︸
A×

−x1x2I

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

proof. handle+ and×

[A1 − x1I | A2 − x2I]

 A2

x1I


︸ ︷︷ ︸
H×,x1,x2

= A1A2︸ ︷︷ ︸
A×

−x1x2I

.

.

.

.

.

.

.

.

eigenvectors, revisited

lemma I. t · (Ai − xiI) = 0 ⇒ t · (Af − f(x)I) = 0

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

proof. handle+ and×

[A1 − x1I | A2 − x2I]

 A2

x1I


︸ ︷︷ ︸
H×,x1,x2

= A1A2︸ ︷︷ ︸
A×

−x1x2I

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I. t · Ai = xit ⇒ t · Af = f(x)t

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

Ai , I 7→ Ai , G

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I. t · Ai = xit ⇒ t · Af = f(x)t

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

Ai , I 7→ Ai , G

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

claim. lemma II∗ ⇒ lemma I∗

proof. multiply both sides by t: observe small ·Hf,x ≈ 0

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

claim. lemma II∗ ⇒ lemma I∗

proof. multiply both sides by t: observe small ·Hf,x ≈ 0

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

[A1 − x1G | A2 − x2G]

 I

I


︸ ︷︷ ︸
small

= (A1 + A2)− (x1 + x2)G

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

[A1 − x1G | A2 − x2G]

 A2

x1I


︸ ︷︷ ︸
small?

=A1A2 − x1x2G

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

[A1 − x1G | A2 − x2G]

 G−1(A2)

x1I


︸ ︷︷ ︸

small

=A1G−1(A2)− x1x2G

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

[A1 − x1G | A2 − x2G]

 G−1(A2)

x1I


︸ ︷︷ ︸

small

= A1G−1(A2)︸ ︷︷ ︸
A×

−x1x2G

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

insight. Ai,Af ∈ Zn×O(n log q)
q

.

.

.

.

.

.

.

.

eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

insight. Ai,Af ∈ Zn×O(n log q)
q where n, log q = poly(λ, depth)

.

.

.

.

.

.

.

.

functional commitment

commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

.

.

.

.

.

.

.

.

functional commitment

commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

.

.

.

.

.

.

.

.

functional commitment

commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

x

commitment

.

.

.

.

.

.

.

.

functional commitment

commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

x

commitment
+

opening
→ x

.

.

.

.

.

.

.

.

functional commitment
commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

x

commitment
+

opening
→ x

.

.

.

.

.

.

.

.

functional commitment
commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

x

commitment
+

opening
→ x

.

.

.

.

.

.

.

.

functional commitment
commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

correctness. verify(crs, σ, x, π) = 1

binding. cannot produce σ with openings π0, π1 to y0 6= y1

succinctness. |σ| � |x |

.

.

.

.

.

.

.

.

functional commitment
commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

correctness. verify(crs, σ, x, π) = 1

binding. cannot produce σ with openings π0, π1 to y0 6= y1

hiding. σ hides x

.

.

.

.

.

.

.

.

functional commitment
commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

correctness. verify(crs, σ, x, π) = 1

binding. cannot produce σ with openings π0, π1 to y0 6= y1

succinctness. |σ| � |x |

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st) 7→ π

verify(crs, σ, y, π) 7→ 0/1

f

commitment

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st) 7→ π

verify(crs, σ, y, π) 7→ 0/1

f

commitment
+

opening

x → f (x)

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

f

commitment
+

opening

x → f (x)

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

correctness. verify(crs, σ, (x, f(x)), π) = 1

binding. cannot produce σ with openings x, π0, π1 to y0 6= y1

succinctness. |σ|, |π| � |f |

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

correctness. verify(crs, σ, (x, f(x)), π) = 1

binding. cannot produce σ with openings x, π0, π1 to y0 6= y1

succinctness. |σ|, |π| � |f |

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

correctness. verify(crs, σ, (x, f(x)), π) = 1

binding. cannot produce σ with openings x, π0, π1 to y0 6= y1

succinctness. |σ|, |π| � |f |

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

commit: σ := Af

open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

here, x = (x1, . . . , xℓ) ∈ {0, 1}ℓ, f : {0, 1}ℓ → {0, 1}

commit: σ := Af

open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

commit: σ := Af i.e., |σ| = poly(λ, depth)

open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

commit: σ := Af open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG

.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

commit: σ := Af open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG

.

.

.

.

.

.

.

.

laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f)

.

.

.

.

.

.

.

.

laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

digest

ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f)

.

.

.

.

.

.

.

.

laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

digest

ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f)

.

.

.

.

.

.

.

.

laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

digest

ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f)

.

.

.

.

.

.

.

.

laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

digest

ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f)

NOTE. FHE requires more interaction

.

.

.

.

.

.

.

.

laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

digest

ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f)

construction. digest = A1, . . . ,Aℓ,Af

.

.

.

.

.

.

.

.

conclusion
1/3. lattices⇒ encrypted computation

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

2/3 & 3/3. lattice trapdoors & attribute‐based encryption

// thank you & enjoy!

.

.

.

.

.

.

.

.

conclusion
1/3. lattices⇒ encrypted computation

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

2/3 & 3/3. lattice trapdoors & attribute‐based encryption

// thank you & enjoy!

.

.

.

.

.

.

.

.

conclusion
1/3. lattices⇒ encrypted computation

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

2/3 & 3/3. lattice trapdoors & attribute‐based encryption

// thank you & enjoy!

