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proof. multiply both sides by t: observe 0 ·Hf,x = 0
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lemma I. t · Ai = xit ⇒ t · Af = f(x)t

lemma II. ∀Ai,∀x,∀f,∃ Hf,x

[A1 − x1I | · · · | Aℓ − xℓI] ·Hf,x = Af − f(x)I

Ai , I 7→ Ai , G
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lemma I. t · Ai = xit ⇒ t · Af = f(x)t

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

Ai , I 7→ Ai , G
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lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

claim. lemma II∗ ⇒ lemma I∗

proof. multiply both sides by t: observe small ·Hf,x ≈ 0
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lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×
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lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

[A1 − x1G | A2 − x2G]

 I

I


︸ ︷︷ ︸
small

= (A1 + A2)− (x1 + x2)G
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lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

[A1 − x1G | A2 − x2G]

 A2

x1I


︸ ︷︷ ︸
small?

=A1A2 − x1x2G
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lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

[A1 − x1G | A2 − x2G]

 G−1(A2)

x1I


︸ ︷︷ ︸

small

=A1G−1(A2)− x1x2G
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lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

proof. handle+ and×

[A1 − x1G | A2 − x2G]

 G−1(A2)
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A×
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lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

insight. Ai,Af ∈ Zn×O(n log q)
q
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eigenvectors, revisited∗

lemma I∗. t · Ai ≈ xi · tG ⇒ t · Af ≈ f(x) · tG

lemma II∗. ∀Ai,∀x, ∀f,∃ smallHf,x

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

insight. Ai,Af ∈ Zn×O(n log q)
q where n, log q = poly(λ, depth)
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functional commitment

commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1
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functional commitment
commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

correctness. verify(crs, σ, x, π) = 1

binding. cannot produce σ with openings π0, π1 to y0 6= y1

succinctness. |σ| � |x |
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functional commitment
commit(crs, x) 7→ (σ, st) commitment, state

open(st) 7→ π opening

verify(crs, σ, y, π) 7→ 0/1

correctness. verify(crs, σ, x, π) = 1

binding. cannot produce σ with openings π0, π1 to y0 6= y1

hiding. σ hides x
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open(st) 7→ π opening
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verify(crs, σ, y, π) 7→ 0/1
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functional commitment
commit(crs, f) 7→ (σ, st)

open(st) 7→ π

verify(crs, σ, y, π) 7→ 0/1

f

commitment
+

opening

x → f (x)
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functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

f

commitment
+

opening

x → f (x)
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open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

correctness. verify(crs, σ, (x, f(x)), π) = 1

binding. cannot produce σ with openings x, π0, π1 to y0 6= y1

succinctness. |σ|, |π| � |f |



.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

correctness. verify(crs, σ, (x, f(x)), π) = 1

binding. cannot produce σ with openings x, π0, π1 to y0 6= y1

succinctness. |σ|, |π| � |f |



.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

correctness. verify(crs, σ, (x, f(x)), π) = 1

binding. cannot produce σ with openings x, π0, π1 to y0 6= y1

succinctness. |σ|, |π| � |f |



.

.

.

.

.

.

.

.

functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

commit: σ := Af

open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG
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functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

here, x = (x1, . . . , xℓ) ∈ {0, 1}ℓ, f : {0, 1}ℓ → {0, 1}

commit: σ := Af

open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG
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functional commitment
commit(crs, f) 7→ (σ, st)

open(st, x) 7→ π

verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

commit: σ := Af i.e., |σ| = poly(λ, depth)

open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG
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verify(crs, σ, (x, y), π) 7→ 0/1

[de Castro Peikert 23] functional commitments for circuits from SIS

crs: A1, . . . ,Aℓ

commit: σ := Af open : π := Hf,x

verify: π is small and [A1 − x1G | · · · | Aℓ − xℓG] · π = Af − yG
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laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f )



.

.

.

.

.

.

.

.

laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f
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ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f )



.

.

.

.

.

.

.

.

laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

digest

ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f )
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laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

digest

ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f )

NOTE. FHE requires more interaction
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laconic function evaluation
[Quach WWichs 18, CDGGMP17]

alice bob
x f

digest

ciphertext

learns f(x)

security. ciphertext leaks only f(x) (nothing else about x)

efficiency. ≈ alice sends x (faster than computing f )

construction. digest = A1, . . . ,Aℓ,Af
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conclusion
1/3. lattices⇒ encrypted computation

[A1 − x1G | · · · | Aℓ − xℓG] ·Hf,x = Af − f(x)G

2/3 & 3/3. lattice trapdoors & attribute‐based encryption

// thank you & enjoy!
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