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Introduction

(Point) Lattices

@ Traditional area of mathematics

o Bridge between number theory and geometry
o Studied by Lagrange, Gauss, ..., Minkowski, ...

@ Many applications in computer science and cryptography

Cryptanalysis: breaking low-exponent RSA

Coding Theory: error correcting codes for wireless communication
Optimization: Integer Programming

Cryptography: post-quantum cryptography and much more

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 3/61



Introduction

Outline

@ Introduction

© Part 1 (geometry)
@ Lattices and Lattice Problems

@ Random Lattices (SIS and LWE)
@ Cryptographic Applications
o Lattice Gadgets

© Part 2 (algebra)
@ Structured Matrices and Polynomials

@ RingSIS and RinglWE
@ FFT and NTT
@ Example: Kyber (ML-KEM)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 4/61



Introduction

(Post-quantum) Lattice-based Cryptography

Post-quantum cryptography

o Can be used on conventional (non-quantum) computers
e Remain secure in the face of quantum attacks

Lattice problems believed to be hard even for quantum computers

NIST Post-Quantum Cryptography standardization
o Process started in 2016
e A good half of the ~ 80 submissions based on lattices
e 2023: lattice-based encryption and signatures picked as PQC standard

Many other desirable properties of lattice-based cryptography

o Fast and Parallelizable
e Versatile: many advanced applications
e Only known solution for some: Fully Homomorphic Encryption
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Introduction

Lattice Cryptography: a Timeline

cryptanalysis crypto design
{1982 1996 {today

o Lenstra, Lenstra, Lovasz (1982) : The “LLL" algorithm
o Ajtai (1996) : Hardness of “Short Integer Solution” (SIS) problem

o Ajtai, Dwork (1997): Pubic Key Encryption
o Hoffstein, Pipher, Silverman (1998): NTRU cryptosystem

M. (2002) : “Generalized compact knapsacks” (RingSIS)

o Efficient version of Ajtai's construction, based on structured lattices
Regev (2005) : Hardness of “Learning with Errors” (LWE)
o Injective variant of Ajtai's SIS, with wider range of applications

... RinglWE ... Fully Homomorphic Encryption ... Lattice Trapdoors
2016-2023: NIST Post-Quantum Cryptography Standardization
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Part 1 (geometry)

© Part 1 (geometry)
@ Lattices and Lattice Problems

@ Random Lattices (SIS and LWE)
@ Cryptographic Applications
o Lattice Gadgets
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Part 1 (geometry)  Lattices and Lattice Problems

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} C R":
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Part 1 (geometry)  Lattices and Lattice Problems

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} C R":
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Part 1 (geometry)  Lattices and Lattice Problems

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} C R":

L= bj-Z={Bx:xcZ"}
i=1

The same lattice has many bases

E:Zn:C,'-Z
i=1
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Part 1 (geometry)  Lattices and Lattice Problems

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,

..,bp} CR™
L= bj-Z={Bx:xcZ"} | L
i=1 . *
The same lattice has many bases d ¢ ’ .
L= Z ci-Z * : .
i=1 ° ° ¢
Definition (Lattice) . y ’ )
A discrete additive subgroup of R” J
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Part 1 (geometry)  Lattices and Lattice Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € Zk) of
length (at most) ||Bx|| < A1

by
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Part 1 (geometry)  Lattices and Lattice Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP,)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € ZK) of
length (at most) ||Bx|| < A1
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Part 1 (geometry)  Lattices and Lattice Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice £(B) and a target point t, find a lattice vector Bx within
distance ||Bx — t|| < u from the target

by
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Part 1 (geometry)  Lattices and Lattice Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVP,)

Given a lattice £(B) and a target point t, find a lattice vector Bx within
distance ||Bx — t|| < yu from the target
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Part 1 (geometry)  Lattices and Lattice Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi, ..., Bx, of length (at most) max; ||Bx;|| < A,

by
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Part 1 (geometry)  Lattices and Lattice Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP.)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi, ..., Bx, of length (at most) max; ||Bx;|| < vA,
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Short Integer Solution (SIS): random lattices

m
-
o Parameters: m,n,q € Z ( xx )
o Key: A€ Zg*™
e Function: fa(x) = Ax mod g ] f
. n A #
@ Choose A uniformly at random l

The SIS lattice: A (A) ={x€Z™: Ax=0 (mod q)} CZ".

@ Does A (A) contain short nonzero vectors?

e Can you solve SVP in /\j(A) when A is chosen at random?
o If not, what makes it hard?
e If not, how is it useful for cryptography?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 13 /61



Part 1 (geometry)  Random Lattices (SIS and LWE)

SIS parameters and Collision Resistant Hashing

o fa(x) = Ax mod g where A € Z*™ | 07T |
@ Restrict fa to x € {0,1}™ m

o Parameters:
e n: main security parameter l...qg
o g =n?=n°" small modulus
e m=2nlog, g = O(nlogn)
e eg., n=256 qg=2% m=8192
@ fa is a compression function mapping 8192 — 4096 bits
o There exist collisions Ax = Ay (mod q)
o Equivalently, z=x—y € {0,1,—1}" satisfies Az =0 (mod q)
e z€ /\ql(A) is a short nonzero lattice vector of length ||z||o, <1

— > —

Remark
If SVP on /\é(A) is hard, then fp is a collision resistant hash function!
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Example: Efficiency

Function: fa(x) = Ax mod g where A € Zg*™

Example parameters: n =28 g =21°® m = 2nlog, q = 2%3
fa maps x € {0,1}™ (8192 bits) to Zg (4096 bits)
Computing fa takes n- m = 22! additions and multiplications on small
(2-byte) numbers
o Easy to parallelize: using AVX512 SIMD instructions at 4 GHz, this is
just 32us.
Key Storage: A takes n- m = 222 bytes, or 4MB
e Storage is not very good
e More complex cryptographic applications may use higher g = 2%*, and
n = 212 = 4096
e In the second part, we will see how to improve efficiency using more
complex mathematics
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Ajtai's one-way function (SIS)

3

@ Parameters: m,n,q € Z
o Key: A€ Zg*™
e Input: x € {0,1}"
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Ajtai's one-way function (SIS)

Parameters: m,n,q € Z
Key: A € Zg*™

Input: x € {0,1}"

Output: fa(x) = Ax mod g

—— 35—
>
>
X
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Ajtai's one-way function (SIS)

m
-

@ Parameters: m,n,q € Z C XX )

o Key: A €Zg ™

e Input: x € {0,1}" T f

e Output: fa(x) = Ax mod g I A 7| Ax

Theorem (A'96)

For m > nlg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fa(x) = Ax mod q is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], ID
schemes [L'08], Signatures [LM'08,GPV'08,...,DDLL'13] ...
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice A, and . o
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice A, and add noise to each » o
lattice point until the entire space is covered. . °
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice A, and add noise to each

° [ ]
lattice point until the entire space is covered. o C N
° X S .
° % S N
How much noise is needed? . h . .
r
Il < VA a2 J . ovelar
° C ° .
@ Each point in a € R" can be written . . .
a=v+rwhereve Land || ~ v\, o ° .
°
° L]
[ ] e ° .
P ° ° ¢
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice A, and add noise to each | o L
lattice point until the entire space is covered.
Increase the noise until the space is uniformly . ~
covered.

Irll < VA Anf2

How much noise is needed? . S . e
J ( ]

e Each point in a € R" can be written
a=v+rwhereve Land || =~ v\, @ ©
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Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

vl < V- Ap/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.

[} = =
 Daniele Micciancio (UCSD) _ Introduction to Lattices

DA
Jul 2024 17 /61



Part 1 (geometry)  Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

vl < V- Ap/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.

o =) = E DA
Daniele Micciancio (UCSD)

Introduction to Lattices Jul 2024 17 /61



Part 1 (geometry)  Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

Il < VA Anf2

o Each point in a € R" can be written
a=v+rwherev e L and [[r| & /nA,.

o =) = E DA
Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 /61



Part 1 (geometry)  Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed? [MR]

I¥ll < (log n) - v/ - An/2

o Each point in a € R" can be written
a=v+rwherev e L and [[r| & /nA,.

e a € R"/A is uniformly distributed.

DA
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed? [MR]

¥l < (log n) - v/ - An/2

o Each point in a € R" can be written
a=v+rwherev e L and [[r| & /nA,.

e a € R"/A is uniformly distributed.
o Think of R” ~ LA [GPV'07]

m] = = =
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Security of Ajtai's function (sketch)
@ Generate random points a; = v; + r;, where

e v; is a random lattice point
e r; is a random error vector of length [|r;|| &~ /nA,
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Security of Ajtai's function (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
e r; is a random error vector of length [|r;|| &~ /nA,

e A =[ay,...,apy] is distributed almost uniformly at random in R™™,
qg=n%Y, m= 0(nlogq) = O(nlogn), so
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Security of Ajtai's function (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
e r; is a random error vector of length [|r;|| &~ /nA,

e A =[ay,...,apy] is distributed almost uniformly at random in R™™,
qg=n%Y, m= 0(nlogq) = O(nlogn), so
o if we can break Ajtai’s function fa, then
e we can find a vector z € {—1,0,1}™ such that

Za;z,- =0
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Security of Ajtai's function (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
o r; is a random error vector of length ||r;|| = /nA

e A =[ay,...,apy] is distributed almost uniformly at random in R"*™
qg=n%Y, m= 0(nlogq) = O(nlogn), so

o if we can break Ajtai’s function fa, then

e we can find a vector z € {—1,0,1}™ such that

Zv,+r z,—Zaz,—O

@ Rearranging the terms yields a lattice vector
Z VizZj = — Z rizi

of length at most || > rizi|| &~ /m - max||r;|| = n- A,

Introduction to Lattices
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Regev's Learning With Errors (LWE)

o AcZIk scZk ecem.

sals ) ke et
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Regev's Learning With Errors (LWE)

o AcZIk scZk ecem.

e ga(s;e) =As+emod g

@ Learning with Errors: Given A x
and ga(s,e), recover s.
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Regev's Learning With Errors (LWE)

o AcZIk scZk ecem.

e ga(s;e) =As+emod g

@ Learning with Errors: Given A x
and ga(s,e), recover s.

Theorem (R'05)

The function ga(s,e) is hard to m A T
invert on the average, assuming
SIVP is hard to approximate in the
worst-case.

-/

Applications: CPA PKE [R'05], CCA PKE [PW'08], (H)IBE
[GPV'08,CHKP'10,ABB'10], FHE [...,B'12,AP'13,GSW'13], ...
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Hermite Normal Form (HNF)

@ Assuming A is nondegenerate (i.e., AZg = Zg), one can find
nonsingular U € Z™*™ such that UA = [I | H]
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o [I | H] is called the Hermite Normal Form (HNF) of A, and can be
efficiently computed from A
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Hermite Normal Form (HNF)

@ Assuming A is nondegenerate (i.e., AZg = Zg), one can find
nonsingular U € Z™*™ such that UA = [I | H]

o [I | H] is called the Hermite Normal Form (HNF) of A, and can be
efficiently computed from A

e Putting A in HNF does not decrease the security of cryptographic
functions [M'01]:
o Breaking fp is equivalent to breaking fya(x) = U - fa(x) because
y — Uy is injective.
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Hermite Normal Form (HNF)

@ Assuming A is nondegenerate (i.e., AZg = Zg), one can find
nonsingular U € Z™*™ such that UA = [I | H]
o [I | H] is called the Hermite Normal Form (HNF) of A, and can be
efficiently computed from A
e Putting A in HNF does not decrease the security of cryptographic
functions [M'01]:
o Breaking fp is equivalent to breaking fya(x) = U - fa(x) because
y — Uy is injective.
e Similarly, inverting ga is equivalent to inverting gay
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

e Equivalent HNF variant of SIS/LWE [M'01]:
° f|./|(X) = fa(x) for A = [l | —H], where H € ng(m—n)
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o gy(s,e) = ga(s,e) for A = { I;I } where H € ng—k)xk
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

e Equivalent HNF variant of SIS/LWE [M'01]:
° f|./|(x) = fA(X) for A = [l ‘ 7H], where H € ng(m—n)

° g|/-|(S, e) = ga(s,e) for A = { I;I ] where H € ngfk)xk

o Parameters k +n = m: n=m—k, m—n=k
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

e Equivalent HNF variant of SIS/LWE [M'01]:
° f|./|(x) = fA(X) for A = [l ‘ 7H], where H € ng(m—n)

o gi(s,e) = ga(s,e) for A = { I;I ] where H € ng—k)xk

o Parameters k +n=m: n=m-—k, m—n=k
@ Input: set e = x and pick random s € Zz
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

e Equivalent HNF variant of SIS/LWE [M'01]:
° f|./|(x) = fA(X) for A = [l ‘ 7H], where H € ng(m—n)

o gi(s,e) = ga(s,e) for A = { I;I ] where H € ng—k)xk

o Parameters k +n=m: n=m-—k, m—n=k
@ Input: set e = x and pick random s € Zz
e Can compute gj,(Zq, x) — f}(x)

tetso) = 1w (| [sex)
= (IH=HDs+[I| —H]x = f}(x)
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

e Equivalent HNF variant of SIS/LWE [M'01]:
° f|./|(x) = fA(X) for A = [l ‘ 7H], where H € ng(m—n)

o gi(s,e) = ga(s,e) for A = { I;I ] where H € ng—k)xk

Parameters kK +n = m: n=m-—k, m—n=k

e o

Input: set e = x and pick random s € Zz
Can compute g{;(Zg,x) — f4(x)

tais) = 11w (| [sex)
= (IH=HDs+[l| —H]x = f}(x)

Similarly, f;(x) — g{;(Z&,x) = g{y(s,x) + g{4(Z£,0), for s = —x;

X = [ X1 ] S——xp  gh(s.x) = [ —_I-)I:;2++x>;1 } _ [ fﬁ(()X) ]
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Hardness of SIS/LWE

@ fp and ga are essentially the same function, parametrized by
dimensions k + n = m, modulus g and bound ||x|| <
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Hardness of SIS/LWE

@ fp and ga are essentially the same function, parametrized by
dimensions k + n = m, modulus g and bound ||x|| <
@ SIS [A'96] usually formulated using fa(x) = Ax

o Larger 3, resulting in a compression (hash) function
o Collision resistant based on hardness of n-dim. lattices
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Hardness of SIS/LWE

@ fp and ga are essentially the same function, parametrized by
dimensions k + n = m, modulus g and bound ||x|| <
@ SIS [A'96] usually formulated using fa(x) = Ax

o Larger 3, resulting in a compression (hash) function
o Collision resistant based on hardness of n-dim. lattices

e LWE [R'05] usually formulated using ga(s,x) = As + x

e Smaller 3, resulting in an injective function. (No collisions!)
e Hard to invert based on hardness of k-dim. lattices.
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Hardness of SIS/LWE

fa and ga are essentially the same function, parametrized by
dimensions k + n = m, modulus g and bound ||x|| <
SIS [A'96] usually formulated using fa(x) = Ax
o Larger 3, resulting in a compression (hash) function
o Collision resistant based on hardness of n-dim. lattices
LWE [R'05] usually formulated using ga(s,x) = As + x

e Smaller 3, resulting in an injective function. (No collisions!)
e Hard to invert based on hardness of k-dim. lattices.

Proof techniques and applications are quite different depending on
whether (5 is small or large.
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Part 1 (geometry)  Random Lattices (SIS and LWE)

Hardness of SIS/LWE

fa and ga are essentially the same function, parametrized by
dimensions k + n = m, modulus g and bound ||x|| <
SIS [A'96] usually formulated using fa(x) = Ax
o Larger 3, resulting in a compression (hash) function
o Collision resistant based on hardness of n-dim. lattices
LWE [R'05] usually formulated using ga(s,x) = As + x

e Smaller 3, resulting in an injective function. (No collisions!)
e Hard to invert based on hardness of k-dim. lattices.

Proof techniques and applications are quite different depending on
whether (5 is small or large.

@ One can use fp both for SIS and LWE
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SIS/LWE as CVP

Candidate OWF
Key: a hard lattice £
Input: x, ||x|| < B
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Part 1 (geometry)  Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF e

Key: a hard lattice £
Input: x, ||x|| < 8 f/'x. /
Output: fz(x) =x mod L
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Part 1 (geometry)  Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF e
Key: a hard lattice £ |-

Input: x, [|Ix|| < 3 .
Output: fz(x) =x mod L / /

e 3 < A\i/2: fr is injective A
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Part 1 (geometry)  Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF e
Key: a hard lattice £ A
Input: x, ||| < 8 AR S

Output: fz(x) =x mod L / ’/

e 3 < A\i/2: fr is injective . gt
e (> A1/2: fr is not injective . e
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Part 1 (geometry)  Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF et
Key: a hard lattice £ A
Input: x, [|x]| < 3 A S
Output: fz(x) = x mod £ / y
e B < \1/2: f is injective /& S
e > \/2: fz is not injective . s
e 3> fr is surjective
fr
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Part 1 (geometry)  Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < B
Output: fz(x) = x mod L

e 3 < A\i/2: fr is injective
e (> A1/2: fr is not injective
@ 3 > u: fr is surjective

e 3> p: fr(x) is almost uniform
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Part 1 (geometry)  Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < B
Output: fz(x) = x mod L

e 3 < A\i/2: fr is injective
e (> A1/2: fr is not injective

@ 3 > u: fr is surjective
e (> p: fr(x) is almost uniform

. b2
Question
Are these functions cryptographically 0 b,

hard to invert?
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Part 1 (geometry)  Cryptographic Applications

SIS Property: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.
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Part 1 (geometry)  Cryptographic Applications

SIS Property: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
AczZym, xe{0,1}™, fa(x) = Ax mod g € Zj
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Part 1 (geometry)  Cryptographic Applications

SIS Property: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
AczZm,  xe{0,1}m, fa(x) = Ax mod q € Z] ‘

Pairwise independence:

o Fix x3 #xg9 € {O, l}m, fa
@ Random A @

o fa(x1) and fa(xz) are

independent. m bits nlog q bits
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Part 1 (geometry)  Cryptographic Applications

SIS Property: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
A c ZZXITI' X € {0, 1}m’ fA(X) = Ax mod q c ZZ ‘

Pairwise independence:

o Fix x3 #xg9 € {O, l}m, fa
@ Random A @

o fA(Xl) and fA(Xg) are

independent. m bits nlog q bits

Lemma (Leftover Hash Lemma) {

Pairwise Indepencence + Compression —> Regular
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Part 1 (geometry)  Cryptographic Applications

SIS Property: Regularity

f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
A c ZZXITI' X € {0, 1}m’ fA(X) = Ax mod q c ZZ ‘

Pairwise independence:

o Fix x3 #xg9 € {O, l}m, fa
@ Random A @

o fa(x1) and fa(xz) are

independent. m bits nlog q bits

Lemma (Leftover Hash Lemma) {

Pairwise Indepencence + Compression —> Regular

A: (U({0,1}")) = U(Zj) maps uniform to uniform.
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Part 1 (geometry)  Cryptographic Applications

SIS Application: Commitment

@ Choose A7, Ay at random
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Part 1 (geometry)  Cryptographic Applications

SIS Application: Commitment

@ Choose A7, Ay at random

@ message m € {0,1}" and randomness r € {0,1}"
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Part 1 (geometry)  Cryptographic Applications

SIS Application: Commitment

@ Choose A7, Ay at random
@ message m € {0,1}" and randomness r € {0,1}"

o Commitment: C(m,r) = fia, a,)(M,r) = Aym + Aor.
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Part 1 (geometry)  Cryptographic Applications

SIS Application: Commitment

Choose A1, Ay at random
message m € {0,1}" and randomness r € {0,1}"”

Commitment: C(m,r) = fia, a,)(M,r) = Aym + Aor.

Hiding Property: C(m) hides the message because
A2I’ = fA2(r) ~ U(Zg)
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Part 1 (geometry)  Cryptographic Applications

SIS Application: Commitment

Choose A1, Ay at random
message m € {0,1}" and randomness r € {0,1}"”

Commitment: C(m,r) = fia, a,)(M,r) = Aym + Aor.

Hiding Property: C(m) hides the message because

A2r = fA2(r) [ U(Zg)

@ Binding Property: Finding (m, r) # (m’,r") such that
C(m,r) = C(m’,r") breaks the collision resistance of fia, a,]
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Part 1 (geometry)  Cryptographic Applications

SIS Property: (Approximate) Linear Homomorphism

SIS Function
AczZym xe{0,1}7 fa(x) = Ax mod q € Z7

@ The SIS function is linearly homomorphic:

fa(x1) + fa(x2) = fa(x1 + x2)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 26 /61



Part 1 (geometry)  Cryptographic Applications

SIS Property: (Approximate) Linear Homomorphism

SIS Function
AczZym xe{0,1}7 fa(x) = Ax mod q € Z7

@ The SIS function is linearly homomorphic:

fa(x1) + fa(x2) = fa(x1 + x2)

@ Homomorphism is only approximate:

o If x1, x5 are small, then also x; + x5 is small
e However, x; + x, can be slightly larger than x;, x>
o Domain of fa is not closed under +
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Part 1 (geometry)  Cryptographic Applications

SIS Property: (Approximate) Linear Homomorphism

SIS Function
AczZym xe{0,1}7 fa(x) = Ax mod q € Z7

@ The SIS function is linearly homomorphic:

fa(x1) + fa(x2) = fa(x1 + x2)

@ Homomorphism is only approximate:

o If x1, x5 are small, then also x; + x5 is small
e However, x; + x, can be slightly larger than x;, x>
o Domain of fa is not closed under +

@ fp is also key-homomorphic:

fAl(x) + fAz (X) = fA1+A2 (X)
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Part 1 (geometry)  Cryptographic Applications

SIS Application: One-Time Signatures

e Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1),. .., fa(x;)] = AX (mod q)
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Part 1 (geometry)  Cryptographic Applications

SIS Application: One-Time Signatures

e Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1),. .., fa(x;)] = AX (mod q)

o Key Generation:

o Public Parameter: SIS function key A
o Secret Key: sk = (X, x) two (small) inputs to fa
o Public Key: pk = (Y = fa(X),y = fa(x)) image of sk under fa
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Part 1 (geometry)  Cryptographic Applications

SIS Application: One-Time Signatures

e Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1),. .., fa(x;)] = AX (mod q)

o Key Generation:

o Public Parameter: SIS function key A
o Secret Key: sk = (X, x) two (small) inputs to fa
o Public Key: pk = (Y = fa(X),y = fa(x)) image of sk under fa

@ Message: short vector m € {0,1}/

o Sign(sk,m) = Xm + x, linear combination of secret key
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Part 1 (geometry)  Cryptographic Applications

SIS Application: One-Time Signatures

Extend fa to matrices X = [x1,...,x/]:

fa(X) = [fa(x1),. .., fa(x;)] = AX (mod q)

Key Generation:

o Public Parameter: SIS function key A
o Secret Key: sk = (X, x) two (small) inputs to fa
o Public Key: pk = (Y = fa(X),y = fa(x)) image of sk under fa

Message: short vector m € {0,1}/

Sign(sk, m) = Xm + x, linear combination of secret key

Verify(pk, m, o) uses homomorphic properties to check that

fa(o) = Ia(Xm +x) = fa(X)m+ fa(x) = Ym+y
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Part 1 (geometry)  Cryptographic Applications

Pseudorandomness of LWE

LWE(k, g, m, x) distribution: [A,b] € ZZ’XU{H) where
o A« Zmxk
@S« ZS, e+ "
ob=As+e

Definition (Search LWE)

Given [A,b] recover s and e = b — As

Definition (Decision LWE)

Distinguish [A, b] from the uniform distribution over Zg’x(kﬂ)
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Part 1 (geometry)  Cryptographic Applications
Pseudorandomness of LWE

LWE(k, g, m, x) distribution: [A,b] € Zg’x(kﬂ) where
o A« Zmxk
@S« ZS, e+ "
ob=As+e

Definition (Search LWE)

Given [A,b] recover s and e = b — As

Definition (Decision LWE)

Distinguish [A, b] from the uniform distribution over Zg’x(kﬂ)

Theorem (Search to Decision Reduction (informal))

For a wide range of parameters, if Search LWE is hard, then Decision LWE
is hard.
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Part 1 (geometry)  Cryptographic Applications

Encrypting with LWE

Idea: if [A, b] is pseudorandom, then we can use it to mask a message
Private Key Encryption
@ Gen(k): output random s < Zg
@ Encs(m):
o Choose A < Z7* and e +— x™ at random

o Letb=As+ e (mod q)
o Output [A,b + m|
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Part 1 (geometry)  Cryptographic Applications

Encrypting with LWE

Idea: if [A, b] is pseudorandom, then we can use it to mask a message
Private Key Encryption
@ Gen(k): output random s < Zg
@ Encs(m):
o Choose A < Z7* and e +— x™ at random
o Letb=As+ e (mod q)
o Output [A,b + m|
@ Dec([A,c])=c—As=m+e
@ Problems:

o Decryption is “approximately” correct [CKKS 2016]
o A passive adversary can completely break the scheme [Li,M. 2021]

@ Solution: encode m with an error correcting code
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Part 1 (geometry)  Cryptographic Applications

Regev (private key) encryption

Plaintext modulus: p < g

. m
Message: m € Zj

Scaling factor: A = {gJ

Encg(m) = [A,b + Am] where b = As + e (mod q)
Decs([A, c]) = [<2¢| (mod p)
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Part 1 (geometry)  Cryptographic Applications

Regev (private key) encryption

Plaintext modulus: p < g

. m
Message: m € Zj

Scaling factor: A = {gJ

Encg(m) = [A,b + Am] where b = As + e (mod q)
Decs([A, c]) = [<2¢| (mod p)

Theorem (Correctness)
If || x|loo < A/2 then

Decs(Encs(m)) = [(As re +AA'”) - ASJ —m+[5|=m.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 30/61



Part 1 (geometry)  Cryptographic Applications

Additive Homomorphism
The sum of two encryption
Encs(m;) = [A;,Ais+e;+ %ml]
Ence(my) = [Az Ass+ep+ %mz]
is an encryption of the sum
Ence(mi) + Encs(my) = [A,As+e+ %m] = Ence(my + my)

where
e A=A; +A; (mod q)
e e=e;+ep (modq)
e m=mj;+m; (mod p)
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Part 1 (geometry)  Cryptographic Applications
Error growth
When adding two encryptions
Encs(my;e1) + Encg(my; e) = Encg(m; + my; e; + e2)

with small errors ||e1]|, ||ez2]| < B, the result is an encryption of m; + mj
with slightly larger error

ler + ezl < [lex]| + [le2f] < 25.
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Part 1 (geometry)  Cryptographic Applications

Error growth

When adding two encryptions
Encs(my;e1) + Encg(my; e) = Encg(m; + my; e; + e2)

with small errors ||e1]|, ||ez2]| < B, the result is an encryption of m; + mj
with slightly larger error

ler + ezl < [lex]| + [le2f] < 25.

Remarks:
e If e1, e are random and independent, their sum grows more like v/23

e If x| < (g/p), we can add several ciphertexts, and the results will
still decrypt correctly

o If we keep adding ciphertexts, the error may become too big, and
decryption will fail
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Part 1 (geometry)  Cryptographic Applications

Linear/Affine functions?

Start from a fresh ciphertext with small ||e||oc < 5 < A

Encs(m) = [A,As+e+ Am]

What about multiplying ciphertexts by a constant or computing linear or
affine function?
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Part 1 (geometry)  Cryptographic Applications

Linear/Affine functions?

Start from a fresh ciphertext with small ||e||oc < 5 < A

Encs(m) = [A,As+e+ Am]

What about multiplying ciphertexts by a constant or computing linear or
affine function?

t-Encs(m) = [(tA),(tA)s + te + A(tm)] = Encs(tm)
T Encs(m) = [(TA),(TA)s+ Te+ A(Tm)] = Encg(Tm)
T -Encs(m) +[0,Ac] = [(TA),(TA)s+ Te+ A(Tm +c)]

= Encs(Tm+c)
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Part 1 (geometry)  Cryptographic Applications

Linear/Affine functions?

Start from a fresh ciphertext with small ||e||oc < 5 < A

Encs(m) = [A,As+e+ Am]

What about multiplying ciphertexts by a constant or computing linear or
affine function?

t-Encs(m) = [(tA),(tA)s + te + A(tm)] = Encs(tm)
T-Encs(m) = [(TA),(TA)s+ Te+ A(Tm)] = Encs(Tm)
T -Encs(m) +[0,Ac] = [(TA),(TA)s+ Te+ A(Tm +c)]

= Encs(Tm+c)

Remarks:
@ It works, but error grows to || Te|lcc < m- || T||oo -

@ We need T to be small for final result to be correct
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Part 1 (geometry)  Cryptographic Applications

Public Key Encryption (Regev 2005)

We will use homomorphic properties to transform private key encryption to
public key encryption

e Start from LWE private key encryption scheme (Gen, Enc,Dec)

@ Set parameters n, k, g, x so to support the addition of w ciphertexts
Public Key Encryption scheme (Gen’, Enc’, Dec):

@ Public key: P = Enc(0)

o Encp(m) = [0, Am] + R - P where R « {0,1}%'*w
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Part 1 (geometry)  Cryptographic Applications

Public Key Encryption (Regev 2005)

We will use homomorphic properties to transform private key encryption to
public key encryption

e Start from LWE private key encryption scheme (Gen, Enc,Dec)

@ Set parameters n, k, g, x so to support the addition of w ciphertexts
Public Key Encryption scheme (Gen’, Enc’, Dec):
@ Public key: P = Enc¢(0)

o Encp(m) = [0, Am] + R - P where R « {0,1}%'*w

Theorem (Correctness)

Encp(m) = [0, Am] + REncg(0) = Encg(m + R - 0) = Encg(m)

Theorem (Security)

If w is large enough, Encp(m) ~ Encs(m; x').
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Part 1 (geometry)  Cryptographic Applications

Optimized Public Key Encryption (Lindner,Peikert 2011)

o LWE PKE = “Symmetric Encryption + Linearity"

@ We can also describe it directly in terms of matrices:
o Public Key: P = ga(S,E) = [A,B = AS + E]
o Encryption (of 0): Encp(0)t = P'R = p:(R)
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Part 1 (geometry)  Cryptographic Applications

Optimized Public Key Encryption (Lindner,Peikert 2011)

o LWE PKE = "Symmetric Encryption + Linearity”
@ We can also describe it directly in terms of matrices:
o Public Key: P = ga(S,E) = [A,B = AS + E]
o Encryption (of 0): Encp(0)t = P'R = p:(R)
@ We can use a smaller dimensional A, P (and improve efficiency) using
the SIS/HNF variant of LWE:
e A/S E,R;,R;,R;3 € ZSXk
o Public Key: P = [A, fia (S, E)] = [A,B = AS + E] € Z&*
o Expanded public key: [P*, 1] € Z2<*3
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Part 1 (geometry)  Cryptographic Applications

Optimized Public Key Encryption (Lindner,Peikert 2011)

o LWE PKE = "Symmetric Encryption + Linearity”
@ We can also describe it directly in terms of matrices:
o Public Key: P = ga(S,E) = [A,B = AS + E]
o Encryption (of 0): Encp(0)t = P'R = p:(R)
@ We can use a smaller dimensional A, P (and improve efficiency) using
the SIS/HNF variant of LWE:
A, S, E,R{,Ry,,R3 € ZSXk
Public Key: P = [A, fia (S, E)] = [A,B = AS 4 E] € Z§*2
Expanded public key: [P, 1] € Z2k*3k
Encryption (of 0):

EnCp(O)t = f[pt,”(Rl, Ry, R3) = PtRl + |:

R,

Rs

@ This is the blueprint followed by the ML-KEM (Kyber) cryptosystem
standardized by NIST, but with ZZX" replaced by more compact
“algebraically structured” matrices

2k x k
|2
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Part 1 (geometry)  Lattice Gadgets

Gadgets

Questions:
o Can we encrypt messages m € Zg with plaintext modulus p = g7

o Can we multiply ciphertext by any t € Zg with error growth < g?
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Part 1 (geometry)  Lattice Gadgets

Gadgets

Questions:
o Can we encrypt messages m € Zg with plaintext modulus p = g7

o Can we multiply ciphertext by any t € Zg with error growth < g?
Assume for simplicity g = 2¢. Define the “gadget” vector

gt =1[1,2,4,8,...,2",...,2°7Y

This vector has two fundamental properties:
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Gadgets

Questions:
o Can we encrypt messages m € Zg with plaintext modulus p = g7

o Can we multiply ciphertext by any t € Zg with error growth < g?
Assume for simplicity g = 2¢. Define the “gadget” vector

gt =1[1,2,4,8,...,2",...,2°7Y

This vector has two fundamental properties:

@ Any c € Z, can be written as x‘ - g for some small x € {0,1}*
(written x = g~1(c)).
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Part 1 (geometry)  Lattice Gadgets

Gadgets

Questions:
o Can we encrypt messages m € Zg with plaintext modulus p = g7

o Can we multiply ciphertext by any t € Zg with error growth < g?
Assume for simplicity g = 2¢. Define the “gadget” vector

gt =1[1,2,4,8,...,2",...,2°7Y

This vector has two fundamental properties:

@ Any c € Z, can be written as x‘ - g for some small x € {0,1}*
(written x = g~1(c)).

@ Given c =g- m+ e for some |le||oc < g/4, we can recover m € Zg
(written m = [c],)
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Part 1 (geometry)  Lattice Gadgets

The “Gadget-LWE" encryption scheme

Similar to LWE, but using the gadget vector g instead of scaling factor A
to encode the message.

@ Plaintext modulus p =g
e Encé(m)=[A,As+e+g-m|
o Decg([A,c]) = [c — As],

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 37/61



Part 1 (geometry)  Lattice Gadgets

The “Gadget-LWE" encryption scheme

Similar to LWE, but using the gadget vector g instead of scaling factor A
to encode the message.

@ Plaintext modulus p =g
e Encé(m)=[A,As+e+g-m|
o Decg([A,c]) = [c — As],

Bonus: we can multiply ciphertexts by arbitrary constants (or linear
transformations)

c®Encg(m) = g !(c)" - Encs(gm)
= Encs(g™(c)" g m)
= Encs(c-m)
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Part 1 (geometry)  Lattice Gadgets

The “Gadget-LWE" encryption scheme

Similar to LWE, but using the gadget vector g instead of scaling factor A
to encode the message.

@ Plaintext modulus p =g
e Encé(m)=[A,As+e+g-m|
o Decg([A,c]) = [c — As],

Bonus: we can multiply ciphertexts by arbitrary constants (or linear
transformations)

c®Encg(m) = g !(c)" - Encs(gm)
= Encs(g™(c)" g m)
= Encs(c-m)

Similarly: (g c¢) ® Enc§(m) = Encs(gcm) = Enc§(cm)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 37/61



Part 1 (geometry)  Lattice Gadgets

The “Gadget-LWE" encryption scheme

Similar to LWE, but using the gadget vector g instead of scaling factor A
to encode the message.

@ Plaintext modulus p =g
e Encé(m)=[A,As+e+g-m|
o Decg([A,c]) = [c — As],
Bonus: we can multiply ciphertexts by arbitrary constants (or linear
transformations)
c®Encg(m) = g !(c)" - Encs(gm)
= Encs(g™(c)" g m)
= Encs(c-m)
Similarly: (g c¢) ® Enc§(m) = Encs(gcm) = Enc§(cm)
Remark: error grows by ¢ = log, q instead of g because g~!(c) € {0,1}*
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Part 1 (geometry)  Lattice Gadgets

Other gadgets

@ The "powers-of-two” gadget is just the most common example.

o Easily generalize to arbitrary base:
gt =[1,B,B%, ...,B°:971] ¢ Z*, gives a trade-off between storage
¢ =logg g and error growth B - ¢
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Part 1 (geometry)  Lattice Gadgets

Other gadgets

@ The "powers-of-two” gadget is just the most common example.

o Easily generalize to arbitrary base:
gt =[1,B,B%, ...,B°:971] ¢ Z*, gives a trade-off between storage
¢ =logg g and error growth B - ¢

@ Another useful option is the “Chinese Remainder Theorem” (CRT)
gadget g' = [q/p1, ..., q/pe] where g =[], pi

@ You can even combine a scaling factor A = g/p and a gadget g
(mod p), and encode m € Z, as A - (gm) € Zg.

@ Many optimizations and variants in lattice-based cryptography can be
seen simply as a different choice of gadget g

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 38/61



Part 1 (geometry)  Lattice Gadgets
Application: Key-Switching

The key-switching problem: Enc§(m) + Encg(m)
@ You have a ciphertext C = Enc§(m) = [A,b] under a key s

@ You want to publish some information W that can be used to change
the encryption key to some other z, without leaking any information
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Part 1 (geometry)  Lattice Gadgets
Application: Key-Switching

The key-switching problem: Enc§(m) + Encg(m)
@ You have a ciphertext C = Enc§(m) = [A,b] under a key s

@ You want to publish some information W that can be used to change
the encryption key to some other z, without leaking any information

Solution: W = Encg( [ _15 } )

Theorem (Key-Switching)
Enc§ ©® W = Encg(m)
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Part 1 (geometry)  Lattice Gadgets
Application: Key-Switching

The key-switching problem: Enc§(m) + Encg(m)
@ You have a ciphertext C = Enc§(m) = [A,b] under a key s

@ You want to publish some information W that can be used to change
the encryption key to some other z, without leaking any information

Solution: W = Encg( [ _15 } )

Theorem (Key-Switching)
Enc§ ©® W = Encg(m) {

Cow

CQEncg([ _15 }) — Enc,(C - [ _15 ])
= Enc,(b — As) = Enc,(gm + e) = Enc&(m)
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Part 1 (geometry)  Lattice Gadgets

So far: summary

SIS, LWE: hard lattice problems on random g-ary lattices A4(A)
Technical tool: Lattice gadgets

Strong linear homomorphic properties

Typical applications:

e SIS: collision resistant hashing
o LWE: encryption

@ Main issue: Efficiency!
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Part 2 (algebra)

© Part 2 (algebra)
@ Structured Matrices and Polynomials

@ RingSIS and RinglWE
© FFT and NTT
e Example: Kyber (ML-KEM)
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Part 2 (algebra)

Part 2: Algebraic Lattices

Structured matrices and Polynomial Rings
RingSIS and RinglWE

Algorithms: FFT and NTT

Example: Kyber (ML-KEM)

e 6 o o
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Part 2 (algebra)

Efficiency of Ajtai's function

o g =n°D, m=0(nlogn) > nlog,q

o Eg,. n=064 qg=28 m=1024

0/1
@ fa maps 1024 bits to 512. m
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Part 2 (algebra)

Efficiency of Ajtai's function

o g =n°D, m=0(nlogn) > nlog,q

e Eg,n=064 g=28% m=1024 | 071 |

@ fa maps 1024 bits to 512. m

o Key size: I
nmlog g = O(n?log? n) = 21° = 64KB l...q n

e Runtime: nm = O(n?log n) = 21° J

arithmetic operations
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Part 2 (algebra)

Efficiency of Ajtai's function

o g =n°D, m=0(nlogn) > nlog,q

e Eg,n=064 g=28% m=1024 | 071 |

@ fa maps 1024 bits to 512. m

o Key size: I
nmlog g = O(n?log? n) = 21° = 64KB l...q n

e Runtime: nm = O(n?log n) = 21° J

arithmetic operations

@ Usable, but inefficient
@ Source of inefficiency: quadratic dependency in n

Problem
Can we do better than O(n?) complexity? ‘
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Part 2 (algebra)  Structured Matrices and Polynomials

Efficient lattice based hashing

Idea: use structured matrix A = [A®) | | A(m/")] Al) ¢ Zg "
Theorem (Micciancio 2002) RORNO)
fa is a one-way function, provided . a%i) a?i)
SVP and SIVP are hard to Al) = 2 !
approximate within v & n in the - :
worst case over cyclic lattices )

o Similar idea first used by NTRU (1998)
@ Novelty in Micciancio (2002): provably hard to invert
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Part 2 (algebra)  Structured Matrices and Polynomials

Efficient lattice based hashing

Idea: use structured matrix A = [A®) | | A(m/")] Al) ¢ Zg "
Theorem (Micciancio 2002) RORNO)
fa is a one-way function, provided . a%i) a?i)
SVP and SIVP are hard to A = 2 L
approximate within v & n in the - :
worst case over cyclic lattices )

o Similar idea first used by NTRU (1998)
@ Novelty in Micciancio (2002): provably hard to invert

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024

44 /61



Part 2 (algebra)  Structured Matrices and Polynomials

Can you find a collision? (mod 10)

1 43 86 49 0|26 453 271
8 1 4 3/06 409|526 4|13 217
38149 06 445 2 6|7 13 2
4 38 1/4 9 0¢6(6 4522713
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Part 2 (algebra)  Structured Matrices and Polynomials

Can you find a collision? (mod 10)

100 -1j-1 110|001 1(1 0 -10

1 43 8|6 49 0|26 45|32 71 5
8 1 4 3|/0 6 4 9|5 26 4|1 3 2 7 4
381 4|19 06 4(45 26|71 3 2 8
4 38 1|4 9 06|6 45 2|27 1 3 6
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Part 2 (algebra)  Structured Matrices and Polynomials

Can you find a collision? (mod 10)

L S S O I S A O I S S S A I A A

1 4 3 8(6 49 026 45|32 71 0
8 1 4 3/06 409|526 4|13 27 0
3814906 445267132 0
4 38 1/4 906|645 22713 0
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Part 2 (algebra)  Structured Matrices and Polynomials

Can you find a collision? (mod 10)

1111111111111 111
1 43 86 49 0|26 453 271
8 1 4 3/06 409|526 4|13 217
38149 06 445 2 6|7 13 2
4 38 1/4 9 0¢6(6 4522713
6 9 7 3
6 9 7 3
6 9 7 3
6 9 7 3
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Part 2 (algebra)  Structured Matrices and Polynomials

Can you find a collision? (mod 10)

1 11 14-1 -1 -1 -1/0 0 O O|1 1 1 1
1 4 3 8|6 4 9 0|26 453 271 0
81 4 3|0 6 4 9|5 2 6 4|1 3 27 0
38149 0 6 4|45 2 6|71 3 2 0
4 3814 9 0 6|6 45 2|2 7 1 3 0
6 9 7 3
6 9 7 3
+1x 6 —1x 9 +0 x 7 +1x 3
6 9 7 3
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Part 2 (algebra)  Structured Matrices and Polynomials

Remarks about proofs of security

@ This function is essentially the compression function of hash function
LASH, modeled after NTRU

@ You can still “prove” security based on average case assumption:
Breaking the above hash function is as hard as finding short vectors in
a random lattice A(JAM)|. .. |A(m/1)])

@ ... but we know the function is broken: The underlying random
lattice distribution is weak!

@ Conclusion: Assuming that a problem is hard on average-case is a
really tricky business!
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Part 2 (algebra)  Structured Matrices and Polynomials

Can you find a collision now? (mod 10)

20?7 07?2 20?7?77 7?2 ?20? 7?2 7?2 2?2017 7?2 7 7
1 4 3 8|6 4 9 0|2 6 4 5|3 2 7 -1
8 1 4 3|0 6 -4 9|5 2 6 4|1 3 2 7
38 1 4/9 0 6 -4/45 2 6|7 1 3 =2
4 3 1/4 9 0 6/6 4 5 2(2 7 1 3
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Part 2 (algebra)  Structured Matrices and Polynomials

Can you find a collision now? (mod 10)

77 7 7|77 7 7|77 7 7|2 7 7 2
1 4 3 8|6 4 9 02 6 4 5|3 2 7 -1
8 1 4 3|06 4 9|52 6 41 3 2 7
38 1 4(9 0 6 4(45 2 67 1 3 -2
4 3 8 1|4 9 0 6/6 4 5 2|27 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices
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Part 2 (algebra)  Structured Matrices and Polynomials

Can you find a collision now? (mod 10)

77 7 7|77 7 7|77 7 7|2 7 7 2
1 4 3 8|6 4 9 02 6 4 5|3 2 7 -1
8 1 4 3|06 4 952 6 41 3 2 7
38 1 4(9 0 6 4(45 2 67 1 3 -2
4 3 8 1|4 9 0 6/6 4 5 2|27 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors

in the corresponding random lattices

Theorem (LM'07,PR’07)

Provably collision resistant, assuming the worst case hardness of
approximating SVP and SIVP over anti-cyclic lattices.
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Part 2 (algebra)  Structured Matrices and Polynomials

Polynomial rings

@ Z[X]: set of polynomials with integer coefficients

@ Monic polynomial f(X) = X9 + fy_1 X9 1 +. +f - X+ fh € Z[X]
@ a(X) (mod f(X)) has degree < d

o R=7Z[X]/f(X) =2z
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Part 2 (algebra)  Structured Matrices and Polynomials

Polynomial rings

@ Z[X]: set of polynomials with integer coefficients

@ Monic polynomial f(X) = X9 + fy_1 X9 1 +. +f - X+ fh € Z[X]
@ a(X) (mod f(X)) has degree < d

o R=7Z[X]/f(X) =2z

°

Matrix representation
Ma(X) = (Q(X)), (X : a(X))7 SER) (Xdil ’ a(X)) S ZdXd

where X' - a(X) is reduced (mod (X))
c(X) = a(X) - b(X) mod f(X) then

Max) - b(X) = ¢(X)

Maxy - Mpxy = Mc(x)
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Part 2 (algebra)  Structured Matrices and Polynomials

Examples

o If f(X) =X —1, then X4 =1 and

a0 dd—1
ai a0
M, =
dd—1 4dd-2
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Part 2 (algebra)  Structured Matrices and Polynomials

Examples

o If f(X) =X —1, then X4 =1 and

a0 dd—1
ai a0
M, =
dd—1 4dd-2

o If f(X)=X9+1, then X4 = 1 and

=[] —dd-1

al ao
M, =

ad—1 ad—2

@ What makes X9 + 1 better than X9 — 17
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Part 2 (algebra)  Structured Matrices and Polynomials

Choosing f(X)

o f(X)= X9 -1
e Factorsinto X9 —1=(X—1)- (X971 X972 4... X +1)
e Ability to find collisions is closely related to existence of linear factor
(X-1)
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Part 2 (algebra)  Structured Matrices and Polynomials

Choosing f(X)

o f(X)= X9 -1
o Factorsinto X9 —1=(X—-1)- (X9 1+ X972 4+... X +1)
e Ability to find collisions is closely related to existence of linear factor
(X-1)
o F(X)=X9+1
When d = 2k, the polynomial f(X) is irreducible
This is the most common choice in cryptography
Efficient, easier to implement
These are called "power-of-two” cyclotomic rings
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Part 2 (algebra)  Structured Matrices and Polynomials

Choosing f(X)

o f(X)= X9 -1
o Factorsinto X9 —1=(X—-1)- (X9 1+ X972 4+... X +1)
e Ability to find collisions is closely related to existence of linear factor
(X-1)
o F(X)=X9+1
o When d = 2k, the polynomial f(X) is irreducible
e This is the most common choice in cryptography
o Efficient, easier to implement
e These are called “power-of-two” cyclotomic rings

(]

One may use other irreducible f(X)

o For example, f(X) = XP1 £ XP2 4 ... 4 X +1

o Less convenient, harder to implement
o From now on assume R = Z[X]/(X9 + 1) = Z9 with
d = dim(R) = 2k
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Part 2 (algebra)  Structured Matrices and Polynomials

Algebraic Number Theory

K = Q[X]/f(X) = Q? is called an Algebraic Number Field
o May be defined for any irreducible f(X) € Z[X]
o Here we focus on f(X) = X9 + 1 for d = 2k
R C K is the "Ring of integers” of K
Very special case: d =1 = 2°
° QX]/(X+1)=Q
o ZIX]/(X +1)=Z
@ R generalizes Z C Q to higher dimension d = dim(R)

o Ring element a(X) € R can be stored as vector in Z¢
o It represent a (structured) matrix in Z*9.
o For d = 256 or higher, this is a huge saving in storage

e o

You don't need to known Algebraic Number Theory to understand
Lattice-based cryptography
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Part 2 (algebra)  RingSIS and RingLWE

RingSIS

@ Just like SIS, but using R instead of Z

o Let Ry = R/qR = Z4[X]/f(X)

e Given A € R™™ find “short” x € R™ such that Ax =0 (mod q)
@ What is a “short” ring element a(X) € R?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 52 /61



Part 2 (algebra)  RingSIS and RingLWE

RingSIS

@ Just like SIS, but using R instead of Z
o Let Ry = R/qR = Z4[X]/f(X)
e Given A € R™™, find “short” x € R™ such that Ax =0 (mod q)

@ What is a “short” ring element a(X) € R?
e For power-of-two cyclotomic rings R, just take the norm of the
coefficient vector ||a||
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Part 2 (algebra)  RingSIS and RingLWE

RingSIS

Just like SIS, but using R instead of Z
Let Ry = R/qR = Zq[X]/f(X)
Given A € R™™, find “short” x € R™ such that Ax =0 (mod q)

What is a “short” ring element a(X) € R?

e For power-of-two cyclotomic rings R, just take the norm of the
coefficient vector ||a||

Effective dimension A € ngde

o For large d, it is enough to take n =1 and m = 2nlog, g = 2log, q
e For d =256, g = 216 now A only takes 64d B = 16 KB, instead of
64d> B = 4 MB.

(]
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Part 2 (algebra)  RingSIS and RingLWE

RingLWE

@ Similar, like LWE but using R instead of Z
o Let Ry = R/qR = Z4[X]/f(X)
e Distribution [A, As + e| where A + Rg’Xk, S Rc’;, and e « y

e Search RingLWE: Find s and e =b — As

o Decisional RingLWE: distinguish [A, b] from uniformly random
Rmx(k+l)
q

o Security level is the effective secret dimension dn
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Part 2 (algebra)  RingSIS and RingLWE

RingLWE

Similar, like LWE but using R instead of Z
Let Ry = R/qR = Zq[X]/f(X)
Distribution [A, As + €] where A - RI™K, s <~ RX, and e « x"

e Search RingLWE: Find s and e =b — As

o Decisional RingLWE: distinguish [A, b] from uniformly random
Rmx(k+l)
q

o Security level is the effective secret dimension dn
e Can set k = 1: distinguish [a,a - s + ;] from uniform R&”XZ

o The secret s € Ry is just a ring element
e d serves as a security parameter

@ When k > 1, this is sometime called ModuleLWE.
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Part 2 (algebra)  FFT and NTT

Running time
o Using a(X) instead of M) reduces storage (for keys, ciphertexts,

etc.) from O(d?) to O(d).
@ What about running time?
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Part 2 (algebra)  FFT and NTT

Running time

o Using a(X) instead of M,,) reduces storage (for keys, ciphertexts,
etc.) from O(d?) to O(d).
@ What about running time?

o Computing the product a(X) - b(X) using the naive algorithm still
takes time O(d?)
e This can be reduced to O(d log d)
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Part 2 (algebra)  FFT and NTT

Running time

o Using a(X) instead of M,,) reduces storage (for keys, ciphertexts,
etc.) from O(d?) to O(d).
@ What about running time?
o Computing the product a(X) - b(X) using the naive algorithm still
takes time O(d?)
e This can be reduced to O(d log d)

@ Approach:
o Convert ring elements a(X) € R between their “coefficient

representation [ap, ..., a4—1] and their evaluation representation

(a(w0)7 ey a(wd,l))

o Note that in the evaluation representation, multiplication is
componentwise

(a- b)(wi) = a(wi) - b(wi)

and can be computed with d scalar multiplications
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Part 2 (algebra)  FFT and NTT

FFT based multiplication

@ The polynomial f(X) has d complex roots w; = exp((2j + 1)m2/n)
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Part 2 (algebra)  FFT and NTT

FFT based multiplication

@ The polynomial f(X) has d complex roots w; = exp((2j + 1)m2/n)
@ Using these wy,...,wqy_1 as evaluation points has two advantages

@ Polynomial multiplication happens modulo f(X) because f(w;) =0

@ The mapping between the coefficient and evaluation representation can
be computed in time O(d log d) using the Fast Fourier Transform
(FFT) algorithm
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Part 2 (algebra)  FFT and NTT

FFT based multiplication

@ The polynomial f(X) has d complex roots w; = exp((2j + 1)m2/n)
@ Using these wy,...,wqy_1 as evaluation points has two advantages

@ Polynomial multiplication happens modulo f(X) because f(w;) =0

@ The mapping between the coefficient and evaluation representation can
be computed in time O(d log d) using the Fast Fourier Transform
(FFT) algorithm

e Compute the polynomial product a(X) - b(X) (mod f(X)) as
a(X) - b(X) = fft~1(fft(a) o fft(b))

where o is componentwise multiplication.
e Total running time is 2- O(d log d) + O(d) = O(d log d) arithmetic
operations on complex numbers
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Part 2 (algebra)  FFT and NTT

The Number Theoretic Transform (NTT)

e We want to multiply polynomials in Rq = Z4[X]/f(X)
@ Choose prime g such that g =1 (mod 2d)
o Since 2d divides g — 1 = |Z;], there is an element w € Z} of order 2d

o The values w; = w¥ ™! € Z, are roots of f(w;) =0 (mod q)
e We can perform the FFT computation in Zg, using w

@ This is called the Number Theoretic Transform
. zd d
ntt: Zq — Zq

@ The effective use of NTT to efficiently implement (Ring) lattice
cryptography first introduced and popularized by the SWIFFT hash
function (Lyubashevsky,M.,Peikert,Rosen, 2008)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 56 /61



Part 2 (algebra)  FFT and NTT
Applications

@ All cryptographic applications of SIS and LWE are immediately
adapted to the RingSIS/RingLWE setting: just use R instead of Z
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Part 2 (algebra)  FFT and NTT
Applications

@ All cryptographic applications of SIS and LWE are immediately
adapted to the RingSIS/RingLWE setting: just use R instead of Z

@ How do you build lattice gadgets in the ring setting? e.g., how do you
adapt g =(1,2,4,...) € Z" to R?
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Part 2 (algebra)  FFT and NTT
Applications

@ All cryptographic applications of SIS and LWE are immediately
adapted to the RingSIS/RingLWE setting: just use R instead of Z
@ How do you build lattice gadgets in the ring setting? e.g., how do you
adapt g =(1,2,4,...) € Z" to R?
e Simply note that Z C R, so any g € Z" is also a vector g € R*
o Scalars a(X) = ap € Z are mapped to diagonal matrices M, = ag - |
o For example, the powers-of-two gadget becomes

G=[,21,4l,.. ]

All gadget algorithms (inversion, decomposition) work on ring elements
componentwise, on the coefficients of the input polynomial
a(X) = [ao, ey ad,l]
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Part 2 (algebra)  FFT and NTT
Applications

@ All cryptographic applications of SIS and LWE are immediately
adapted to the RingSIS/RingLWE setting: just use R instead of Z
@ How do you build lattice gadgets in the ring setting? e.g., how do you
adapt g =(1,2,4,...) € Z" to R?
e Simply note that Z C R, so any g € Z" is also a vector g € R*
o Scalars a(X) = ap € Z are mapped to diagonal matrices M, = ag - |
o For example, the powers-of-two gadget becomes

G=[,21,4l,.. ]

All gadget algorithms (inversion, decomposition) work on ring elements
componentwise, on the coefficients of the input polynomial
a(X) = [ao, ey ad,l]
@ Error is measured in the coefficient representation:

o Gadget operations should always be performed on the coefficient

representation

o Can use ntt and ntt™! to convert between coefficient and evaluation

representation
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Part 2 (algebra)  FFT and NTT

Coefficient vs Evaluation representation

@ Ring elements can be equivalently represented as
o coefficient vectors [ag, ...,aq4_1] € Z9, or
o evaluation vectors [a(wp), ..., a(wg—1)] € ZJ
@ Both representations are equally compact, but
o the coefficient representation supports the evaluation of gadget
operations
o the evaluation representation allows to perform ring arithmetics
(additions and multiplications) in linear time O(d)
@ One can convert between the two representations in time O(d log d)
using ntt,ntt ™!, and this is often the bottleneck in practical
implementations of lattice cryptography
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Part 2 (algebra)  Example: Kyber (ML-KEM)

Kyber PKE — Parameters

@ Core component of ML-KEM

@ Parameters:
e Ring dimension d = 28 = 256
e 12-bit prime modulus g = 3329 =13-256 + 1
e secret dimension: k =2,3,4

@ Technically, a full NTT would have required 2d = 512 to divide g — 1,
but 256 is good enough for efficient implementation
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Part 2 (algebra)  Example: Kyber (ML-KEM)

Kyber PKE — Parameters

@ Core component of ML-KEM

@ Parameters:
e Ring dimension d = 28 = 256
e 12-bit prime modulus g = 3329 =13-256 + 1
e secret dimension: k =2,3,4

@ Technically, a full NTT would have required 2d = 512 to divide g — 1,
but 256 is good enough for efficient implementation

e Ring Ry = Z4[X]/(X%¢ +1)
@ Storage (per ring element): d - log, g = 256 - 12 = 3072 bits
@ Security level: k-d =512 768,1024
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Part 2 (algebra)  Example: Kyber (ML-KEM)

Kyber PKE — Algorithms

@ Same as [LP'11] in the ring setting, but precompute ntt when
useful /possible
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Part 2 (algebra)  Example: Kyber (ML-KEM)

Kyber PKE — Algorithms

@ Same as [LP'11] in the ring setting, but precompute ntt when
useful /possible
o Key generation: Gen = (8, [A, b])
o A=ntt(A) e RCI;X", generated from a short seed p € {0,1}2%
@ s,ec Rc’,‘, chosen from distribution x; on small elements
o § =ntt(s), &€ = ntt(e)
eb=Acs+écRf
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Part 2 (algebra)  Example: Kyber (ML-KEM)

Kyber PKE — Algorithms

@ Same as [LP'11] in the ring setting, but precompute ntt when
useful /possible
o Key generation: Gen = (8, [A, b])
o A=ntt(A) e RCI;X", generated from a short seed p € {0,1}2%
@ s,ec Rc’,‘, chosen from distribution x; on small elements
o § =ntt(s), &€ = ntt(e)
eb=Acs+écRf
@ Encryption Enc 4 B](m) = (u, v):

o re Xk e x5

At
o [" } —neey(| A
"4

Bt

ontt(r)) +e+ { Aom ]
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Part 2 (algebra)  Example: Kyber (ML-KEM)

Kyber PKE — Algorithms

@ Same as [LP'11] in the ring setting, but precompute ntt when
useful /possible
o Key generation: Gen = (8, [A, b])
o A=ntt(A) e RCI;X", generated from a short seed p € {0,1}2%
@ s,ec Rc’,‘, chosen from distribution x; on small elements
o § =ntt(s), &€ = ntt(e)
eb=Acs+écRf
@ Encryption Enc 4 B](m) = (u, v):

o re Xk e x5

o {l\:}:ntt_l( é
)

o Decryption: Decg(u, v) = [(v — ntt~1(8 o ntt(u)))/A |

t

t

ontt(r)) +e+ { Aom ]
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Part 2 (algebra)  Example: Kyber (ML-KEM)

Conclusion

Lattice cryptography: mature area building on 420 years of research
Algebraic lattices: key to efficient implementation

Tools and techniques: linear algebra, gadget lattices

Natural homomorphic properties: rich set of applications

Ready to use Public Key Encryption (and Digital Signatures)

Any Questions?
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