
Introduction to Lattices

Daniele Micciancio

July 2024

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 1 / 61



Introduction

1 Introduction

2 Part 1 (geometry)
Lattices and Lattice Problems
Random Lattices (SIS and LWE)
Cryptographic Applications
Lattice Gadgets

3 Part 2 (algebra)
Structured Matrices and Polynomials
RingSIS and RingLWE
FFT and NTT
Example: Kyber (ML-KEM)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 2 / 61



Introduction

(Point) Lattices

Traditional area of mathematics

Bridge between number theory and geometry
Studied by Lagrange, Gauss, ..., Minkowski, ...

◦ ◦ ◦
Many applications in computer science and cryptography

Cryptanalysis: breaking low-exponent RSA
Coding Theory: error correcting codes for wireless communication
Optimization: Integer Programming
Cryptography: post-quantum cryptography and much more

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 3 / 61



Introduction

Outline

1 Introduction

2 Part 1 (geometry)
Lattices and Lattice Problems
Random Lattices (SIS and LWE)
Cryptographic Applications
Lattice Gadgets

3 Part 2 (algebra)
Structured Matrices and Polynomials
RingSIS and RingLWE
FFT and NTT
Example: Kyber (ML-KEM)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 4 / 61



Introduction

(Post-quantum) Lattice-based Cryptography

Post-quantum cryptography

Can be used on conventional (non-quantum) computers
Remain secure in the face of quantum attacks

Lattice problems believed to be hard even for quantum computers

NIST Post-Quantum Cryptography standardization

Process started in 2016
A good half of the ∼ 80 submissions based on lattices
2023: lattice-based encryption and signatures picked as PQC standard

Many other desirable properties of lattice-based cryptography

Fast and Parallelizable
Versatile: many advanced applications
Only known solution for some: Fully Homomorphic Encryption

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 5 / 61



Introduction

Lattice Cryptography: a Timeline

1982 1996 today
cryptanalysis crypto design

Lenstra, Lenstra, Lovasz (1982) : The “LLL” algorithm

Ajtai (1996) : Hardness of “Short Integer Solution” (SIS) problem

Ajtai, Dwork (1997): Pubic Key Encryption
Hoffstein, Pipher, Silverman (1998): NTRU cryptosystem

M. (2002) : “Generalized compact knapsacks” (RingSIS)

Efficient version of Ajtai’s construction, based on structured lattices

Regev (2005) : Hardness of “Learning with Errors” (LWE)

Injective variant of Ajtai’s SIS, with wider range of applications

... RingLWE ... Fully Homomorphic Encryption ... Lattice Trapdoors

2016-2023: NIST Post-Quantum Cryptography Standardization

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 6 / 61



Part 1 (geometry)

1 Introduction

2 Part 1 (geometry)
Lattices and Lattice Problems
Random Lattices (SIS and LWE)
Cryptographic Applications
Lattice Gadgets

3 Part 2 (algebra)
Structured Matrices and Polynomials
RingSIS and RingLWE
FFT and NTT
Example: Kyber (ML-KEM)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 7 / 61



Part 1 (geometry) Lattices and Lattice Problems

Lattices: Definition

e1
e2

The simplest lattice in n-dimensional
space is the integer lattice

Λ = Zn

b1

b2

Other lattices are obtained by
applying a linear transformation

Λ = BZn (B ∈ Rd×n)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 8 / 61



Part 1 (geometry) Lattices and Lattice Problems

Lattices: Definition

e1
e2

The simplest lattice in n-dimensional
space is the integer lattice

Λ = Zn

b1

b2

Other lattices are obtained by
applying a linear transformation

Λ = BZn (B ∈ Rd×n)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 8 / 61



Part 1 (geometry) Lattices and Lattice Problems

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {b1, . . . ,bn} ⊂ Rn:

L =
n∑

i=1

bi · Z

= {Bx : x ∈ Zn}

The same lattice has many bases

L =
n∑

i=1

ci · Z

Definition (Lattice)

A discrete additive subgroup of Rn

b1

b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 9 / 61



Part 1 (geometry) Lattices and Lattice Problems

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {b1, . . . ,bn} ⊂ Rn:

L =
n∑

i=1

bi · Z = {Bx : x ∈ Zn}

The same lattice has many bases

L =
n∑

i=1

ci · Z

Definition (Lattice)

A discrete additive subgroup of Rn

b1

b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 9 / 61



Part 1 (geometry) Lattices and Lattice Problems

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {b1, . . . ,bn} ⊂ Rn:

L =
n∑

i=1

bi · Z = {Bx : x ∈ Zn}

The same lattice has many bases

L =
n∑

i=1

ci · Z

Definition (Lattice)

A discrete additive subgroup of Rn

c1

c2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 9 / 61



Part 1 (geometry) Lattices and Lattice Problems

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {b1, . . . ,bn} ⊂ Rn:

L =
n∑

i=1

bi · Z = {Bx : x ∈ Zn}

The same lattice has many bases

L =
n∑

i=1

ci · Z

Definition (Lattice)

A discrete additive subgroup of Rn

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 9 / 61



Part 1 (geometry) Lattices and Lattice Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x ∈ Zk) of
length (at most) ∥Bx∥ ≤ λ1

b1

b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 10 / 61



Part 1 (geometry) Lattices and Lattice Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x ∈ Zk) of
length (at most) ∥Bx∥ ≤ λ1

b1

b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 10 / 61



Part 1 (geometry) Lattices and Lattice Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x ∈ Zk) of
length (at most) ∥Bx∥ ≤ λ1

b1

b2

λ1

Bx = 5b1 − 2b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 10 / 61



Part 1 (geometry) Lattices and Lattice Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVPγ)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x ∈ Zk) of
length (at most) ∥Bx∥ ≤ γλ1

2λ1

b1

b2

λ1

Bx = 5b1 − 2b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 10 / 61



Part 1 (geometry) Lattices and Lattice Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice L(B) and a target point t, find a lattice vector Bx within
distance ∥Bx− t∥ ≤ µ from the target

t

b1

b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 11 / 61



Part 1 (geometry) Lattices and Lattice Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice L(B) and a target point t, find a lattice vector Bx within
distance ∥Bx− t∥ ≤ µ from the target

t

b1

b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 11 / 61



Part 1 (geometry) Lattices and Lattice Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice L(B) and a target point t, find a lattice vector Bx within
distance ∥Bx− t∥ ≤ µ from the target

t
µ

b1

b2

Bx

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 11 / 61



Part 1 (geometry) Lattices and Lattice Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVPγ)

Given a lattice L(B) and a target point t, find a lattice vector Bx within
distance ∥Bx− t∥ ≤ γµ from the target

t
µ 2µ

b1

b2

Bx

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 11 / 61



Part 1 (geometry) Lattices and Lattice Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi ∥Bxi∥ ≤ λn

b1

b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 12 / 61



Part 1 (geometry) Lattices and Lattice Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi ∥Bxi∥ ≤ λn

b1

b2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 12 / 61



Part 1 (geometry) Lattices and Lattice Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi ∥Bxi∥ ≤ λn

b1

b2

Bx1

λ2

Bx2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 12 / 61



Part 1 (geometry) Lattices and Lattice Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVPγ)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi ∥Bxi∥ ≤ γλn

2λ2

b1

b2

Bx1

λ2

Bx2

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 12 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Short Integer Solution (SIS): random lattices

Parameters: m, n, q ∈ Z
Key: A ∈ Zn×m

q

Function: fA(x) = Ax mod q

Choose A uniformly at random

m

xT

×

n A
f

0

The SIS lattice: Λ⊥
q (A) = {x ∈ Zm : Ax = 0 (mod q)} ⊆ Zm.

Does Λ⊥
q (A) contain short nonzero vectors?

Can you solve SVP in Λ⊥
q (A) when A is chosen at random?

If not, what makes it hard?
If not, how is it useful for cryptography?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 13 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

SIS parameters and Collision Resistant Hashing

fA(x) = Ax mod q where A ∈ Zn×m
q

Restrict fA to x ∈ {0, 1}m

Parameters:

n: main security parameter
q = n2 = nO(1) small modulus
m = 2n log2 q = O(n log n)
e.g., n = 256, q = 216, m = 8192

m

n

0/1

1 . . . q

fA is a compression function mapping 8192→ 4096 bits

There exist collisions Ax = Ay (mod q)
Equivalently, z = x− y ∈ {0, 1,−1}m satisfies Az = 0 (mod q)
z ∈ Λ⊥

q (A) is a short nonzero lattice vector of length ∥z∥∞ ≤ 1

Remark

If SVP on Λ⊥
q (A) is hard, then fA is a collision resistant hash function!

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 14 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Example: Efficiency

Function: fA(x) = Ax mod q where A ∈ Zn×m
q

Example parameters: n = 28, q = 216, m = 2n log2 q = 213

fA maps x ∈ {0, 1}m (8192 bits) to Zn
q (4096 bits)

Computing fA takes n ·m = 221 additions and multiplications on small
(2-byte) numbers

Easy to parallelize: using AVX512 SIMD instructions at 4 GHz, this is
just 32µs.

Key Storage: A takes n ·m = 222 bytes, or 4MB

Storage is not very good
More complex cryptographic applications may use higher q = 264, and
n = 212 = 4096
In the second part, we will see how to improve efficiency using more
complex mathematics

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 15 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Ajtai’s one-way function (SIS)

Parameters: m, n, q ∈ Z
Key: A ∈ Zn×m

q

Input: x ∈ {0, 1}m

Output: fA(x) = Ax mod q

m

xT

×

n A

f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 16 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Ajtai’s one-way function (SIS)

Parameters: m, n, q ∈ Z
Key: A ∈ Zn×m

q

Input: x ∈ {0, 1}m

Output: fA(x) = Ax mod q

m

xT

×

n A
f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 16 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Ajtai’s one-way function (SIS)

Parameters: m, n, q ∈ Z
Key: A ∈ Zn×m

q

Input: x ∈ {0, 1}m

Output: fA(x) = Ax mod q

m

xT

×

n A
f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 16 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and

add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

v
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

a

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

v
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

a

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

v
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

a

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

v
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

a

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed?

[MR]

∥r∥ ≤

(log n) ·

√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

v
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

a

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed? [MR]

∥r∥ ≤ (log n) ·
√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

v
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

a

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Blurring a lattice

Consider a lattice Λ, and add noise to each
lattice point until the entire space is covered.
Increase the noise until the space is uniformly
covered.

How much noise is needed? [MR]

∥r∥ ≤ (log n) ·
√
n · λn/2

Each point in a ∈ Rn can be written
a = v+ r where v ∈ L and ∥r∥ ≈

√
nλn.

a ∈ Rn/Λ is uniformly distributed.

Think of Rn ≈ 1
qΛ [GPV’07]

v
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

av
r

a

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 17 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Security of Ajtai’s function (sketch)

Generate random points ai = vi + ri , where
vi is a random lattice point
ri is a random error vector of length ∥ri∥ ≈

√
nλn

A = [a1, . . . , am] is distributed almost uniformly at random in Rn×m,
q = nO(1), m = O(n log q) = O(n log n), so

if we can break Ajtai’s function fA, then
we can find a vector z ∈ {−1, 0, 1}m such that

∑
(vi + ri )zi =

∑
aizi = 0

Rearranging the terms yields a lattice vector∑
vizi = −

∑
rizi

of length at most ∥
∑

rizi∥ ≈
√
m ·max ∥ri∥ ≈ n · λn

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 18 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Security of Ajtai’s function (sketch)

Generate random points ai = vi + ri , where
vi is a random lattice point
ri is a random error vector of length ∥ri∥ ≈

√
nλn

A = [a1, . . . , am] is distributed almost uniformly at random in Rn×m,
q = nO(1), m = O(n log q) = O(n log n), so

if we can break Ajtai’s function fA, then
we can find a vector z ∈ {−1, 0, 1}m such that

∑
(vi + ri )zi =

∑
aizi = 0

Rearranging the terms yields a lattice vector∑
vizi = −

∑
rizi

of length at most ∥
∑

rizi∥ ≈
√
m ·max ∥ri∥ ≈ n · λn

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 18 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Security of Ajtai’s function (sketch)

Generate random points ai = vi + ri , where
vi is a random lattice point
ri is a random error vector of length ∥ri∥ ≈

√
nλn

A = [a1, . . . , am] is distributed almost uniformly at random in Rn×m,
q = nO(1), m = O(n log q) = O(n log n), so

if we can break Ajtai’s function fA, then
we can find a vector z ∈ {−1, 0, 1}m such that

∑
(vi + ri )zi =

∑
aizi = 0

Rearranging the terms yields a lattice vector∑
vizi = −

∑
rizi

of length at most ∥
∑

rizi∥ ≈
√
m ·max ∥ri∥ ≈ n · λn

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 18 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Security of Ajtai’s function (sketch)

Generate random points ai = vi + ri , where
vi is a random lattice point
ri is a random error vector of length ∥ri∥ ≈

√
nλn

A = [a1, . . . , am] is distributed almost uniformly at random in Rn×m,
q = nO(1), m = O(n log q) = O(n log n), so

if we can break Ajtai’s function fA, then
we can find a vector z ∈ {−1, 0, 1}m such that∑

(vi + ri )zi =
∑

aizi = 0

Rearranging the terms yields a lattice vector∑
vizi = −

∑
rizi

of length at most ∥
∑

rizi∥ ≈
√
m ·max ∥ri∥ ≈ n · λn

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 18 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Regev’s Learning With Errors (LWE)

A ∈ Zm×k
q , s ∈ Zk

q , e ∈ Em.
gA(s

; e

) = As

+ e

mod q

Learning with Errors: Given A
and gA(s, e), recover s.

Theorem (R’05)

The function gA(s, e) is hard to
invert on the average, assuming
SIVP is hard to approximate in the
worst-case.

k

sT

×

m A

+ e

g
b

Applications: CPA PKE [R’05], CCA PKE [PW’08], (H)IBE
[GPV’08,CHKP’10,ABB’10], FHE [. . . ,B’12,AP’13,GSW’13], . . .

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 19 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Regev’s Learning With Errors (LWE)

A ∈ Zm×k
q , s ∈ Zk

q , e ∈ Em.
gA(s; e) = As+ e mod q

Learning with Errors: Given A
and gA(s, e), recover s.

Theorem (R’05)

The function gA(s, e) is hard to
invert on the average, assuming
SIVP is hard to approximate in the
worst-case.

k

sT

×

m A + e
g

b

Applications: CPA PKE [R’05], CCA PKE [PW’08], (H)IBE
[GPV’08,CHKP’10,ABB’10], FHE [. . . ,B’12,AP’13,GSW’13], . . .

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 19 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Regev’s Learning With Errors (LWE)

A ∈ Zm×k
q , s ∈ Zk

q , e ∈ Em.
gA(s; e) = As+ e mod q

Learning with Errors: Given A
and gA(s, e), recover s.

Theorem (R’05)

The function gA(s, e) is hard to
invert on the average, assuming
SIVP is hard to approximate in the
worst-case.

k

sT

×

m A + e
g

b

Applications: CPA PKE [R’05], CCA PKE [PW’08], (H)IBE
[GPV’08,CHKP’10,ABB’10], FHE [. . . ,B’12,AP’13,GSW’13], . . .

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 19 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hermite Normal Form (HNF)

Assuming A is nondegenerate (i.e., AZm
q = Zn

q), one can find
nonsingular U ∈ Zm×m such that UA = [I | H]

[I | H] is called the Hermite Normal Form (HNF) of A, and can be
efficiently computed from A

Putting A in HNF does not decrease the security of cryptographic
functions [M’01]:

Breaking fA is equivalent to breaking fUA(x) = U · fA(x) because
y 7→ Uy is injective.
Similarly, inverting gA is equivalent to inverting gAU

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 20 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hermite Normal Form (HNF)

Assuming A is nondegenerate (i.e., AZm
q = Zn

q), one can find
nonsingular U ∈ Zm×m such that UA = [I | H]

[I | H] is called the Hermite Normal Form (HNF) of A, and can be
efficiently computed from A

Putting A in HNF does not decrease the security of cryptographic
functions [M’01]:

Breaking fA is equivalent to breaking fUA(x) = U · fA(x) because
y 7→ Uy is injective.
Similarly, inverting gA is equivalent to inverting gAU

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 20 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hermite Normal Form (HNF)

Assuming A is nondegenerate (i.e., AZm
q = Zn

q), one can find
nonsingular U ∈ Zm×m such that UA = [I | H]

[I | H] is called the Hermite Normal Form (HNF) of A, and can be
efficiently computed from A

Putting A in HNF does not decrease the security of cryptographic
functions [M’01]:

Breaking fA is equivalent to breaking fUA(x) = U · fA(x) because
y 7→ Uy is injective.

Similarly, inverting gA is equivalent to inverting gAU

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 20 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hermite Normal Form (HNF)

Assuming A is nondegenerate (i.e., AZm
q = Zn

q), one can find
nonsingular U ∈ Zm×m such that UA = [I | H]

[I | H] is called the Hermite Normal Form (HNF) of A, and can be
efficiently computed from A

Putting A in HNF does not decrease the security of cryptographic
functions [M’01]:

Breaking fA is equivalent to breaking fUA(x) = U · fA(x) because
y 7→ Uy is injective.
Similarly, inverting gA is equivalent to inverting gAU

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 20 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

Equivalent HNF variant of SIS/LWE [M’01]:

f ′H(x) = fA(x) for A = [I | −H], where H ∈ Zn×(m−n)
q

g ′
H(s, e) = gA(s, e) for A =

[
H
I

]
, where H ∈ Z(m−k)×k

q

Parameters k + n = m: n = m − k, m − n = k

Input: set e = x and pick random s ∈ Zk
q

Can compute g ′
H(Zq, x) 7→ f ′H(x)

f ′H(g
′
H(s, x)) = [I | −H]

([
H
I

]
s+ x

)
= (IH−HI)s+ [I | −H]x = f ′H(x)

Similarly, f ′H(x) 7→ g ′
H(Zk

q , x) = g ′
H(s, x) + g ′

H(Zk
q , 0), for s = −x2

x =

[
x1
x2

]
s = −x2 g ′

H(s, x) =

[
−Hx2 + x1
−x2 + x2

]
=

[
f ′H(x)
0

]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 21 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

Equivalent HNF variant of SIS/LWE [M’01]:

f ′H(x) = fA(x) for A = [I | −H], where H ∈ Zn×(m−n)
q

g ′
H(s, e) = gA(s, e) for A =

[
H
I

]
, where H ∈ Z(m−k)×k

q

Parameters k + n = m: n = m − k, m − n = k

Input: set e = x and pick random s ∈ Zk
q

Can compute g ′
H(Zq, x) 7→ f ′H(x)

f ′H(g
′
H(s, x)) = [I | −H]

([
H
I

]
s+ x

)
= (IH−HI)s+ [I | −H]x = f ′H(x)

Similarly, f ′H(x) 7→ g ′
H(Zk

q , x) = g ′
H(s, x) + g ′

H(Zk
q , 0), for s = −x2

x =

[
x1
x2

]
s = −x2 g ′

H(s, x) =

[
−Hx2 + x1
−x2 + x2

]
=

[
f ′H(x)
0

]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 21 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

Equivalent HNF variant of SIS/LWE [M’01]:

f ′H(x) = fA(x) for A = [I | −H], where H ∈ Zn×(m−n)
q

g ′
H(s, e) = gA(s, e) for A =

[
H
I

]
, where H ∈ Z(m−k)×k

q

Parameters k + n = m: n = m − k, m − n = k

Input: set e = x and pick random s ∈ Zk
q

Can compute g ′
H(Zq, x) 7→ f ′H(x)

f ′H(g
′
H(s, x)) = [I | −H]

([
H
I

]
s+ x

)
= (IH−HI)s+ [I | −H]x = f ′H(x)

Similarly, f ′H(x) 7→ g ′
H(Zk

q , x) = g ′
H(s, x) + g ′

H(Zk
q , 0), for s = −x2

x =

[
x1
x2

]
s = −x2 g ′

H(s, x) =

[
−Hx2 + x1
−x2 + x2

]
=

[
f ′H(x)
0

]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 21 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

Equivalent HNF variant of SIS/LWE [M’01]:

f ′H(x) = fA(x) for A = [I | −H], where H ∈ Zn×(m−n)
q

g ′
H(s, e) = gA(s, e) for A =

[
H
I

]
, where H ∈ Z(m−k)×k

q

Parameters k + n = m: n = m − k, m − n = k

Input: set e = x and pick random s ∈ Zk
q

Can compute g ′
H(Zq, x) 7→ f ′H(x)

f ′H(g
′
H(s, x)) = [I | −H]

([
H
I

]
s+ x

)
= (IH−HI)s+ [I | −H]x = f ′H(x)

Similarly, f ′H(x) 7→ g ′
H(Zk

q , x) = g ′
H(s, x) + g ′

H(Zk
q , 0), for s = −x2

x =

[
x1
x2

]
s = −x2 g ′

H(s, x) =

[
−Hx2 + x1
−x2 + x2

]
=

[
f ′H(x)
0

]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 21 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

Equivalent HNF variant of SIS/LWE [M’01]:

f ′H(x) = fA(x) for A = [I | −H], where H ∈ Zn×(m−n)
q

g ′
H(s, e) = gA(s, e) for A =

[
H
I

]
, where H ∈ Z(m−k)×k

q

Parameters k + n = m: n = m − k, m − n = k

Input: set e = x and pick random s ∈ Zk
q

Can compute g ′
H(Zq, x) 7→ f ′H(x)

f ′H(g
′
H(s, x)) = [I | −H]

([
H
I

]
s+ x

)
= (IH−HI)s+ [I | −H]x = f ′H(x)

Similarly, f ′H(x) 7→ g ′
H(Zk

q , x) = g ′
H(s, x) + g ′

H(Zk
q , 0), for s = −x2

x =

[
x1
x2

]
s = −x2 g ′

H(s, x) =

[
−Hx2 + x1
−x2 + x2

]
=

[
f ′H(x)
0

]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 21 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

Equivalent HNF variant of SIS/LWE [M’01]:

f ′H(x) = fA(x) for A = [I | −H], where H ∈ Zn×(m−n)
q

g ′
H(s, e) = gA(s, e) for A =

[
H
I

]
, where H ∈ Z(m−k)×k

q

Parameters k + n = m: n = m − k, m − n = k

Input: set e = x and pick random s ∈ Zk
q

Can compute g ′
H(Zq, x) 7→ f ′H(x)

f ′H(g
′
H(s, x)) = [I | −H]

([
H
I

]
s+ x

)
= (IH−HI)s+ [I | −H]x = f ′H(x)

Similarly, f ′H(x) 7→ g ′
H(Zk

q , x) = g ′
H(s, x) + g ′

H(Zk
q , 0), for s = −x2

x =

[
x1
x2

]
s = −x2 g ′

H(s, x) =

[
−Hx2 + x1
−x2 + x2

]
=

[
f ′H(x)
0

]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 21 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Equivalence of SIS and LWE

Equivalent HNF variant of SIS/LWE [M’01]:

f ′H(x) = fA(x) for A = [I | −H], where H ∈ Zn×(m−n)
q

g ′
H(s, e) = gA(s, e) for A =

[
H
I

]
, where H ∈ Z(m−k)×k

q

Parameters k + n = m: n = m − k, m − n = k

Input: set e = x and pick random s ∈ Zk
q

Can compute g ′
H(Zq, x) 7→ f ′H(x)

f ′H(g
′
H(s, x)) = [I | −H]

([
H
I

]
s+ x

)
= (IH−HI)s+ [I | −H]x = f ′H(x)

Similarly, f ′H(x) 7→ g ′
H(Zk

q , x) = g ′
H(s, x) + g ′

H(Zk
q , 0), for s = −x2

x =

[
x1
x2

]
s = −x2 g ′

H(s, x) =

[
−Hx2 + x1
−x2 + x2

]
=

[
f ′H(x)
0

]
Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 21 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hardness of SIS/LWE

fA and gA are essentially the same function, parametrized by
dimensions k + n = m, modulus q and bound ∥x∥ ≤ β

SIS [A’96] usually formulated using fA(x) = Ax
Larger β, resulting in a compression (hash) function
Collision resistant based on hardness of n-dim. lattices

LWE [R’05] usually formulated using gA(s, x) = As+ x
Smaller β, resulting in an injective function. (No collisions!)
Hard to invert based on hardness of k-dim. lattices.

Proof techniques and applications are quite different depending on
whether β is small or large.

One can use fA both for SIS and LWE

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 22 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hardness of SIS/LWE

fA and gA are essentially the same function, parametrized by
dimensions k + n = m, modulus q and bound ∥x∥ ≤ β

SIS [A’96] usually formulated using fA(x) = Ax
Larger β, resulting in a compression (hash) function
Collision resistant based on hardness of n-dim. lattices

LWE [R’05] usually formulated using gA(s, x) = As+ x
Smaller β, resulting in an injective function. (No collisions!)
Hard to invert based on hardness of k-dim. lattices.

Proof techniques and applications are quite different depending on
whether β is small or large.

One can use fA both for SIS and LWE

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 22 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hardness of SIS/LWE

fA and gA are essentially the same function, parametrized by
dimensions k + n = m, modulus q and bound ∥x∥ ≤ β

SIS [A’96] usually formulated using fA(x) = Ax
Larger β, resulting in a compression (hash) function
Collision resistant based on hardness of n-dim. lattices

LWE [R’05] usually formulated using gA(s, x) = As+ x
Smaller β, resulting in an injective function. (No collisions!)
Hard to invert based on hardness of k-dim. lattices.

Proof techniques and applications are quite different depending on
whether β is small or large.

One can use fA both for SIS and LWE

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 22 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hardness of SIS/LWE

fA and gA are essentially the same function, parametrized by
dimensions k + n = m, modulus q and bound ∥x∥ ≤ β

SIS [A’96] usually formulated using fA(x) = Ax
Larger β, resulting in a compression (hash) function
Collision resistant based on hardness of n-dim. lattices

LWE [R’05] usually formulated using gA(s, x) = As+ x
Smaller β, resulting in an injective function. (No collisions!)
Hard to invert based on hardness of k-dim. lattices.

Proof techniques and applications are quite different depending on
whether β is small or large.

One can use fA both for SIS and LWE

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 22 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

Hardness of SIS/LWE

fA and gA are essentially the same function, parametrized by
dimensions k + n = m, modulus q and bound ∥x∥ ≤ β

SIS [A’96] usually formulated using fA(x) = Ax
Larger β, resulting in a compression (hash) function
Collision resistant based on hardness of n-dim. lattices

LWE [R’05] usually formulated using gA(s, x) = As+ x
Smaller β, resulting in an injective function. (No collisions!)
Hard to invert based on hardness of k-dim. lattices.

Proof techniques and applications are quite different depending on
whether β is small or large.

One can use fA both for SIS and LWE

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 22 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice L
Input: x, ∥x∥ ≤ β

Output: fL(x) = x mod L

β < λ1/2: fL is injective

β > λ1/2: fL is not injective

β ≥ µ: fL is surjective

β ≫ µ: fL(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?

x

fL

x
b1

b2

0

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 23 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice L
Input: x, ∥x∥ ≤ β
Output: fL(x) = x mod L

β < λ1/2: fL is injective

β > λ1/2: fL is not injective

β ≥ µ: fL is surjective

β ≫ µ: fL(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?

x

fL

x
b1

b2

0

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 23 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice L
Input: x, ∥x∥ ≤ β
Output: fL(x) = x mod L

β < λ1/2: fL is injective

β > λ1/2: fL is not injective

β ≥ µ: fL is surjective

β ≫ µ: fL(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?

fL

b1

b2

0

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 23 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice L
Input: x, ∥x∥ ≤ β
Output: fL(x) = x mod L

β < λ1/2: fL is injective

β > λ1/2: fL is not injective

β ≥ µ: fL is surjective

β ≫ µ: fL(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?

fL

b1

b2

0

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 23 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice L
Input: x, ∥x∥ ≤ β
Output: fL(x) = x mod L

β < λ1/2: fL is injective

β > λ1/2: fL is not injective

β ≥ µ: fL is surjective

β ≫ µ: fL(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?

fL

b1

b2

0

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 23 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice L
Input: x, ∥x∥ ≤ β
Output: fL(x) = x mod L

β < λ1/2: fL is injective

β > λ1/2: fL is not injective

β ≥ µ: fL is surjective

β ≫ µ: fL(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?

fL

b1

b2

0

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 23 / 61



Part 1 (geometry) Random Lattices (SIS and LWE)

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice L
Input: x, ∥x∥ ≤ β
Output: fL(x) = x mod L

β < λ1/2: fL is injective

β > λ1/2: fL is not injective

β ≥ µ: fL is surjective

β ≫ µ: fL(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?

fL

b1

b2

0

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 23 / 61



Part 1 (geometry) Cryptographic Applications

SIS Property: Regularity

f : X → Y is regular if all y ∈ Y have same |f −1(y)|.

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

Pairwise independence:

Fix x1 ̸= x2 ∈ {0, 1}m,
Random A

fA(x1) and fA(x2) are
independent.

{0, 1}m Zn
q

fA

m bits n log q bits

Lemma (Leftover Hash Lemma)

Pairwise Indepencence + Compression =⇒ Regular

fA : (U({0, 1}n)) ≈ U(Zn
q) maps uniform to uniform.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 24 / 61



Part 1 (geometry) Cryptographic Applications

SIS Property: Regularity

f : X → Y is regular if all y ∈ Y have same |f −1(y)|.

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

Pairwise independence:

Fix x1 ̸= x2 ∈ {0, 1}m,
Random A

fA(x1) and fA(x2) are
independent.

{0, 1}m Zn
q

fA

m bits n log q bits

Lemma (Leftover Hash Lemma)

Pairwise Indepencence + Compression =⇒ Regular

fA : (U({0, 1}n)) ≈ U(Zn
q) maps uniform to uniform.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 24 / 61



Part 1 (geometry) Cryptographic Applications

SIS Property: Regularity

f : X → Y is regular if all y ∈ Y have same |f −1(y)|.

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

Pairwise independence:

Fix x1 ̸= x2 ∈ {0, 1}m,
Random A

fA(x1) and fA(x2) are
independent.

{0, 1}m Zn
q

fA

m bits n log q bits

Lemma (Leftover Hash Lemma)

Pairwise Indepencence + Compression =⇒ Regular

fA : (U({0, 1}n)) ≈ U(Zn
q) maps uniform to uniform.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 24 / 61



Part 1 (geometry) Cryptographic Applications

SIS Property: Regularity

f : X → Y is regular if all y ∈ Y have same |f −1(y)|.

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

Pairwise independence:

Fix x1 ̸= x2 ∈ {0, 1}m,
Random A

fA(x1) and fA(x2) are
independent.

{0, 1}m Zn
q

fA

m bits n log q bits

Lemma (Leftover Hash Lemma)

Pairwise Indepencence + Compression =⇒ Regular

fA : (U({0, 1}n)) ≈ U(Zn
q) maps uniform to uniform.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 24 / 61



Part 1 (geometry) Cryptographic Applications

SIS Property: Regularity

f : X → Y is regular if all y ∈ Y have same |f −1(y)|.

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

Pairwise independence:

Fix x1 ̸= x2 ∈ {0, 1}m,
Random A

fA(x1) and fA(x2) are
independent.

{0, 1}m Zn
q

fA

m bits n log q bits

Lemma (Leftover Hash Lemma)

Pairwise Indepencence + Compression =⇒ Regular

fA : (U({0, 1}n)) ≈ U(Zn
q) maps uniform to uniform.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 24 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: Commitment

Choose A1,A2 at random

message m ∈ {0, 1}m and randomness r ∈ {0, 1}m

Commitment: C (m, r) = f[A1,A2](m, r) = A1m+ A2r.

Hiding Property: C (m) hides the message because
A2r = fA2(r) ≈ U(Zn

q)

Binding Property: Finding (m, r) ̸= (m′, r ′) such that
C (m, r) = C (m′, r′) breaks the collision resistance of f[A1,A2]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 25 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: Commitment

Choose A1,A2 at random

message m ∈ {0, 1}m and randomness r ∈ {0, 1}m

Commitment: C (m, r) = f[A1,A2](m, r) = A1m+ A2r.

Hiding Property: C (m) hides the message because
A2r = fA2(r) ≈ U(Zn

q)

Binding Property: Finding (m, r) ̸= (m′, r ′) such that
C (m, r) = C (m′, r′) breaks the collision resistance of f[A1,A2]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 25 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: Commitment

Choose A1,A2 at random

message m ∈ {0, 1}m and randomness r ∈ {0, 1}m

Commitment: C (m, r) = f[A1,A2](m, r) = A1m+ A2r.

Hiding Property: C (m) hides the message because
A2r = fA2(r) ≈ U(Zn

q)

Binding Property: Finding (m, r) ̸= (m′, r ′) such that
C (m, r) = C (m′, r′) breaks the collision resistance of f[A1,A2]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 25 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: Commitment

Choose A1,A2 at random

message m ∈ {0, 1}m and randomness r ∈ {0, 1}m

Commitment: C (m, r) = f[A1,A2](m, r) = A1m+ A2r.

Hiding Property: C (m) hides the message because
A2r = fA2(r) ≈ U(Zn

q)

Binding Property: Finding (m, r) ̸= (m′, r ′) such that
C (m, r) = C (m′, r′) breaks the collision resistance of f[A1,A2]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 25 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: Commitment

Choose A1,A2 at random

message m ∈ {0, 1}m and randomness r ∈ {0, 1}m

Commitment: C (m, r) = f[A1,A2](m, r) = A1m+ A2r.

Hiding Property: C (m) hides the message because
A2r = fA2(r) ≈ U(Zn

q)

Binding Property: Finding (m, r) ̸= (m′, r ′) such that
C (m, r) = C (m′, r′) breaks the collision resistance of f[A1,A2]

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 25 / 61



Part 1 (geometry) Cryptographic Applications

SIS Property: (Approximate) Linear Homomorphism

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

The SIS function is linearly homomorphic:

fA(x1) + fA(x2) = fA(x1 + x2)

Homomorphism is only approximate:

If x1, x2 are small, then also x1 + x2 is small
However, x1 + x2 can be slightly larger than x1, x2
Domain of fA is not closed under +

fA is also key-homomorphic:

fA1(x) + fA2(x) = fA1+A2(x)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 26 / 61



Part 1 (geometry) Cryptographic Applications

SIS Property: (Approximate) Linear Homomorphism

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

The SIS function is linearly homomorphic:

fA(x1) + fA(x2) = fA(x1 + x2)

Homomorphism is only approximate:

If x1, x2 are small, then also x1 + x2 is small
However, x1 + x2 can be slightly larger than x1, x2
Domain of fA is not closed under +

fA is also key-homomorphic:

fA1(x) + fA2(x) = fA1+A2(x)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 26 / 61



Part 1 (geometry) Cryptographic Applications

SIS Property: (Approximate) Linear Homomorphism

SIS Function

A ∈ Zn×m
q , x ∈ {0, 1}m, fA(x) = Ax mod q ∈ Zn

q

The SIS function is linearly homomorphic:

fA(x1) + fA(x2) = fA(x1 + x2)

Homomorphism is only approximate:

If x1, x2 are small, then also x1 + x2 is small
However, x1 + x2 can be slightly larger than x1, x2
Domain of fA is not closed under +

fA is also key-homomorphic:

fA1(x) + fA2(x) = fA1+A2(x)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 26 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: One-Time Signatures

Extend fA to matrices X = [x1, . . . , xl ]:

fA(X) = [fA(x1), . . . , fA(xl)] = AX (mod q)

Key Generation:

Public Parameter: SIS function key A
Secret Key: sk = (X, x) two (small) inputs to fA
Public Key: pk = (Y = fA(X), y = fA(x)) image of sk under fA

Message: short vector m ∈ {0, 1}l

Sign(sk ,m) = Xm+ x, linear combination of secret key

Verify(pk,m, σ) uses homomorphic properties to check that

fA(σ) = fA(Xm+ x) = fA(X)m+ fA(x) = Ym+ y

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 27 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: One-Time Signatures

Extend fA to matrices X = [x1, . . . , xl ]:

fA(X) = [fA(x1), . . . , fA(xl)] = AX (mod q)

Key Generation:

Public Parameter: SIS function key A
Secret Key: sk = (X, x) two (small) inputs to fA
Public Key: pk = (Y = fA(X), y = fA(x)) image of sk under fA

Message: short vector m ∈ {0, 1}l

Sign(sk ,m) = Xm+ x, linear combination of secret key

Verify(pk,m, σ) uses homomorphic properties to check that

fA(σ) = fA(Xm+ x) = fA(X)m+ fA(x) = Ym+ y

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 27 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: One-Time Signatures

Extend fA to matrices X = [x1, . . . , xl ]:

fA(X) = [fA(x1), . . . , fA(xl)] = AX (mod q)

Key Generation:

Public Parameter: SIS function key A
Secret Key: sk = (X, x) two (small) inputs to fA
Public Key: pk = (Y = fA(X), y = fA(x)) image of sk under fA

Message: short vector m ∈ {0, 1}l

Sign(sk ,m) = Xm+ x, linear combination of secret key

Verify(pk,m, σ) uses homomorphic properties to check that

fA(σ) = fA(Xm+ x) = fA(X)m+ fA(x) = Ym+ y

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 27 / 61



Part 1 (geometry) Cryptographic Applications

SIS Application: One-Time Signatures

Extend fA to matrices X = [x1, . . . , xl ]:

fA(X) = [fA(x1), . . . , fA(xl)] = AX (mod q)

Key Generation:

Public Parameter: SIS function key A
Secret Key: sk = (X, x) two (small) inputs to fA
Public Key: pk = (Y = fA(X), y = fA(x)) image of sk under fA

Message: short vector m ∈ {0, 1}l

Sign(sk ,m) = Xm+ x, linear combination of secret key

Verify(pk,m, σ) uses homomorphic properties to check that

fA(σ) = fA(Xm+ x) = fA(X)m+ fA(x) = Ym+ y

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 27 / 61



Part 1 (geometry) Cryptographic Applications

Pseudorandomness of LWE

LWE(k, q,m, χ) distribution: [A,b] ∈ Zm×(k+1)
q where

A← Zm×k
q

s← Zk
q , e← χm

b = As+ e

Definition (Search LWE)

Given [A,b] recover s and e = b− As

Definition (Decision LWE)

Distinguish [A,b] from the uniform distribution over Zm×(k+1)
q

Theorem (Search to Decision Reduction (informal))

For a wide range of parameters, if Search LWE is hard, then Decision LWE
is hard.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 28 / 61



Part 1 (geometry) Cryptographic Applications

Pseudorandomness of LWE

LWE(k, q,m, χ) distribution: [A,b] ∈ Zm×(k+1)
q where

A← Zm×k
q

s← Zk
q , e← χm

b = As+ e

Definition (Search LWE)

Given [A,b] recover s and e = b− As

Definition (Decision LWE)

Distinguish [A,b] from the uniform distribution over Zm×(k+1)
q

Theorem (Search to Decision Reduction (informal))

For a wide range of parameters, if Search LWE is hard, then Decision LWE
is hard.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 28 / 61



Part 1 (geometry) Cryptographic Applications

Encrypting with LWE

Idea: if [A,b] is pseudorandom, then we can use it to mask a message
Private Key Encryption

Gen(k): output random s← Zk
q

Encs(m):

Choose A← Zm×k
q and e← χm at random

Let b = As+ e (mod q)
Output [A,b+m]

Dec′s([A, c]) = c− As = m+ e

Problems:

Decryption is “approximately” correct [CKKS 2016]
A passive adversary can completely break the scheme [Li,M. 2021]

Solution: encode m with an error correcting code

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 29 / 61



Part 1 (geometry) Cryptographic Applications

Encrypting with LWE

Idea: if [A,b] is pseudorandom, then we can use it to mask a message
Private Key Encryption

Gen(k): output random s← Zk
q

Encs(m):

Choose A← Zm×k
q and e← χm at random

Let b = As+ e (mod q)
Output [A,b+m]

Dec′s([A, c]) = c− As = m+ e

Problems:

Decryption is “approximately” correct [CKKS 2016]
A passive adversary can completely break the scheme [Li,M. 2021]

Solution: encode m with an error correcting code

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 29 / 61



Part 1 (geometry) Cryptographic Applications

Regev (private key) encryption

Plaintext modulus: p ≪ q

Message: m ∈ Zm
p

Scaling factor: ∆ =
⌈
q
p

⌋
Encs(m) = [A,b+∆m] where b = As+ e (mod q)

Decs([A, c]) =
⌈
c−As
∆

⌋
(mod p)

Theorem (Correctness)

If ∥χ∥∞ < ∆/2 then

Decs(Encs(m)) =

⌈
(As+ e+∆m)− As

∆

⌋
= m+

⌈ e

∆

⌋
= m.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 30 / 61



Part 1 (geometry) Cryptographic Applications

Regev (private key) encryption

Plaintext modulus: p ≪ q

Message: m ∈ Zm
p

Scaling factor: ∆ =
⌈
q
p

⌋
Encs(m) = [A,b+∆m] where b = As+ e (mod q)

Decs([A, c]) =
⌈
c−As
∆

⌋
(mod p)

Theorem (Correctness)

If ∥χ∥∞ < ∆/2 then

Decs(Encs(m)) =

⌈
(As+ e+∆m)− As

∆

⌋
= m+

⌈ e

∆

⌋
= m.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 30 / 61



Part 1 (geometry) Cryptographic Applications

Additive Homomorphism

The sum of two encryption

Encs(m1) = [A1,A1s+ e1 +
q

p
m1]

Encs(m2) = [A2,A2s+ e2 +
q

p
m2]

is an encryption of the sum

Encs(m1) + Encs(m2) = [A,As+ e+
q

p
m] = Encs(m1 +m2)

where

A = A1 + A2 (mod q)

e = e1 + e2 (mod q)

m = m1 +m2 (mod p)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 31 / 61



Part 1 (geometry) Cryptographic Applications

Error growth

When adding two encryptions

Encs(m1; e1) + Encs(m2; e2) = Encs(m1 +m2; e1 + e2)

with small errors ∥e1∥, ∥e2∥ ≤ β, the result is an encryption of m1 +m2

with slightly larger error

∥e1 + e2∥ ≤ ∥e1∥+ ∥e2∥ ≤ 2β.

Remarks:

If e1, e2 are random and independent, their sum grows more like
√
2β

If |χ| ≪ (q/p), we can add several ciphertexts, and the results will
still decrypt correctly

If we keep adding ciphertexts, the error may become too big, and
decryption will fail

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 32 / 61



Part 1 (geometry) Cryptographic Applications

Error growth

When adding two encryptions

Encs(m1; e1) + Encs(m2; e2) = Encs(m1 +m2; e1 + e2)

with small errors ∥e1∥, ∥e2∥ ≤ β, the result is an encryption of m1 +m2

with slightly larger error

∥e1 + e2∥ ≤ ∥e1∥+ ∥e2∥ ≤ 2β.

Remarks:

If e1, e2 are random and independent, their sum grows more like
√
2β

If |χ| ≪ (q/p), we can add several ciphertexts, and the results will
still decrypt correctly

If we keep adding ciphertexts, the error may become too big, and
decryption will fail

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 32 / 61



Part 1 (geometry) Cryptographic Applications

Linear/Affine functions?

Start from a fresh ciphertext with small ∥e∥∞ ≤ β ≪ ∆

Encs(m) = [A,As+ e+∆m]

What about multiplying ciphertexts by a constant or computing linear or
affine function?

t · Encs(m) = [(tA), (tA)s+ te+∆(tm)] = Encs(tm)

T · Encs(m) = [(TA), (TA)s+ Te+∆(Tm)] = Encs(Tm)

T · Encs(m) + [0,∆c] = [(TA), (TA)s+ Te+∆(Tm+ c)]

= Encs(Tm+ c)

Remarks:

It works, but error grows to ∥Te∥∞ ≤ m · ∥T∥∞ · β
We need T to be small for final result to be correct

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 33 / 61



Part 1 (geometry) Cryptographic Applications

Linear/Affine functions?

Start from a fresh ciphertext with small ∥e∥∞ ≤ β ≪ ∆

Encs(m) = [A,As+ e+∆m]

What about multiplying ciphertexts by a constant or computing linear or
affine function?

t · Encs(m) = [(tA), (tA)s+ te+∆(tm)] = Encs(tm)

T · Encs(m) = [(TA), (TA)s+ Te+∆(Tm)] = Encs(Tm)

T · Encs(m) + [0,∆c] = [(TA), (TA)s+ Te+∆(Tm+ c)]

= Encs(Tm+ c)

Remarks:

It works, but error grows to ∥Te∥∞ ≤ m · ∥T∥∞ · β
We need T to be small for final result to be correct

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 33 / 61



Part 1 (geometry) Cryptographic Applications

Linear/Affine functions?

Start from a fresh ciphertext with small ∥e∥∞ ≤ β ≪ ∆

Encs(m) = [A,As+ e+∆m]

What about multiplying ciphertexts by a constant or computing linear or
affine function?

t · Encs(m) = [(tA), (tA)s+ te+∆(tm)] = Encs(tm)

T · Encs(m) = [(TA), (TA)s+ Te+∆(Tm)] = Encs(Tm)

T · Encs(m) + [0,∆c] = [(TA), (TA)s+ Te+∆(Tm+ c)]

= Encs(Tm+ c)

Remarks:

It works, but error grows to ∥Te∥∞ ≤ m · ∥T∥∞ · β
We need T to be small for final result to be correct

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 33 / 61



Part 1 (geometry) Cryptographic Applications

Public Key Encryption (Regev 2005)

We will use homomorphic properties to transform private key encryption to
public key encryption

Start from LWE private key encryption scheme (Gen, Enc, Dec)

Set parameters n, k , q, χ so to support the addition of w ciphertexts

Public Key Encryption scheme (Gen′, Enc′, Dec):

Public key: P = Encs(0)

Enc′P(m) = [O,∆m] + R · P where R← {0, 1}w ′×w

Theorem (Correctness)

Enc ′P(m) = [O,∆m] + REncs(0) = Encs(m+ R · 0) = Encs(m)

Theorem (Security)

If w is large enough, Enc′P(m) ≈ Encs(m;χ′).

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 34 / 61



Part 1 (geometry) Cryptographic Applications

Public Key Encryption (Regev 2005)

We will use homomorphic properties to transform private key encryption to
public key encryption

Start from LWE private key encryption scheme (Gen, Enc, Dec)

Set parameters n, k , q, χ so to support the addition of w ciphertexts

Public Key Encryption scheme (Gen′, Enc′, Dec):

Public key: P = Encs(0)

Enc′P(m) = [O,∆m] + R · P where R← {0, 1}w ′×w

Theorem (Correctness)

Enc ′P(m) = [O,∆m] + REncs(0) = Encs(m+ R · 0) = Encs(m)

Theorem (Security)

If w is large enough, Enc′P(m) ≈ Encs(m;χ′).

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 34 / 61



Part 1 (geometry) Cryptographic Applications

Optimized Public Key Encryption (Lindner,Peikert 2011)

LWE PKE = “Symmetric Encryption + Linearity”

We can also describe it directly in terms of matrices:

Public Key: P = gA(S,E) = [A,B = AS+ E]
Encryption (of 0): EncP(0)

t = PtR = fPt (R)

We can use a smaller dimensional A,P (and improve efficiency) using
the SIS/HNF variant of LWE:

A,S,E,R1,R2,R3 ∈ Zk×k
q

Public Key: P = [A, f[A,I](S,E)] = [A,B = AS+ E] ∈ Zk×2k
q

Expanded public key: [Pt , I] ∈ Z2k×3k
q

Encryption (of 0):

EncP(0)
t = f[Pt ,I](R1,R2,R3) = PtR1 +

[
R2

R3

]
∈ Z2k×k

q

This is the blueprint followed by the ML-KEM (Kyber) cryptosystem
standardized by NIST, but with Zk×k

q replaced by more compact
“algebraically structured” matrices

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 35 / 61



Part 1 (geometry) Cryptographic Applications

Optimized Public Key Encryption (Lindner,Peikert 2011)

LWE PKE = “Symmetric Encryption + Linearity”

We can also describe it directly in terms of matrices:

Public Key: P = gA(S,E) = [A,B = AS+ E]
Encryption (of 0): EncP(0)

t = PtR = fPt (R)

We can use a smaller dimensional A,P (and improve efficiency) using
the SIS/HNF variant of LWE:

A,S,E,R1,R2,R3 ∈ Zk×k
q

Public Key: P = [A, f[A,I](S,E)] = [A,B = AS+ E] ∈ Zk×2k
q

Expanded public key: [Pt , I] ∈ Z2k×3k
q

Encryption (of 0):

EncP(0)
t = f[Pt ,I](R1,R2,R3) = PtR1 +

[
R2

R3

]
∈ Z2k×k

q

This is the blueprint followed by the ML-KEM (Kyber) cryptosystem
standardized by NIST, but with Zk×k

q replaced by more compact
“algebraically structured” matrices

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 35 / 61



Part 1 (geometry) Cryptographic Applications

Optimized Public Key Encryption (Lindner,Peikert 2011)

LWE PKE = “Symmetric Encryption + Linearity”

We can also describe it directly in terms of matrices:

Public Key: P = gA(S,E) = [A,B = AS+ E]
Encryption (of 0): EncP(0)

t = PtR = fPt (R)

We can use a smaller dimensional A,P (and improve efficiency) using
the SIS/HNF variant of LWE:

A,S,E,R1,R2,R3 ∈ Zk×k
q

Public Key: P = [A, f[A,I](S,E)] = [A,B = AS+ E] ∈ Zk×2k
q

Expanded public key: [Pt , I] ∈ Z2k×3k
q

Encryption (of 0):

EncP(0)
t = f[Pt ,I](R1,R2,R3) = PtR1 +

[
R2

R3

]
∈ Z2k×k

q

This is the blueprint followed by the ML-KEM (Kyber) cryptosystem
standardized by NIST, but with Zk×k

q replaced by more compact
“algebraically structured” matrices

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 35 / 61



Part 1 (geometry) Lattice Gadgets

Gadgets

Questions:

Can we encrypt messages m ∈ Zq with plaintext modulus p = q?

Can we multiply ciphertext by any t ∈ Zq with error growth ≪ q?

Assume for simplicity q = 2ℓ. Define the “gadget” vector

gt = [1, 2, 4, 8, ..., 2i , ..., 2ℓ−1]

This vector has two fundamental properties:

1 Any c ∈ Zq can be written as xt · g for some small x ∈ {0, 1}ℓ
(written x = g−1(c)).

2 Given c = g ·m + e for some ∥e∥∞ < q/4, we can recover m ∈ Zq

(written m = ⌈c⌋g)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 36 / 61



Part 1 (geometry) Lattice Gadgets

Gadgets

Questions:

Can we encrypt messages m ∈ Zq with plaintext modulus p = q?

Can we multiply ciphertext by any t ∈ Zq with error growth ≪ q?

Assume for simplicity q = 2ℓ. Define the “gadget” vector

gt = [1, 2, 4, 8, ..., 2i , ..., 2ℓ−1]

This vector has two fundamental properties:

1 Any c ∈ Zq can be written as xt · g for some small x ∈ {0, 1}ℓ
(written x = g−1(c)).

2 Given c = g ·m + e for some ∥e∥∞ < q/4, we can recover m ∈ Zq

(written m = ⌈c⌋g)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 36 / 61



Part 1 (geometry) Lattice Gadgets

Gadgets

Questions:

Can we encrypt messages m ∈ Zq with plaintext modulus p = q?

Can we multiply ciphertext by any t ∈ Zq with error growth ≪ q?

Assume for simplicity q = 2ℓ. Define the “gadget” vector

gt = [1, 2, 4, 8, ..., 2i , ..., 2ℓ−1]

This vector has two fundamental properties:

1 Any c ∈ Zq can be written as xt · g for some small x ∈ {0, 1}ℓ
(written x = g−1(c)).

2 Given c = g ·m + e for some ∥e∥∞ < q/4, we can recover m ∈ Zq

(written m = ⌈c⌋g)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 36 / 61



Part 1 (geometry) Lattice Gadgets

Gadgets

Questions:

Can we encrypt messages m ∈ Zq with plaintext modulus p = q?

Can we multiply ciphertext by any t ∈ Zq with error growth ≪ q?

Assume for simplicity q = 2ℓ. Define the “gadget” vector

gt = [1, 2, 4, 8, ..., 2i , ..., 2ℓ−1]

This vector has two fundamental properties:

1 Any c ∈ Zq can be written as xt · g for some small x ∈ {0, 1}ℓ
(written x = g−1(c)).

2 Given c = g ·m + e for some ∥e∥∞ < q/4, we can recover m ∈ Zq

(written m = ⌈c⌋g)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 36 / 61



Part 1 (geometry) Lattice Gadgets

The “Gadget-LWE” encryption scheme

Similar to LWE, but using the gadget vector g instead of scaling factor ∆
to encode the message.

Plaintext modulus p = q

Enc
g
s (m) = [A,As+ e+ g ·m]

Dec
g
s ([A, c]) = ⌈c− As⌋g

Bonus: we can multiply ciphertexts by arbitrary constants (or linear
transformations)

c ⊙ Encgs (m) = g−1(c)t · Encs(gm)

= Encs(g
−1(c)t · g ·m)

= Encs(c ·m)

Similarly: (g · c)⊙ Enc
g
s (m) = Encs(gcm) = Enc

g
s (cm)

Remark: error grows by ℓ = log2 q instead of q because g−1(c) ∈ {0, 1}ℓ

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 37 / 61



Part 1 (geometry) Lattice Gadgets

The “Gadget-LWE” encryption scheme

Similar to LWE, but using the gadget vector g instead of scaling factor ∆
to encode the message.

Plaintext modulus p = q

Enc
g
s (m) = [A,As+ e+ g ·m]

Dec
g
s ([A, c]) = ⌈c− As⌋g

Bonus: we can multiply ciphertexts by arbitrary constants (or linear
transformations)

c ⊙ Encgs (m) = g−1(c)t · Encs(gm)

= Encs(g
−1(c)t · g ·m)

= Encs(c ·m)

Similarly: (g · c)⊙ Enc
g
s (m) = Encs(gcm) = Enc

g
s (cm)

Remark: error grows by ℓ = log2 q instead of q because g−1(c) ∈ {0, 1}ℓ

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 37 / 61



Part 1 (geometry) Lattice Gadgets

The “Gadget-LWE” encryption scheme

Similar to LWE, but using the gadget vector g instead of scaling factor ∆
to encode the message.

Plaintext modulus p = q

Enc
g
s (m) = [A,As+ e+ g ·m]

Dec
g
s ([A, c]) = ⌈c− As⌋g

Bonus: we can multiply ciphertexts by arbitrary constants (or linear
transformations)

c ⊙ Encgs (m) = g−1(c)t · Encs(gm)

= Encs(g
−1(c)t · g ·m)

= Encs(c ·m)

Similarly: (g · c)⊙ Enc
g
s (m) = Encs(gcm) = Enc

g
s (cm)

Remark: error grows by ℓ = log2 q instead of q because g−1(c) ∈ {0, 1}ℓ

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 37 / 61



Part 1 (geometry) Lattice Gadgets

The “Gadget-LWE” encryption scheme

Similar to LWE, but using the gadget vector g instead of scaling factor ∆
to encode the message.

Plaintext modulus p = q

Enc
g
s (m) = [A,As+ e+ g ·m]

Dec
g
s ([A, c]) = ⌈c− As⌋g

Bonus: we can multiply ciphertexts by arbitrary constants (or linear
transformations)

c ⊙ Encgs (m) = g−1(c)t · Encs(gm)

= Encs(g
−1(c)t · g ·m)

= Encs(c ·m)

Similarly: (g · c)⊙ Enc
g
s (m) = Encs(gcm) = Enc

g
s (cm)

Remark: error grows by ℓ = log2 q instead of q because g−1(c) ∈ {0, 1}ℓ

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 37 / 61



Part 1 (geometry) Lattice Gadgets

Other gadgets

The “powers-of-two” gadget is just the most common example.

Easily generalize to arbitrary base:
gt = [1,B,B2, . . . ,B logB q−1] ∈ Zℓ, gives a trade-off between storage
ℓ = logB q and error growth B · ℓ

Another useful option is the “Chinese Remainder Theorem” (CRT)
gadget gt = [q/p1, . . . , q/pℓ] where q =

∏
i pi

You can even combine a scaling factor ∆ = q/p and a gadget g
(mod p), and encode m ∈ Zp as ∆ · (gm) ∈ Zℓ

q.

Many optimizations and variants in lattice-based cryptography can be
seen simply as a different choice of gadget g

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 38 / 61



Part 1 (geometry) Lattice Gadgets

Other gadgets

The “powers-of-two” gadget is just the most common example.

Easily generalize to arbitrary base:
gt = [1,B,B2, . . . ,B logB q−1] ∈ Zℓ, gives a trade-off between storage
ℓ = logB q and error growth B · ℓ
Another useful option is the “Chinese Remainder Theorem” (CRT)
gadget gt = [q/p1, . . . , q/pℓ] where q =

∏
i pi

You can even combine a scaling factor ∆ = q/p and a gadget g
(mod p), and encode m ∈ Zp as ∆ · (gm) ∈ Zℓ

q.

Many optimizations and variants in lattice-based cryptography can be
seen simply as a different choice of gadget g

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 38 / 61



Part 1 (geometry) Lattice Gadgets

Application: Key-Switching

The key-switching problem: Encgs (m) 7→ Enc
g
z(m)

You have a ciphertext C = Enc
g
s (m) = [A,b] under a key s

You want to publish some information W that can be used to change
the encryption key to some other z, without leaking any information

Solution: W = Enc
g
z(

[
−s
1

]
)

Theorem (Key-Switching)

Enc
g
s ⊙W = Enc

g
z(m)

C⊙W = C⊙ Encgz(

[
−s
1

]
) = Encz(C ·

[
−s
1

]
)

= Encz(b− As) = Encz(gm + e) = Encgz(m)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 39 / 61



Part 1 (geometry) Lattice Gadgets

Application: Key-Switching

The key-switching problem: Encgs (m) 7→ Enc
g
z(m)

You have a ciphertext C = Enc
g
s (m) = [A,b] under a key s

You want to publish some information W that can be used to change
the encryption key to some other z, without leaking any information

Solution: W = Enc
g
z(

[
−s
1

]
)

Theorem (Key-Switching)

Enc
g
s ⊙W = Enc

g
z(m)

C⊙W = C⊙ Encgz(

[
−s
1

]
) = Encz(C ·

[
−s
1

]
)

= Encz(b− As) = Encz(gm + e) = Encgz(m)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 39 / 61



Part 1 (geometry) Lattice Gadgets

Application: Key-Switching

The key-switching problem: Encgs (m) 7→ Enc
g
z(m)

You have a ciphertext C = Enc
g
s (m) = [A,b] under a key s

You want to publish some information W that can be used to change
the encryption key to some other z, without leaking any information

Solution: W = Enc
g
z(

[
−s
1

]
)

Theorem (Key-Switching)

Enc
g
s ⊙W = Enc

g
z(m)

C⊙W = C⊙ Encgz(

[
−s
1

]
) = Encz(C ·

[
−s
1

]
)

= Encz(b− As) = Encz(gm + e) = Encgz(m)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 39 / 61



Part 1 (geometry) Lattice Gadgets

So far: summary

SIS, LWE: hard lattice problems on random q-ary lattices Λq(A)

Technical tool: Lattice gadgets

Strong linear homomorphic properties

Typical applications:

SIS: collision resistant hashing
LWE: encryption

Main issue: Efficiency!

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 40 / 61



Part 2 (algebra)

1 Introduction

2 Part 1 (geometry)
Lattices and Lattice Problems
Random Lattices (SIS and LWE)
Cryptographic Applications
Lattice Gadgets

3 Part 2 (algebra)
Structured Matrices and Polynomials
RingSIS and RingLWE
FFT and NTT
Example: Kyber (ML-KEM)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 41 / 61



Part 2 (algebra)

Part 2: Algebraic Lattices

Structured matrices and Polynomial Rings

RingSIS and RingLWE

Algorithms: FFT and NTT

Example: Kyber (ML-KEM)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 42 / 61



Part 2 (algebra)

Efficiency of Ajtai’s function

q = nO(1), m = O(n log n) > n log2 q

E.g., n = 64, q = 28, m = 1024

fA maps 1024 bits to 512.

Key size:
nm log q = O(n2 log2 n) = 219 = 64KB

Runtime: nm = O(n2 log n) = 216

arithmetic operations

Usable, but inefficient

m

n

0/1

1 . . . q

Source of inefficiency: quadratic dependency in n

Problem

Can we do better than O(n2) complexity?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 43 / 61



Part 2 (algebra)

Efficiency of Ajtai’s function

q = nO(1), m = O(n log n) > n log2 q

E.g., n = 64, q = 28, m = 1024

fA maps 1024 bits to 512.

Key size:
nm log q = O(n2 log2 n) = 219 = 64KB

Runtime: nm = O(n2 log n) = 216

arithmetic operations

Usable, but inefficient

m

n

0/1

1 . . . q

Source of inefficiency: quadratic dependency in n

Problem

Can we do better than O(n2) complexity?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 43 / 61



Part 2 (algebra)

Efficiency of Ajtai’s function

q = nO(1), m = O(n log n) > n log2 q

E.g., n = 64, q = 28, m = 1024

fA maps 1024 bits to 512.

Key size:
nm log q = O(n2 log2 n) = 219 = 64KB

Runtime: nm = O(n2 log n) = 216

arithmetic operations

Usable, but inefficient

m

n

0/1

1 . . . q

Source of inefficiency: quadratic dependency in n

Problem

Can we do better than O(n2) complexity?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 43 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Efficient lattice based hashing

Idea: use structured matrix A = [A(1) | . . . | A(m/n)], A(i) ∈ Zn×n
q .

Theorem (Micciancio 2002)

fA is a one-way function, provided
SVP and SIVP are hard to
approximate within γ ≈ n in the
worst case over cyclic lattices

A(i) =


a
(i)
1 a

(i)
n · · · a

(i)
2

a
(i)
2 a

(i)
1 · · · a

(i)
3

...
...

. . .
...

a
(i)
n a

(i)
n−1 · · · a

(i)
1


Similar idea first used by NTRU (1998)

Novelty in Micciancio (2002): provably hard to invert

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 44 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Efficient lattice based hashing

Idea: use structured matrix A = [A(1) | . . . | A(m/n)], A(i) ∈ Zn×n
q .

Theorem (Micciancio 2002)

fA is a one-way function, provided
SVP and SIVP are hard to
approximate within γ ≈ n in the
worst case over cyclic lattices

A(i) =


a
(i)
1 a

(i)
n · · · a

(i)
2

a
(i)
2 a

(i)
1 · · · a

(i)
3

...
...

. . .
...

a
(i)
n a

(i)
n−1 · · · a

(i)
1


Similar idea first used by NTRU (1998)

Novelty in Micciancio (2002): provably hard to invert

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 44 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Can you find a collision? (mod 10)

1 4 3 8 6 4 9 0 2 6 4 5 3 2 7 1
8 1 4 3 0 6 4 9 5 2 6 4 1 3 2 7
3 8 1 4 9 0 6 4 4 5 2 6 7 1 3 2
4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

+ 1×

6
6
6
6

− 1×

9
9
9
9

+ 0×

7
7
7
7

+ 1×

3
3
3
3

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 45 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Can you find a collision? (mod 10)

1 0 0 -1 -1 1 1 0 0 0 1 1 1 0 -1 0

1 4 3 8 6 4 9 0 2 6 4 5 3 2 7 1
8 1 4 3 0 6 4 9 5 2 6 4 1 3 2 7
3 8 1 4 9 0 6 4 4 5 2 6 7 1 3 2
4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

5
4
8
6

+ 1×

6
6
6
6

− 1×

9
9
9
9

+ 0×

7
7
7
7

+ 1×

3
3
3
3

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 45 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Can you find a collision? (mod 10)

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 4 3 8 6 4 9 0 2 6 4 5 3 2 7 1
8 1 4 3 0 6 4 9 5 2 6 4 1 3 2 7
3 8 1 4 9 0 6 4 4 5 2 6 7 1 3 2
4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

0
0
0
0

+ 1×

6
6
6
6

− 1×

9
9
9
9

+ 0×

7
7
7
7

+ 1×

3
3
3
3

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 45 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Can you find a collision? (mod 10)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 4 3 8 6 4 9 0 2 6 4 5 3 2 7 1
8 1 4 3 0 6 4 9 5 2 6 4 1 3 2 7
3 8 1 4 9 0 6 4 4 5 2 6 7 1 3 2
4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

+ 1×

6
6
6
6

− 1×

9
9
9
9

+ 0×

7
7
7
7

+ 1×

3
3
3
3

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 45 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Can you find a collision? (mod 10)

1 1 1 1 -1 -1 -1 -1 0 0 0 0 1 1 1 1

1 4 3 8 6 4 9 0 2 6 4 5 3 2 7 1
8 1 4 3 0 6 4 9 5 2 6 4 1 3 2 7
3 8 1 4 9 0 6 4 4 5 2 6 7 1 3 2
4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

0
0
0
0

+ 1×

6
6
6
6

− 1×

9
9
9
9

+ 0×

7
7
7
7

+ 1×

3
3
3
3

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 45 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Remarks about proofs of security

This function is essentially the compression function of hash function
LASH, modeled after NTRU

You can still “prove” security based on average case assumption:
Breaking the above hash function is as hard as finding short vectors in
a random lattice Λ([A(1)| . . . |A(m/n)])

. . . but we know the function is broken: The underlying random
lattice distribution is weak!

Conclusion: Assuming that a problem is hard on average-case is a
really tricky business!

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 46 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Can you find a collision now? (mod 10)

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 -4 -3 -8 6 -4 -9 -0 2 -6 -4 -5 3 -2 -7 -1

8 1 -4 -3 0 6 -4 -9 5 2 -6 -4 1 3 -2 -7

3 8 1 -4 9 0 6 -4 4 5 2 -6 7 1 3 -2

4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices

Theorem (LM’07,PR’07)

Provably collision resistant, assuming the worst case hardness of
approximating SVP and SIVP over anti-cyclic lattices.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 47 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Can you find a collision now? (mod 10)

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 -4 -3 -8 6 -4 -9 -0 2 -6 -4 -5 3 -2 -7 -1

8 1 -4 -3 0 6 -4 -9 5 2 -6 -4 1 3 -2 -7

3 8 1 -4 9 0 6 -4 4 5 2 -6 7 1 3 -2

4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices

Theorem (LM’07,PR’07)

Provably collision resistant, assuming the worst case hardness of
approximating SVP and SIVP over anti-cyclic lattices.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 47 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Can you find a collision now? (mod 10)

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 -4 -3 -8 6 -4 -9 -0 2 -6 -4 -5 3 -2 -7 -1

8 1 -4 -3 0 6 -4 -9 5 2 -6 -4 1 3 -2 -7

3 8 1 -4 9 0 6 -4 4 5 2 -6 7 1 3 -2

4 3 8 1 4 9 0 6 6 4 5 2 2 7 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices

Theorem (LM’07,PR’07)

Provably collision resistant, assuming the worst case hardness of
approximating SVP and SIVP over anti-cyclic lattices.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 47 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Polynomial rings

Z[X ]: set of polynomials with integer coefficients

Monic polynomial f (X ) = X d + fd−1X
d−1 + ·+ f1 · X + f0 ∈ Z[X ]

a(X ) (mod f (X )) has degree < d

R = Z[X ]/f (X ) ≡ Zd

Matrix representation

Ma(X ) =
[
(a(X )), (X · a(X )), . . . , (X d−1 · a(X ))

]
∈ Zd×d

where X i · a(X ) is reduced (mod f (X ))

c(X ) = a(X ) · b(X ) mod f (X ) then

Ma(X ) · b(X ) = c(X )

Ma(X ) ·Mb(X ) = Mc(X )

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 48 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Polynomial rings

Z[X ]: set of polynomials with integer coefficients

Monic polynomial f (X ) = X d + fd−1X
d−1 + ·+ f1 · X + f0 ∈ Z[X ]

a(X ) (mod f (X )) has degree < d

R = Z[X ]/f (X ) ≡ Zd

Matrix representation

Ma(X ) =
[
(a(X )), (X · a(X )), . . . , (X d−1 · a(X ))

]
∈ Zd×d

where X i · a(X ) is reduced (mod f (X ))

c(X ) = a(X ) · b(X ) mod f (X ) then

Ma(X ) · b(X ) = c(X )

Ma(X ) ·Mb(X ) = Mc(X )

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 48 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Examples

If f (X ) = X d − 1, then X d ≡ 1 and

Ma =


a0 ad−1 · · · a1
a1 a0 · · · a2
...

...
. . .

...
ad−1 ad−2 · · · a0



If f (X ) = X d + 1, then X d ≡ −1 and

Ma =


a0 −ad−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...
ad−1 ad−2 · · · a0


What makes X d + 1 better than X d − 1?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 49 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Examples

If f (X ) = X d − 1, then X d ≡ 1 and

Ma =


a0 ad−1 · · · a1
a1 a0 · · · a2
...

...
. . .

...
ad−1 ad−2 · · · a0


If f (X ) = X d + 1, then X d ≡ −1 and

Ma =


a0 −ad−1 · · · −a1
a1 a0 · · · −a2
...

...
. . .

...
ad−1 ad−2 · · · a0


What makes X d + 1 better than X d − 1?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 49 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Choosing f (X )

f (X ) = X d − 1

Factors into X d − 1 = (X − 1) · (X d−1 + X d−2 + · · ·X + 1)
Ability to find collisions is closely related to existence of linear factor
(X − 1)

f (X ) = X d + 1

When d = 2k , the polynomial f (X ) is irreducible
This is the most common choice in cryptography
Efficient, easier to implement
These are called “power-of-two” cyclotomic rings

One may use other irreducible f (X )

For example, f (X ) = X p−1 + X p−2 + · · ·+ X + 1
Less convenient, harder to implement

From now on assume R = Z[X ]/(X d + 1) ≡ Zd with
d = dim(R) = 2k

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 50 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Choosing f (X )

f (X ) = X d − 1

Factors into X d − 1 = (X − 1) · (X d−1 + X d−2 + · · ·X + 1)
Ability to find collisions is closely related to existence of linear factor
(X − 1)

f (X ) = X d + 1

When d = 2k , the polynomial f (X ) is irreducible
This is the most common choice in cryptography
Efficient, easier to implement
These are called “power-of-two” cyclotomic rings

One may use other irreducible f (X )

For example, f (X ) = X p−1 + X p−2 + · · ·+ X + 1
Less convenient, harder to implement

From now on assume R = Z[X ]/(X d + 1) ≡ Zd with
d = dim(R) = 2k

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 50 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Choosing f (X )

f (X ) = X d − 1

Factors into X d − 1 = (X − 1) · (X d−1 + X d−2 + · · ·X + 1)
Ability to find collisions is closely related to existence of linear factor
(X − 1)

f (X ) = X d + 1

When d = 2k , the polynomial f (X ) is irreducible
This is the most common choice in cryptography
Efficient, easier to implement
These are called “power-of-two” cyclotomic rings

One may use other irreducible f (X )

For example, f (X ) = X p−1 + X p−2 + · · ·+ X + 1
Less convenient, harder to implement

From now on assume R = Z[X ]/(X d + 1) ≡ Zd with
d = dim(R) = 2k

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 50 / 61



Part 2 (algebra) Structured Matrices and Polynomials

Algebraic Number Theory

K = Q[X ]/f (X ) ≡ Qd is called an Algebraic Number Field

May be defined for any irreducible f (X ) ∈ Z[X ]
Here we focus on f (X ) = X d + 1 for d = 2k

R ⊂ K is the “Ring of integers” of K

Very special case: d = 1 = 20

Q[X ]/(X + 1) = Q
Z[X ]/(X + 1) = Z

R generalizes Z ⊂ Q to higher dimension d = dim(R)

Ring element a(X ) ∈ R can be stored as vector in Zd

It represent a (structured) matrix in Zd×d .
For d = 256 or higher, this is a huge saving in storage

You don’t need to known Algebraic Number Theory to understand
Lattice-based cryptography

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 51 / 61



Part 2 (algebra) RingSIS and RingLWE

RingSIS

Just like SIS, but using R instead of Z
Let Rq = R/qR = Zq[X ]/f (X )

Given A ∈ Rn×m, find “short” x ∈ Rm such that Ax = 0 (mod q)

What is a “short” ring element a(X ) ∈ R?

For power-of-two cyclotomic rings R, just take the norm of the
coefficient vector ∥a∥

Effective dimension A ∈ Znd×md
q

For large d , it is enough to take n = 1 and m = 2n log2 q = 2 log2 q
For d = 256, q = 216, now A only takes 64d B = 16 KB, instead of
64d2 B = 4 MB.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 52 / 61



Part 2 (algebra) RingSIS and RingLWE

RingSIS

Just like SIS, but using R instead of Z
Let Rq = R/qR = Zq[X ]/f (X )

Given A ∈ Rn×m, find “short” x ∈ Rm such that Ax = 0 (mod q)

What is a “short” ring element a(X ) ∈ R?

For power-of-two cyclotomic rings R, just take the norm of the
coefficient vector ∥a∥

Effective dimension A ∈ Znd×md
q

For large d , it is enough to take n = 1 and m = 2n log2 q = 2 log2 q
For d = 256, q = 216, now A only takes 64d B = 16 KB, instead of
64d2 B = 4 MB.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 52 / 61



Part 2 (algebra) RingSIS and RingLWE

RingSIS

Just like SIS, but using R instead of Z
Let Rq = R/qR = Zq[X ]/f (X )

Given A ∈ Rn×m, find “short” x ∈ Rm such that Ax = 0 (mod q)

What is a “short” ring element a(X ) ∈ R?

For power-of-two cyclotomic rings R, just take the norm of the
coefficient vector ∥a∥

Effective dimension A ∈ Znd×md
q

For large d , it is enough to take n = 1 and m = 2n log2 q = 2 log2 q
For d = 256, q = 216, now A only takes 64d B = 16 KB, instead of
64d2 B = 4 MB.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 52 / 61



Part 2 (algebra) RingSIS and RingLWE

RingLWE

Similar, like LWE but using R instead of Z
Let Rq = R/qR = Zq[X ]/f (X )

Distribution [A,As+ e] where A← Rm×k
q , s← Rk

q , and e← χdm

Search RingLWE: Find s and e = b− As
Decisional RingLWE: distinguish [A,b] from uniformly random

R
m×(k+1)
q

Security level is the effective secret dimension dn

Can set k = 1: distinguish [a, a · s + ei ] from uniform Rm×2
q

The secret s ∈ Rq is just a ring element
d serves as a security parameter

When k > 1, this is sometime called ModuleLWE.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 53 / 61



Part 2 (algebra) RingSIS and RingLWE

RingLWE

Similar, like LWE but using R instead of Z
Let Rq = R/qR = Zq[X ]/f (X )

Distribution [A,As+ e] where A← Rm×k
q , s← Rk

q , and e← χdm

Search RingLWE: Find s and e = b− As
Decisional RingLWE: distinguish [A,b] from uniformly random

R
m×(k+1)
q

Security level is the effective secret dimension dn

Can set k = 1: distinguish [a, a · s + ei ] from uniform Rm×2
q

The secret s ∈ Rq is just a ring element
d serves as a security parameter

When k > 1, this is sometime called ModuleLWE.

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 53 / 61



Part 2 (algebra) FFT and NTT

Running time

Using a(X ) instead of Ma(x) reduces storage (for keys, ciphertexts,
etc.) from O(d2) to O(d).

What about running time?

Computing the product a(X ) · b(X ) using the naive algorithm still
takes time O(d2)
This can be reduced to O(d log d)

Approach:

Convert ring elements a(X ) ∈ R between their “coefficient
representation [a0, . . . , ad−1] and their evaluation representation

(a(ω0), . . . , a(ωd−1))

Note that in the evaluation representation, multiplication is
componentwise

(a · b)(ωi ) = a(ωi ) · b(ωi )

and can be computed with d scalar multiplications

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 54 / 61



Part 2 (algebra) FFT and NTT

Running time

Using a(X ) instead of Ma(x) reduces storage (for keys, ciphertexts,
etc.) from O(d2) to O(d).

What about running time?

Computing the product a(X ) · b(X ) using the naive algorithm still
takes time O(d2)
This can be reduced to O(d log d)

Approach:

Convert ring elements a(X ) ∈ R between their “coefficient
representation [a0, . . . , ad−1] and their evaluation representation

(a(ω0), . . . , a(ωd−1))

Note that in the evaluation representation, multiplication is
componentwise

(a · b)(ωi ) = a(ωi ) · b(ωi )

and can be computed with d scalar multiplications

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 54 / 61



Part 2 (algebra) FFT and NTT

Running time

Using a(X ) instead of Ma(x) reduces storage (for keys, ciphertexts,
etc.) from O(d2) to O(d).

What about running time?

Computing the product a(X ) · b(X ) using the naive algorithm still
takes time O(d2)
This can be reduced to O(d log d)

Approach:

Convert ring elements a(X ) ∈ R between their “coefficient
representation [a0, . . . , ad−1] and their evaluation representation

(a(ω0), . . . , a(ωd−1))

Note that in the evaluation representation, multiplication is
componentwise

(a · b)(ωi ) = a(ωi ) · b(ωi )

and can be computed with d scalar multiplications

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 54 / 61



Part 2 (algebra) FFT and NTT

FFT based multiplication

The polynomial f (X ) has d complex roots ωj = exp((2j + 1)πı/n)

Using these ω0, . . . , ωd−1 as evaluation points has two advantages
1 Polynomial multiplication happens modulo f (X ) because f (ωi ) = 0
2 The mapping between the coefficient and evaluation representation can

be computed in time O(d log d) using the Fast Fourier Transform
(FFT) algorithm

Compute the polynomial product a(X ) · b(X ) (mod f (X )) as

a(X ) · b(X ) = fft−1(fft(a) ◦ fft(b))

where ◦ is componentwise multiplication.

Total running time is 2 · O(d log d) + O(d) = O(d log d) arithmetic
operations on complex numbers

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 55 / 61



Part 2 (algebra) FFT and NTT

FFT based multiplication

The polynomial f (X ) has d complex roots ωj = exp((2j + 1)πı/n)

Using these ω0, . . . , ωd−1 as evaluation points has two advantages
1 Polynomial multiplication happens modulo f (X ) because f (ωi ) = 0
2 The mapping between the coefficient and evaluation representation can

be computed in time O(d log d) using the Fast Fourier Transform
(FFT) algorithm

Compute the polynomial product a(X ) · b(X ) (mod f (X )) as

a(X ) · b(X ) = fft−1(fft(a) ◦ fft(b))

where ◦ is componentwise multiplication.

Total running time is 2 · O(d log d) + O(d) = O(d log d) arithmetic
operations on complex numbers

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 55 / 61



Part 2 (algebra) FFT and NTT

FFT based multiplication

The polynomial f (X ) has d complex roots ωj = exp((2j + 1)πı/n)

Using these ω0, . . . , ωd−1 as evaluation points has two advantages
1 Polynomial multiplication happens modulo f (X ) because f (ωi ) = 0
2 The mapping between the coefficient and evaluation representation can

be computed in time O(d log d) using the Fast Fourier Transform
(FFT) algorithm

Compute the polynomial product a(X ) · b(X ) (mod f (X )) as

a(X ) · b(X ) = fft−1(fft(a) ◦ fft(b))

where ◦ is componentwise multiplication.

Total running time is 2 · O(d log d) + O(d) = O(d log d) arithmetic
operations on complex numbers

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 55 / 61



Part 2 (algebra) FFT and NTT

The Number Theoretic Transform (NTT)

We want to multiply polynomials in Rq = Zq[X ]/f (X )

Choose prime q such that q ≡ 1 (mod 2d)

Since 2d divides q − 1 = |Z∗
q|, there is an element ω ∈ Z∗

q of order 2d

The values ωj = ω2j+1 ∈ Zq are roots of f (ωj) = 0 (mod q)
We can perform the FFT computation in Zq, using ω

This is called the Number Theoretic Transform

ntt : Zd
q → Zd

q

The effective use of NTT to efficiently implement (Ring) lattice
cryptography first introduced and popularized by the SWIFFT hash
function (Lyubashevsky,M.,Peikert,Rosen, 2008)

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 56 / 61



Part 2 (algebra) FFT and NTT

Applications

All cryptographic applications of SIS and LWE are immediately
adapted to the RingSIS/RingLWE setting: just use R instead of Z

How do you build lattice gadgets in the ring setting? e.g., how do you
adapt g = (1, 2, 4, . . .) ∈ Zw to R?

Simply note that Z ⊂ R, so any g ∈ Zw is also a vector g ∈ Rw

Scalars a(X ) = a0 ∈ Z are mapped to diagonal matrices Ma = a0 · I
For example, the powers-of-two gadget becomes

G = [I, 2I, 4I, . . .]t

All gadget algorithms (inversion, decomposition) work on ring elements
componentwise, on the coefficients of the input polynomial
a(X ) = [a0, . . . , ad−1]

Error is measured in the coefficient representation:
Gadget operations should always be performed on the coefficient
representation
Can use ntt and ntt−1 to convert between coefficient and evaluation
representation

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 57 / 61



Part 2 (algebra) FFT and NTT

Applications

All cryptographic applications of SIS and LWE are immediately
adapted to the RingSIS/RingLWE setting: just use R instead of Z
How do you build lattice gadgets in the ring setting? e.g., how do you
adapt g = (1, 2, 4, . . .) ∈ Zw to R?

Simply note that Z ⊂ R, so any g ∈ Zw is also a vector g ∈ Rw

Scalars a(X ) = a0 ∈ Z are mapped to diagonal matrices Ma = a0 · I
For example, the powers-of-two gadget becomes

G = [I, 2I, 4I, . . .]t

All gadget algorithms (inversion, decomposition) work on ring elements
componentwise, on the coefficients of the input polynomial
a(X ) = [a0, . . . , ad−1]

Error is measured in the coefficient representation:
Gadget operations should always be performed on the coefficient
representation
Can use ntt and ntt−1 to convert between coefficient and evaluation
representation

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 57 / 61



Part 2 (algebra) FFT and NTT

Applications

All cryptographic applications of SIS and LWE are immediately
adapted to the RingSIS/RingLWE setting: just use R instead of Z
How do you build lattice gadgets in the ring setting? e.g., how do you
adapt g = (1, 2, 4, . . .) ∈ Zw to R?

Simply note that Z ⊂ R, so any g ∈ Zw is also a vector g ∈ Rw

Scalars a(X ) = a0 ∈ Z are mapped to diagonal matrices Ma = a0 · I
For example, the powers-of-two gadget becomes

G = [I, 2I, 4I, . . .]t

All gadget algorithms (inversion, decomposition) work on ring elements
componentwise, on the coefficients of the input polynomial
a(X ) = [a0, . . . , ad−1]

Error is measured in the coefficient representation:
Gadget operations should always be performed on the coefficient
representation
Can use ntt and ntt−1 to convert between coefficient and evaluation
representation

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 57 / 61



Part 2 (algebra) FFT and NTT

Applications

All cryptographic applications of SIS and LWE are immediately
adapted to the RingSIS/RingLWE setting: just use R instead of Z
How do you build lattice gadgets in the ring setting? e.g., how do you
adapt g = (1, 2, 4, . . .) ∈ Zw to R?

Simply note that Z ⊂ R, so any g ∈ Zw is also a vector g ∈ Rw

Scalars a(X ) = a0 ∈ Z are mapped to diagonal matrices Ma = a0 · I
For example, the powers-of-two gadget becomes

G = [I, 2I, 4I, . . .]t

All gadget algorithms (inversion, decomposition) work on ring elements
componentwise, on the coefficients of the input polynomial
a(X ) = [a0, . . . , ad−1]

Error is measured in the coefficient representation:
Gadget operations should always be performed on the coefficient
representation
Can use ntt and ntt−1 to convert between coefficient and evaluation
representation

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 57 / 61



Part 2 (algebra) FFT and NTT

Coefficient vs Evaluation representation

Ring elements can be equivalently represented as

coefficient vectors [a0, . . . , ad−1] ∈ Zd
q , or

evaluation vectors [a(ω0), . . . , a(ωd−1)] ∈ Zd
q

Both representations are equally compact, but

the coefficient representation supports the evaluation of gadget
operations
the evaluation representation allows to perform ring arithmetics
(additions and multiplications) in linear time O(d)

One can convert between the two representations in time O(d log d)
using ntt,ntt−1, and this is often the bottleneck in practical
implementations of lattice cryptography

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 58 / 61



Part 2 (algebra) Example: Kyber (ML-KEM)

Kyber PKE – Parameters

Core component of ML-KEM

Parameters:

Ring dimension d = 28 = 256
12-bit prime modulus q = 3329 = 13 · 256 + 1
secret dimension: k = 2, 3, 4

Technically, a full NTT would have required 2d = 512 to divide q− 1,
but 256 is good enough for efficient implementation

Ring Rq = Zq[X ]/(X 256 + 1)

Storage (per ring element): d · log2 q = 256 · 12 = 3072 bits

Security level: k · d = 512, 768, 1024

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 59 / 61



Part 2 (algebra) Example: Kyber (ML-KEM)

Kyber PKE – Parameters

Core component of ML-KEM

Parameters:

Ring dimension d = 28 = 256
12-bit prime modulus q = 3329 = 13 · 256 + 1
secret dimension: k = 2, 3, 4

Technically, a full NTT would have required 2d = 512 to divide q− 1,
but 256 is good enough for efficient implementation

Ring Rq = Zq[X ]/(X 256 + 1)

Storage (per ring element): d · log2 q = 256 · 12 = 3072 bits

Security level: k · d = 512, 768, 1024

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 59 / 61



Part 2 (algebra) Example: Kyber (ML-KEM)

Kyber PKE – Algorithms

Same as [LP’11] in the ring setting, but precompute ntt when
useful/possible

Key generation: Gen = (ŝ, [Â, b̂])

Â = ntt(A) ∈ Rk×k
q , generated from a short seed ρ ∈ {0, 1}256

s, e ∈ Rk
q , chosen from distribution χ1 on small elements

ŝ = ntt(s), ê = ntt(e)
b̂ = Â ◦ ŝ+ ê ∈ Rk

q

Encryption Enc[Â,b̂](m) = (u, v):

r← χk
1 , e← χk+1

2[
u
v

]
= ntt−1(

[
Â

t

b̂
t

]
◦ ntt(r)) + e+

[
0

∆m

]
Decryption: Decŝ(u, v) =

⌈
(v − ntt−1(ŝ ◦ ntt(u)))/∆

⌋

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 60 / 61



Part 2 (algebra) Example: Kyber (ML-KEM)

Kyber PKE – Algorithms

Same as [LP’11] in the ring setting, but precompute ntt when
useful/possible

Key generation: Gen = (ŝ, [Â, b̂])

Â = ntt(A) ∈ Rk×k
q , generated from a short seed ρ ∈ {0, 1}256

s, e ∈ Rk
q , chosen from distribution χ1 on small elements

ŝ = ntt(s), ê = ntt(e)
b̂ = Â ◦ ŝ+ ê ∈ Rk

q

Encryption Enc[Â,b̂](m) = (u, v):

r← χk
1 , e← χk+1

2[
u
v

]
= ntt−1(

[
Â

t

b̂
t

]
◦ ntt(r)) + e+

[
0

∆m

]
Decryption: Decŝ(u, v) =

⌈
(v − ntt−1(ŝ ◦ ntt(u)))/∆

⌋

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 60 / 61



Part 2 (algebra) Example: Kyber (ML-KEM)

Kyber PKE – Algorithms

Same as [LP’11] in the ring setting, but precompute ntt when
useful/possible

Key generation: Gen = (ŝ, [Â, b̂])

Â = ntt(A) ∈ Rk×k
q , generated from a short seed ρ ∈ {0, 1}256

s, e ∈ Rk
q , chosen from distribution χ1 on small elements

ŝ = ntt(s), ê = ntt(e)
b̂ = Â ◦ ŝ+ ê ∈ Rk

q

Encryption Enc[Â,b̂](m) = (u, v):

r← χk
1 , e← χk+1

2[
u
v

]
= ntt−1(

[
Â

t

b̂
t

]
◦ ntt(r)) + e+

[
0

∆m

]

Decryption: Decŝ(u, v) =
⌈
(v − ntt−1(ŝ ◦ ntt(u)))/∆

⌋

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 60 / 61



Part 2 (algebra) Example: Kyber (ML-KEM)

Kyber PKE – Algorithms

Same as [LP’11] in the ring setting, but precompute ntt when
useful/possible

Key generation: Gen = (ŝ, [Â, b̂])

Â = ntt(A) ∈ Rk×k
q , generated from a short seed ρ ∈ {0, 1}256

s, e ∈ Rk
q , chosen from distribution χ1 on small elements

ŝ = ntt(s), ê = ntt(e)
b̂ = Â ◦ ŝ+ ê ∈ Rk

q

Encryption Enc[Â,b̂](m) = (u, v):

r← χk
1 , e← χk+1

2[
u
v

]
= ntt−1(

[
Â

t

b̂
t

]
◦ ntt(r)) + e+

[
0

∆m

]
Decryption: Decŝ(u, v) =

⌈
(v − ntt−1(ŝ ◦ ntt(u)))/∆

⌋
Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 60 / 61



Part 2 (algebra) Example: Kyber (ML-KEM)

Conclusion

Lattice cryptography: mature area building on +20 years of research

Algebraic lattices: key to efficient implementation

Tools and techniques: linear algebra, gadget lattices

Natural homomorphic properties: rich set of applications

Ready to use Public Key Encryption (and Digital Signatures)

Any Questions?

Daniele Micciancio (UCSD) Introduction to Lattices Jul 2024 61 / 61


	Introduction
	Part 1 (geometry)
	Lattices and Lattice Problems
	Random Lattices (SIS and LWE)
	Cryptographic Applications
	Lattice Gadgets

	Part 2 (algebra)
	Structured Matrices and Polynomials
	RingSIS and RingLWE
	FFT and NTT
	Example: Kyber (ML-KEM)


