

Introduction to Lattices

Daniele Micciancio

July 2024

1 Introduction

2 Part 1 (geometry)

- Lattices and Lattice Problems
- Random Lattices (SIS and LWE)
- Cryptographic Applications
- Lattice Gadgets

3 Part 2 (algebra)

- Structured Matrices and Polynomials
- RingSIS and RingLWE
- FFT and NTT
- Example: Kyber (ML-KEM)

(Point) Lattices

- Traditional area of mathematics
 - Bridge between number theory and geometry
 - Studied by Lagrange, Gauss, ..., Minkowski, ...

o o o

- Many applications in computer science and cryptography
 - Cryptanalysis: breaking low-exponent RSA
 - Coding Theory: error correcting codes for wireless communication
 - Optimization: Integer Programming
 - Cryptography: **post-quantum cryptography** and much more

Outline

1 Introduction

2 Part 1 (geometry)

- Lattices and Lattice Problems
- Random Lattices (SIS and LWE)
- Cryptographic Applications
- Lattice Gadgets

3 Part 2 (algebra)

- Structured Matrices and Polynomials
- RingSIS and RingLWE
- FFT and NTT
- Example: Kyber (ML-KEM)

(Post-quantum) Lattice-based Cryptography

- Post-quantum cryptography
 - Can be used on conventional (non-quantum) computers
 - Remain secure in the face of quantum attacks
- Lattice problems believed to be hard even for quantum computers
- NIST Post-Quantum Cryptography standardization
 - Process started in 2016
 - A good half of the ~ 80 submissions based on lattices
 - 2023: lattice-based encryption and signatures picked as PQC standard
- Many other desirable properties of lattice-based cryptography
 - Fast and Parallelizable
 - Versatile: many advanced applications
 - Only known solution for some: Fully Homomorphic Encryption

Lattice Cryptography: a Timeline

- Lenstra, Lenstra, Lovasz (1982) : The “LLL” algorithm
- Ajtai (1996) : Hardness of “Short Integer Solution” (SIS) problem
 - Ajtai, Dwork (1997): Public Key Encryption
 - Hoffstein, Pipher, Silverman (1998): NTRU cryptosystem
- M. (2002) : “Generalized compact knapsacks” (RingSIS)
 - Efficient version of Ajtai’s construction, based on structured lattices
- Regev (2005) : Hardness of “Learning with Errors” (LWE)
 - Injective variant of Ajtai’s SIS, with wider range of applications
- ... RingLWE ... Fully Homomorphic Encryption ... Lattice Trapdoors
- 2016-2023: NIST Post-Quantum Cryptography Standardization

1 Introduction

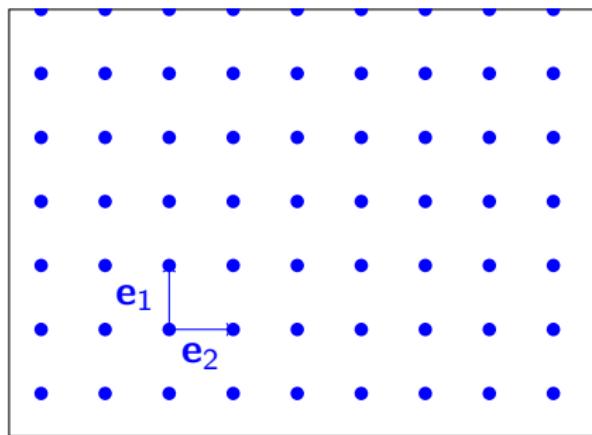
2 Part 1 (geometry)

- Lattices and Lattice Problems
- Random Lattices (SIS and LWE)
- Cryptographic Applications
- Lattice Gadgets

3 Part 2 (algebra)

- Structured Matrices and Polynomials
- RingSIS and RingLWE
- FFT and NTT
- Example: Kyber (ML-KEM)

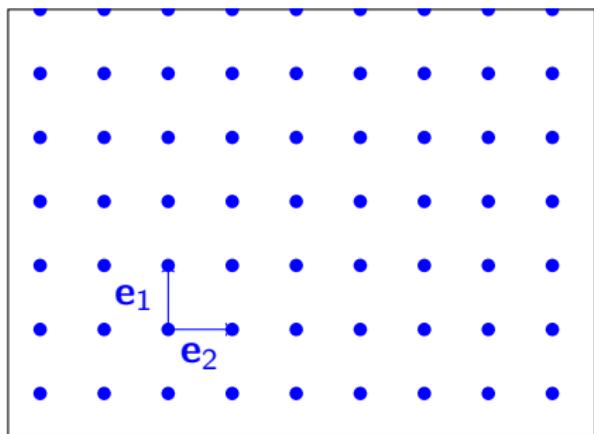
Lattices: Definition



The simplest lattice in n -dimensional space is the integer lattice

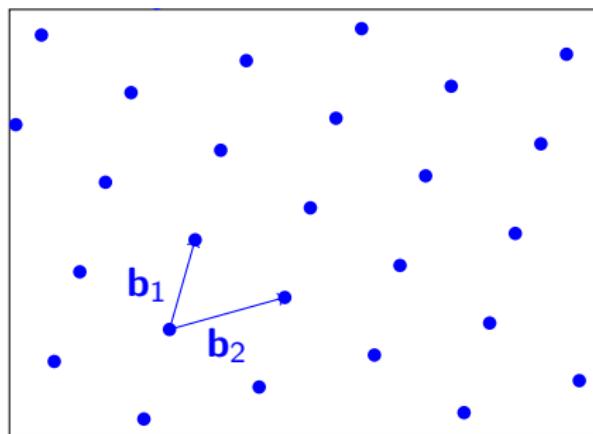
$$\Lambda = \mathbb{Z}^n$$

Lattices: Definition



The simplest lattice in n -dimensional space is the integer lattice

$$\Lambda = \mathbb{Z}^n$$



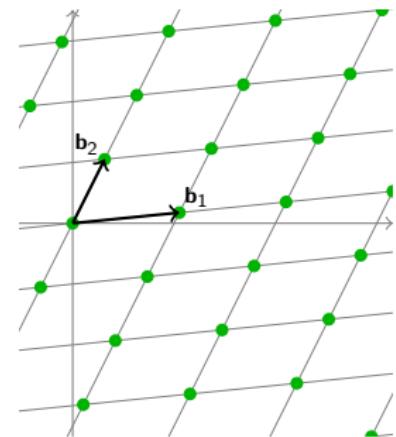
Other lattices are obtained by applying a linear transformation

$$\Lambda = \mathbf{B} \mathbb{Z}^n \quad (\mathbf{B} \in \mathbb{R}^{d \times n})$$

Lattices and Bases

A lattice is the set of all **integer** linear combinations of (linearly independent) **basis** vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$:

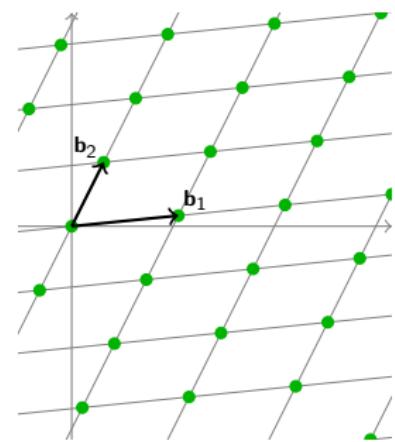
$$\mathcal{L} = \sum_{i=1}^n \mathbf{b}_i \cdot \mathbb{Z}$$



Lattices and Bases

A lattice is the set of all **integer** linear combinations of (linearly independent) **basis** vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$:

$$\mathcal{L} = \sum_{i=1}^n \mathbf{b}_i \cdot \mathbb{Z} = \{\mathbf{Bx} : \mathbf{x} \in \mathbb{Z}^n\}$$



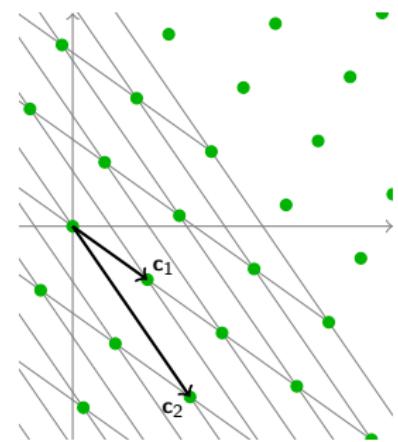
Lattices and Bases

A lattice is the set of all **integer** linear combinations of (linearly independent) **basis** vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$:

$$\mathcal{L} = \sum_{i=1}^n \mathbf{b}_i \cdot \mathbb{Z} = \{\mathbf{Bx} : \mathbf{x} \in \mathbb{Z}^n\}$$

The same lattice has many bases

$$\mathcal{L} = \sum_{i=1}^n \mathbf{c}_i \cdot \mathbb{Z}$$



Lattices and Bases

A lattice is the set of all **integer** linear combinations of (linearly independent) **basis** vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$:

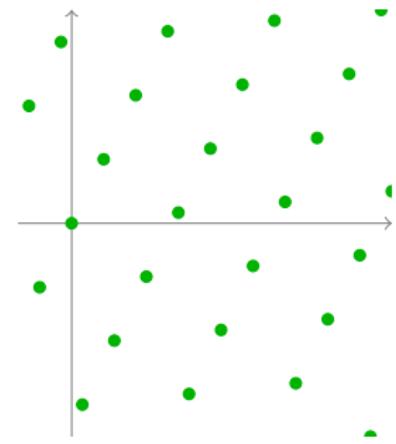
$$\mathcal{L} = \sum_{i=1}^n \mathbf{b}_i \cdot \mathbb{Z} = \{\mathbf{Bx} : \mathbf{x} \in \mathbb{Z}^n\}$$

The same lattice has many bases

$$\mathcal{L} = \sum_{i=1}^n \mathbf{c}_i \cdot \mathbb{Z}$$

Definition (Lattice)

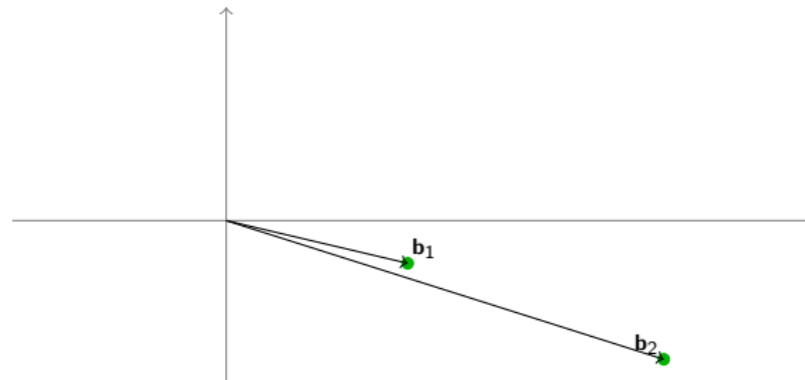
A discrete additive subgroup of \mathbb{R}^n



Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

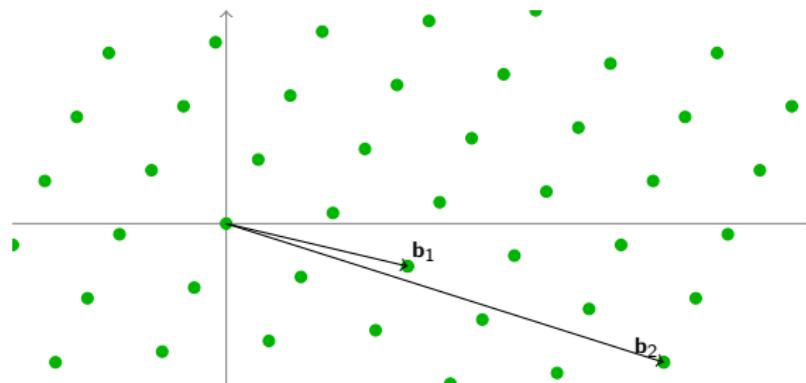
Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector \mathbf{Bx} (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{Bx}\| \leq \lambda_1$



Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

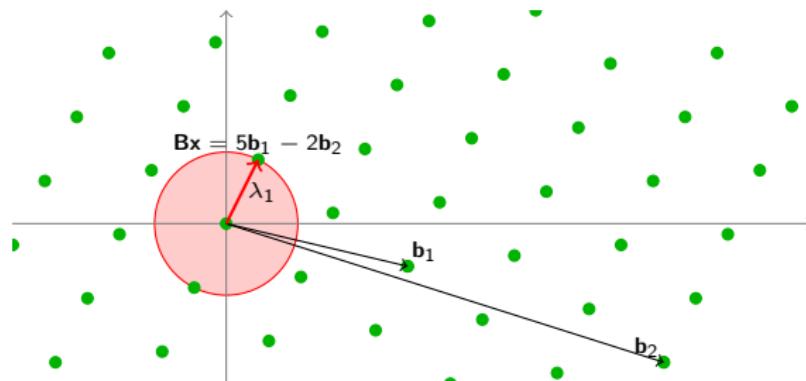
Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector \mathbf{Bx} (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{Bx}\| \leq \lambda_1$



Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

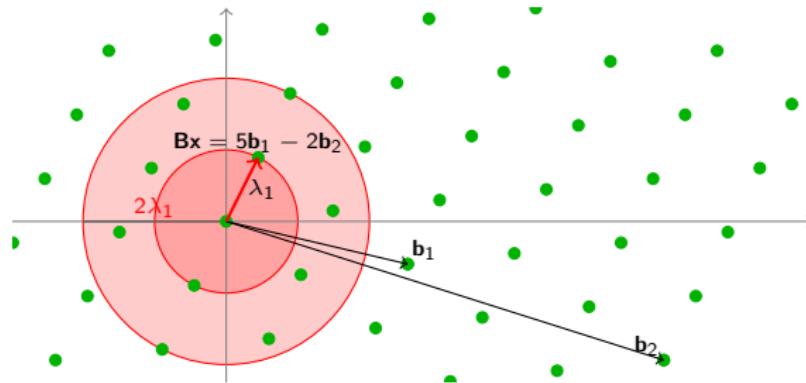
Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector \mathbf{Bx} (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{Bx}\| \leq \lambda_1$



Shortest Vector Problem

Definition (Shortest Vector Problem, SVP $_{\gamma}$)

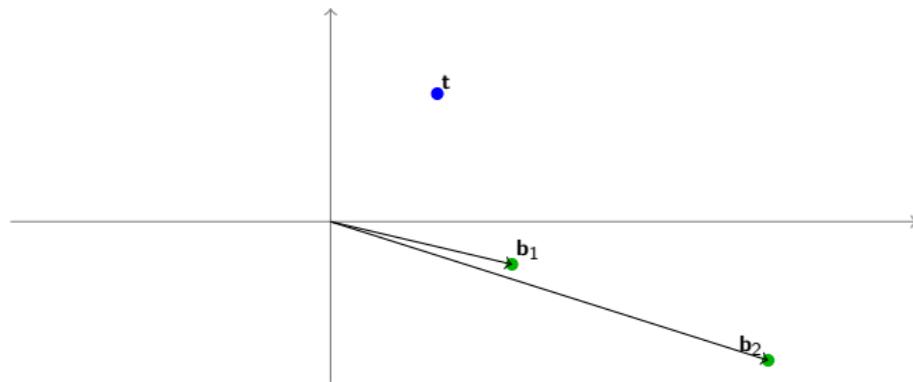
Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector \mathbf{Bx} (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{Bx}\| \leq \gamma \lambda_1$



Closest Vector Problem

Definition (Closest Vector Problem, CVP)

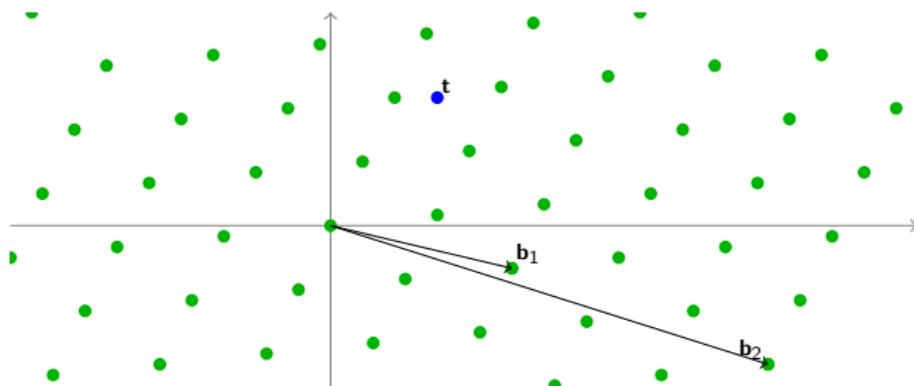
Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector \mathbf{Bx} within distance $\|\mathbf{Bx} - \mathbf{t}\| \leq \mu$ from the target



Closest Vector Problem

Definition (Closest Vector Problem, CVP)

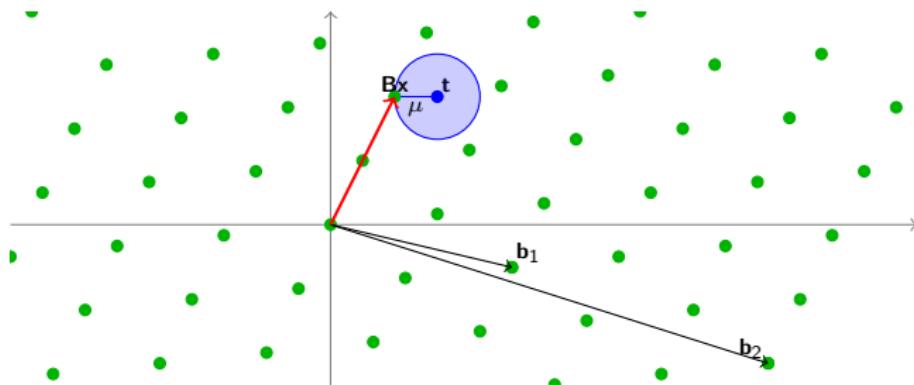
Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector \mathbf{Bx} within distance $\|\mathbf{Bx} - \mathbf{t}\| \leq \mu$ from the target



Closest Vector Problem

Definition (Closest Vector Problem, CVP)

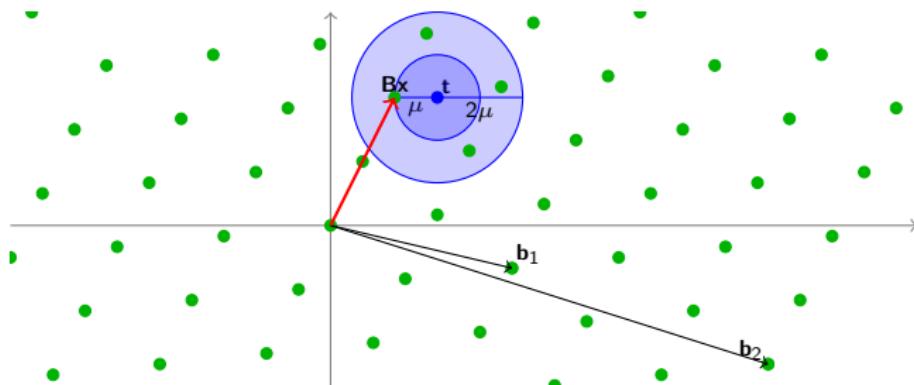
Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector \mathbf{Bx} within distance $\|\mathbf{Bx} - \mathbf{t}\| \leq \mu$ from the target



Closest Vector Problem

Definition (Closest Vector Problem, CVP_{γ})

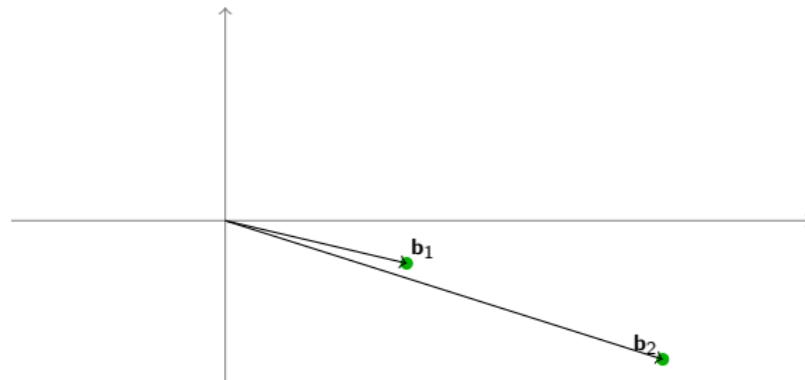
Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector \mathbf{Bx} within distance $\|\mathbf{Bx} - \mathbf{t}\| \leq \gamma\mu$ from the target



Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

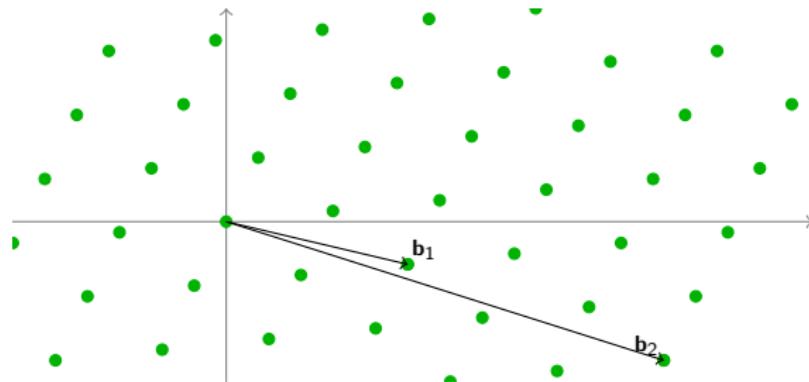
Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{Bx}_1, \dots, \mathbf{Bx}_n$ of length (at most) $\max_i \|\mathbf{Bx}_i\| \leq \lambda_n$



Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

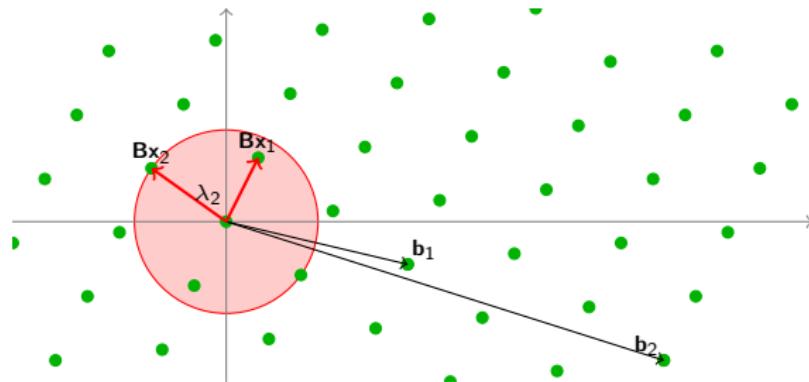
Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{Bx}_1, \dots, \mathbf{Bx}_n$ of length (at most) $\max_i \|\mathbf{Bx}_i\| \leq \lambda_n$



Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

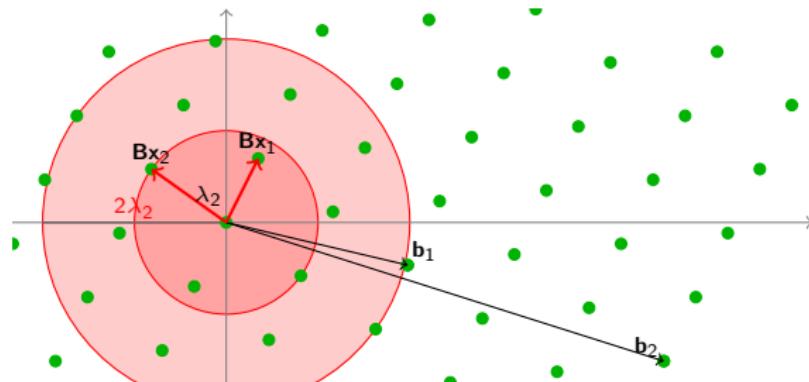
Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{Bx}_1, \dots, \mathbf{Bx}_n$ of length (at most) $\max_i \|\mathbf{Bx}_i\| \leq \lambda_n$



Shortest Independent Vectors Problem

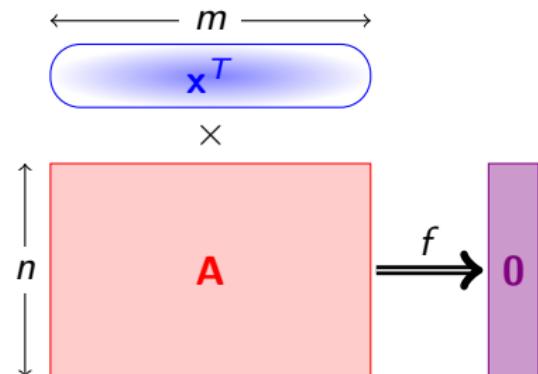
Definition (Shortest Independent Vectors Problem, SIVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{Bx}_1, \dots, \mathbf{Bx}_n$ of length (at most) $\max_i \|\mathbf{Bx}_i\| \leq \gamma \lambda_n$



Short Integer Solution (SIS): random lattices

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Function: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q$
- Choose \mathbf{A} uniformly at random

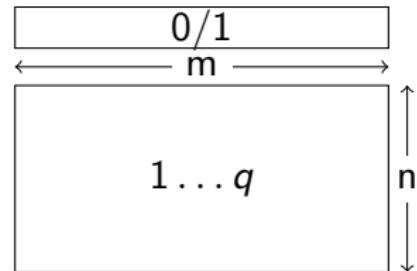


The SIS lattice: $\Lambda_q^\perp(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m : \mathbf{A}\mathbf{x} = \mathbf{0} \pmod{q}\} \subseteq \mathbb{Z}^m$.

- Does $\Lambda_q^\perp(\mathbf{A})$ contain short nonzero vectors?
- Can you solve SVP in $\Lambda_q^\perp(\mathbf{A})$ when \mathbf{A} is chosen at random?
 - If not, what makes it hard?
 - If not, how is it useful for cryptography?

SIS parameters and Collision Resistant Hashing

- $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ax} \bmod q$ where $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Restrict $f_{\mathbf{A}}$ to $\mathbf{x} \in \{0, 1\}^m$
- Parameters:
 - n : main security parameter
 - $q = n^2 = n^{O(1)}$ small modulus
 - $m = 2n \log_2 q = O(n \log n)$
 - e.g., $n = 256$, $q = 2^{16}$, $m = 8192$
- $f_{\mathbf{A}}$ is a compression function mapping $8192 \rightarrow 4096$ bits
 - There exist collisions $\mathbf{Ax} = \mathbf{Ay} \pmod{q}$
 - Equivalently, $\mathbf{z} = \mathbf{x} - \mathbf{y} \in \{0, 1, -1\}^m$ satisfies $\mathbf{Az} = \mathbf{0} \pmod{q}$
 - $\mathbf{z} \in \Lambda_q^\perp(\mathbf{A})$ is a short nonzero lattice vector of length $\|\mathbf{z}\|_\infty \leq 1$



Remark

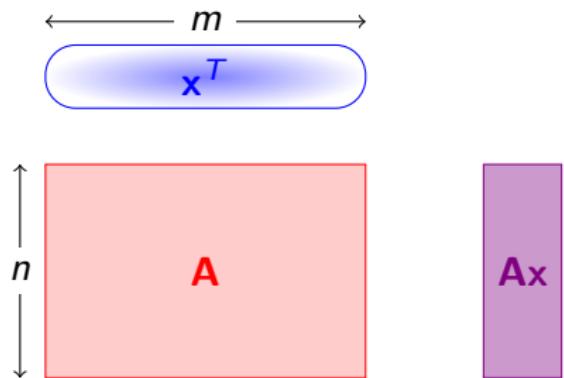
If SVP on $\Lambda_q^\perp(\mathbf{A})$ is hard, then $f_{\mathbf{A}}$ is a collision resistant hash function!

Example: Efficiency

- Function: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q$ where $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Example parameters: $n = 2^8$, $q = 2^{16}$, $m = 2n \log_2 q = 2^{13}$
- $f_{\mathbf{A}}$ maps $\mathbf{x} \in \{0, 1\}^m$ (8192 bits) to \mathbb{Z}_q^n (4096 bits)
- Computing $f_{\mathbf{A}}$ takes $n \cdot m = 2^{21}$ additions and multiplications on small (2-byte) numbers
 - Easy to parallelize: using AVX512 SIMD instructions at 4 GHz, this is just $32\mu\text{s}$.
- Key Storage: \mathbf{A} takes $n \cdot m = 2^{22}$ bytes, or $4MB$
 - Storage is not very good
 - More complex cryptographic applications may use higher $q = 2^{64}$, and $n = 2^{12} = 4096$
 - In the second part, we will see how to improve efficiency using more complex mathematics

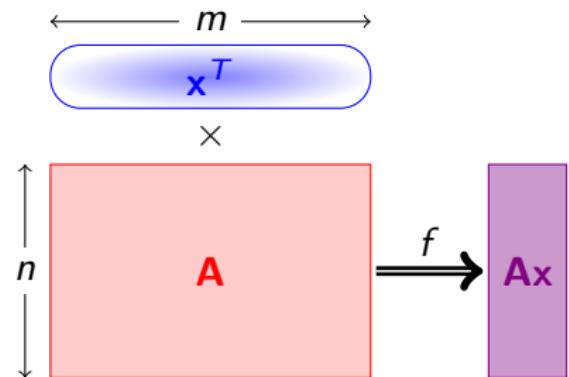
Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Input: $\mathbf{x} \in \{0, 1\}^m$



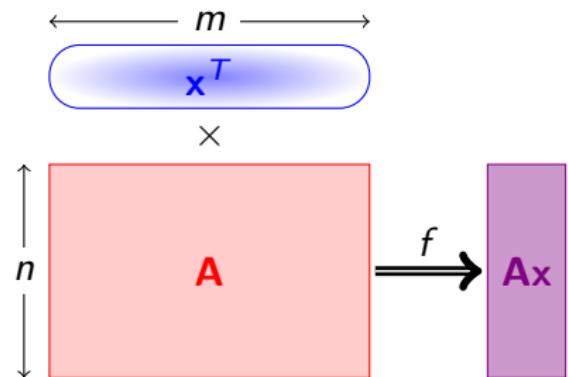
Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Input: $\mathbf{x} \in \{0, 1\}^m$
- Output: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q$



Ajtai's one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Input: $\mathbf{x} \in \{0, 1\}^m$
- Output: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q$



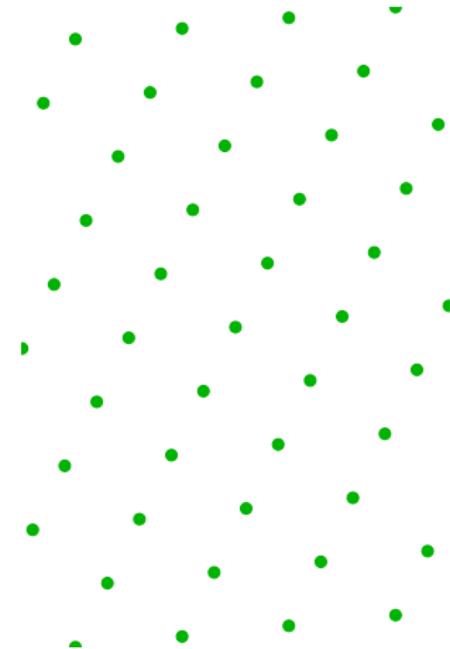
Theorem (A'96)

For $m > n \lg q$, if lattice problems (SIVP) are hard to approximate in the worst-case, then $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q$ is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], ID schemes [L'08], Signatures [LM'08, GPV'08, ..., DDLL'13] ...

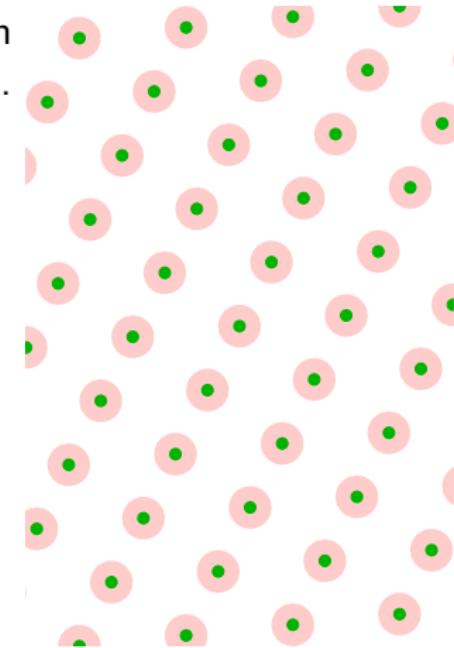
Blurring a lattice

Consider a lattice Λ , and



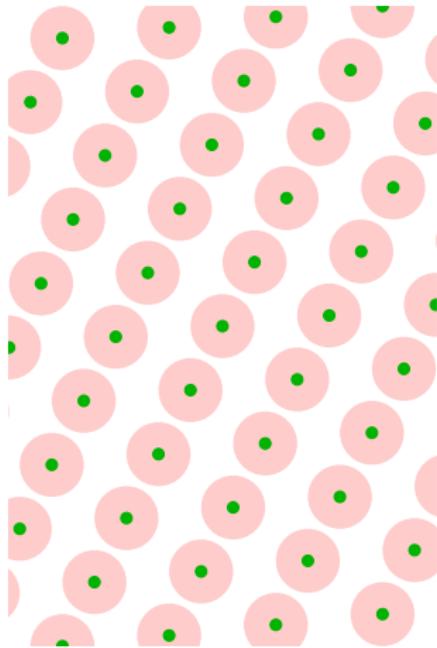
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered.



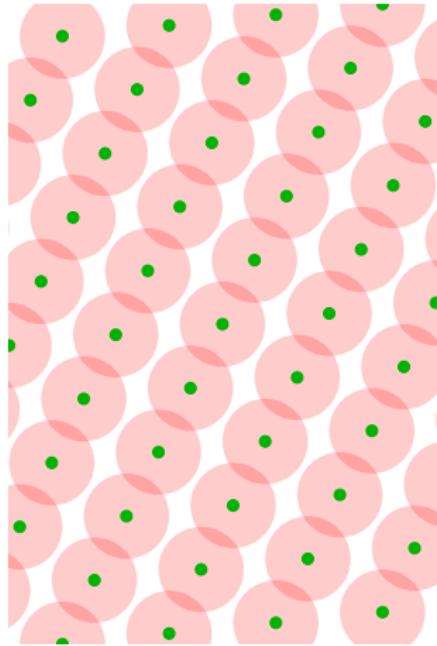
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered.



Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered.



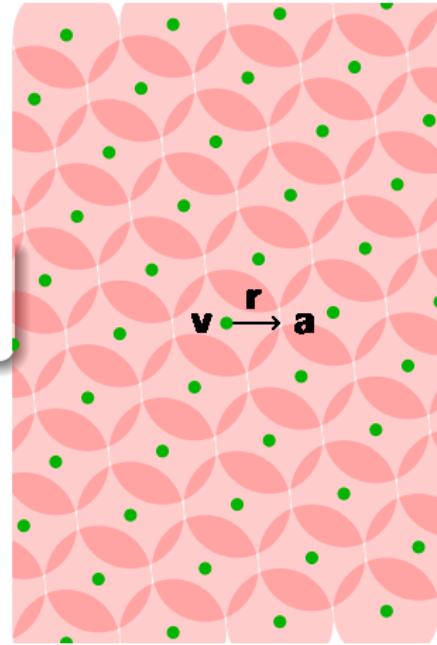
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered.

How much noise is needed?

$$\|\mathbf{r}\| \leq \sqrt{n} \cdot \lambda_n / 2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n} \lambda_n$.



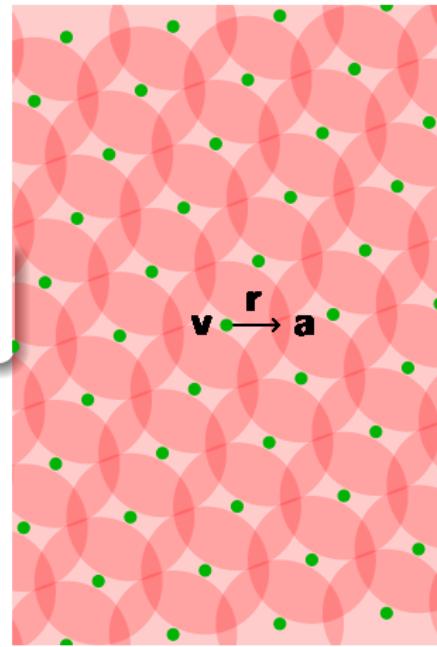
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed?

$$\|\mathbf{r}\| \leq \sqrt{n} \cdot \lambda_n / 2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n} \lambda_n$.



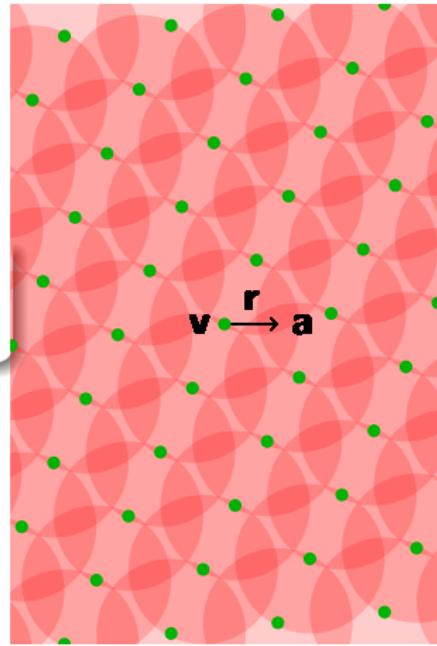
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed?

$$\|\mathbf{r}\| \leq \sqrt{n} \cdot \lambda_n / 2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n} \lambda_n$.



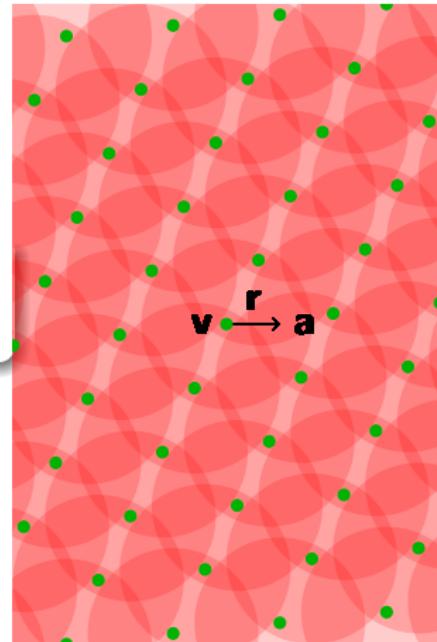
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed?

$$\|\mathbf{r}\| \leq \sqrt{n} \cdot \lambda_n / 2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n} \lambda_n$.



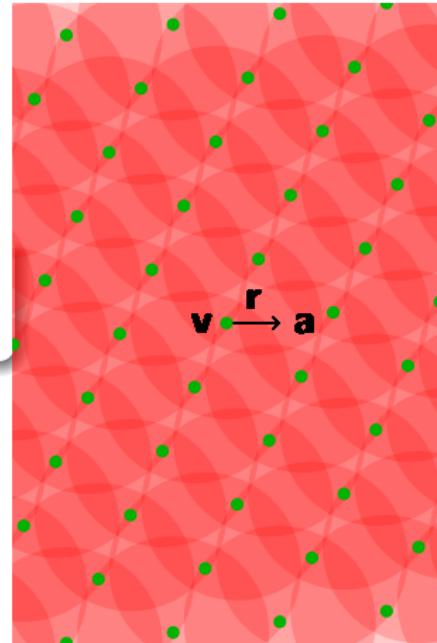
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed?

$$\|\mathbf{r}\| \leq \sqrt{n} \cdot \lambda_n / 2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n} \lambda_n$.



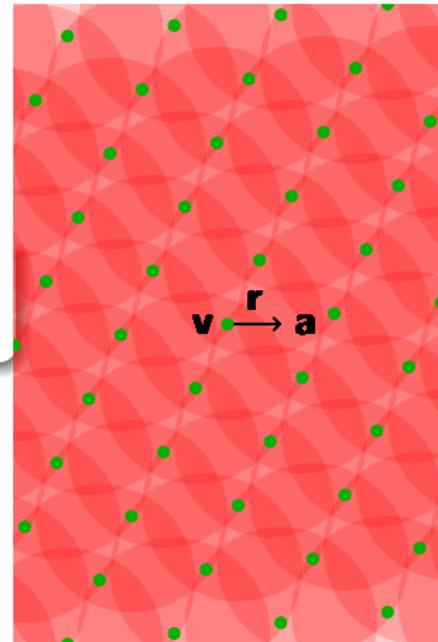
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed? [MR]

$$\|\mathbf{r}\| \leq (\log n) \cdot \sqrt{n} \cdot \lambda_n / 2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n} \lambda_n$.
- $\mathbf{a} \in \mathbb{R}^n / \Lambda$ is uniformly distributed.



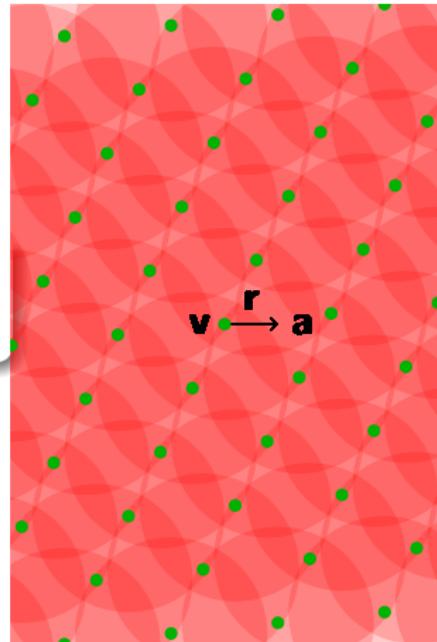
Blurring a lattice

Consider a lattice Λ , and add noise to each lattice point until the entire space is covered. Increase the noise until the space is uniformly covered.

How much noise is needed? [MR]

$$\|\mathbf{r}\| \leq (\log n) \cdot \sqrt{n} \cdot \lambda_n / 2$$

- Each point in $\mathbf{a} \in \mathbb{R}^n$ can be written $\mathbf{a} = \mathbf{v} + \mathbf{r}$ where $\mathbf{v} \in \mathcal{L}$ and $\|\mathbf{r}\| \approx \sqrt{n} \lambda_n$.
- $\mathbf{a} \in \mathbb{R}^n / \Lambda$ is uniformly distributed.
- Think of $\mathbb{R}^n \approx \frac{1}{q} \Lambda$ [GPV'07]



Security of Ajtai's function (sketch)

- Generate random points $\mathbf{a}_i = \mathbf{v}_i + \mathbf{r}_i$, where
 - \mathbf{v}_i is a random lattice point
 - \mathbf{r}_i is a random error vector of length $\|\mathbf{r}_i\| \approx \sqrt{n}\lambda_n$

Security of Ajtai's function (sketch)

- Generate random points $\mathbf{a}_i = \mathbf{v}_i + \mathbf{r}_i$, where
 - \mathbf{v}_i is a random lattice point
 - \mathbf{r}_i is a random error vector of length $\|\mathbf{r}_i\| \approx \sqrt{n}\lambda_n$
- $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m]$ is distributed almost uniformly at random in $\mathbb{R}^{n \times m}$,
 $q = n^{O(1)}$, $m = O(n \log q) = O(n \log n)$, so

Security of Ajtai's function (sketch)

- Generate random points $\mathbf{a}_i = \mathbf{v}_i + \mathbf{r}_i$, where
 - \mathbf{v}_i is a random lattice point
 - \mathbf{r}_i is a random error vector of length $\|\mathbf{r}_i\| \approx \sqrt{n}\lambda_n$
- $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m]$ is distributed almost uniformly at random in $\mathbb{R}^{n \times m}$,
 $q = n^{O(1)}$, $m = O(n \log q) = O(n \log n)$, so
 - if we can break Ajtai's function $f_{\mathbf{A}}$, then
 - we can find a vector $\mathbf{z} \in \{-1, 0, 1\}^m$ such that

$$\sum \mathbf{a}_i z_i = \mathbf{0}$$

Security of Ajtai's function (sketch)

- Generate random points $\mathbf{a}_i = \mathbf{v}_i + \mathbf{r}_i$, where
 - \mathbf{v}_i is a random lattice point
 - \mathbf{r}_i is a random error vector of length $\|\mathbf{r}_i\| \approx \sqrt{n}\lambda_n$
- $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_m]$ is distributed almost uniformly at random in $\mathbb{R}^{n \times m}$, $q = n^{O(1)}$, $m = O(n \log q) = O(n \log n)$, so
 - if we can break Ajtai's function $f_{\mathbf{A}}$, then
 - we can find a vector $\mathbf{z} \in \{-1, 0, 1\}^m$ such that

$$\sum (\mathbf{v}_i + \mathbf{r}_i) z_i = \sum \mathbf{a}_i z_i = \mathbf{0}$$

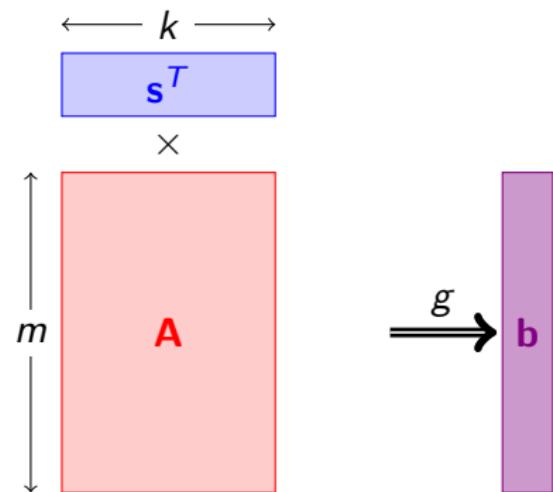
- Rearranging the terms yields a lattice vector

$$\sum \mathbf{v}_i z_i = - \sum \mathbf{r}_i z_i$$

of length at most $\|\sum \mathbf{r}_i z_i\| \approx \sqrt{m} \cdot \max \|\mathbf{r}_i\| \approx n \cdot \lambda_n$

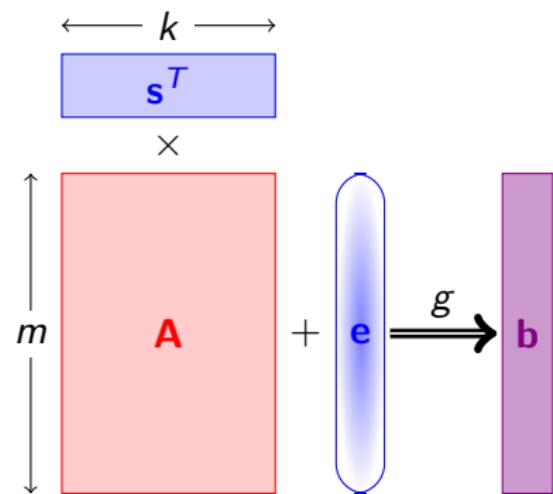
Regev's Learning With Errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_q^{m \times k}$, $\mathbf{s} \in \mathbb{Z}_q^k$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}) = \mathbf{A}\mathbf{s} \pmod{q}$



Regev's Learning With Errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_q^{m \times k}$, $\mathbf{s} \in \mathbb{Z}_q^k$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \mathbf{A}\mathbf{s} + \mathbf{e} \bmod q$
- Learning with Errors: Given \mathbf{A} and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover \mathbf{s} .



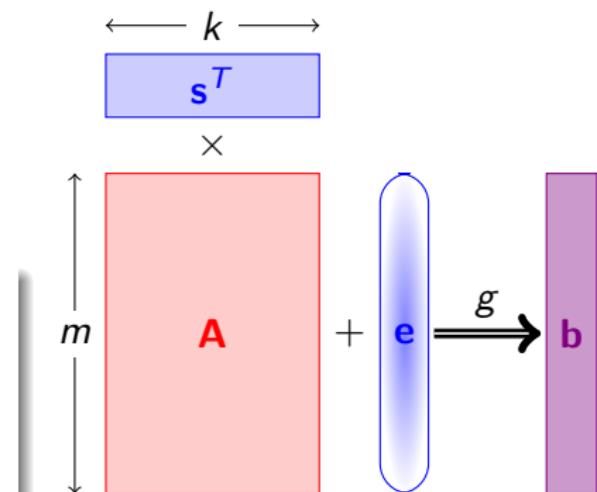
Regev's Learning With Errors (LWE)

- $\mathbf{A} \in \mathbb{Z}_q^{m \times k}$, $\mathbf{s} \in \mathbb{Z}_q^k$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \mathbf{A}\mathbf{s} + \mathbf{e} \bmod q$
- Learning with Errors: Given \mathbf{A} and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover \mathbf{s} .

Theorem (R'05)

The function $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ is hard to invert on the average, assuming SIVP is hard to approximate in the worst-case.

Applications: CPA PKE [R'05], CCA PKE [PW'08], (H)IBE [GPV'08, CHKP'10, ABB'10], FHE [..., B'12, AP'13, GSW'13], ...



Hermite Normal Form (HNF)

- Assuming \mathbf{A} is nondegenerate (i.e., $\mathbf{A}\mathbb{Z}_q^m = \mathbb{Z}_q^n$), one can find nonsingular $\mathbf{U} \in \mathbb{Z}^{m \times m}$ such that $\mathbf{U}\mathbf{A} = [\mathbf{I} \mid \mathbf{H}]$

Hermite Normal Form (HNF)

- Assuming \mathbf{A} is nondegenerate (i.e., $\mathbf{A}\mathbb{Z}_q^m = \mathbb{Z}_q^n$), one can find nonsingular $\mathbf{U} \in \mathbb{Z}^{m \times m}$ such that $\mathbf{U}\mathbf{A} = [\mathbf{I} \mid \mathbf{H}]$
- $[\mathbf{I} \mid \mathbf{H}]$ is called the Hermite Normal Form (HNF) of \mathbf{A} , and can be efficiently computed from \mathbf{A}

Hermite Normal Form (HNF)

- Assuming \mathbf{A} is nondegenerate (i.e., $\mathbf{A}\mathbb{Z}_q^m = \mathbb{Z}_q^n$), one can find nonsingular $\mathbf{U} \in \mathbb{Z}^{m \times m}$ such that $\mathbf{U}\mathbf{A} = [\mathbf{I} \mid \mathbf{H}]$
- $[\mathbf{I} \mid \mathbf{H}]$ is called the Hermite Normal Form (HNF) of \mathbf{A} , and can be efficiently computed from \mathbf{A}
- Putting \mathbf{A} in HNF does not decrease the security of cryptographic functions [M'01]:
 - Breaking $f_{\mathbf{A}}$ is equivalent to breaking $f_{\mathbf{U}\mathbf{A}}(\mathbf{x}) = \mathbf{U} \cdot f_{\mathbf{A}}(\mathbf{x})$ because $\mathbf{y} \mapsto \mathbf{U}\mathbf{y}$ is injective.

Hermite Normal Form (HNF)

- Assuming \mathbf{A} is nondegenerate (i.e., $\mathbf{A}\mathbb{Z}_q^m = \mathbb{Z}_q^n$), one can find nonsingular $\mathbf{U} \in \mathbb{Z}^{m \times m}$ such that $\mathbf{U}\mathbf{A} = [\mathbf{I} \mid \mathbf{H}]$
- $[\mathbf{I} \mid \mathbf{H}]$ is called the Hermite Normal Form (HNF) of \mathbf{A} , and can be efficiently computed from \mathbf{A}
- Putting \mathbf{A} in HNF does not decrease the security of cryptographic functions [M'01]:
 - Breaking $f_{\mathbf{A}}$ is equivalent to breaking $f_{\mathbf{U}\mathbf{A}}(\mathbf{x}) = \mathbf{U} \cdot f_{\mathbf{A}}(\mathbf{x})$ because $\mathbf{y} \mapsto \mathbf{U}\mathbf{y}$ is injective.
 - Similarly, inverting $g_{\mathbf{A}}$ is equivalent to inverting $g_{\mathbf{U}\mathbf{A}}$

Equivalence of SIS and LWE

- Equivalent HNF variant of SIS/LWE [M'01]:
 - $f'_{\mathbf{H}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{A} = [\mathbf{I} \mid -\mathbf{H}]$, where $\mathbf{H} \in \mathbb{Z}_q^{n \times (m-n)}$

Equivalence of SIS and LWE

- Equivalent HNF variant of SIS/LWE [M'01]:

- $f'_{\mathbf{H}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{A} = [\mathbf{I} \mid -\mathbf{H}]$, where $\mathbf{H} \in \mathbb{Z}_q^{n \times (m-n)}$

- $g'_{\mathbf{H}}(\mathbf{s}, \mathbf{e}) = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ for $\mathbf{A} = \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \end{bmatrix}$, where $\mathbf{H} \in \mathbb{Z}_q^{(m-k) \times k}$

Equivalence of SIS and LWE

- Equivalent HNF variant of SIS/LWE [M'01]:
 - $f'_{\mathbf{H}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{A} = [\mathbf{I} \mid -\mathbf{H}]$, where $\mathbf{H} \in \mathbb{Z}_q^{n \times (m-n)}$
 - $g'_{\mathbf{H}}(\mathbf{s}, \mathbf{e}) = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ for $\mathbf{A} = \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \end{bmatrix}$, where $\mathbf{H} \in \mathbb{Z}_q^{(m-k) \times k}$
- Parameters $k + n = m$: $n = m - k$, $m - n = k$

Equivalence of SIS and LWE

- Equivalent HNF variant of SIS/LWE [M'01]:
 - $f'_{\mathbf{H}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{A} = [\mathbf{I} \mid -\mathbf{H}]$, where $\mathbf{H} \in \mathbb{Z}_q^{n \times (m-n)}$
 - $g'_{\mathbf{H}}(\mathbf{s}, \mathbf{e}) = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ for $\mathbf{A} = \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \end{bmatrix}$, where $\mathbf{H} \in \mathbb{Z}_q^{(m-k) \times k}$
- Parameters $k + n = m$: $n = m - k$, $m - n = k$

Equivalence of SIS and LWE

- Equivalent HNF variant of SIS/LWE [M'01]:
 - $f'_{\mathbf{H}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{A} = [\mathbf{I} \mid -\mathbf{H}]$, where $\mathbf{H} \in \mathbb{Z}_q^{n \times (m-n)}$
 - $g'_{\mathbf{H}}(\mathbf{s}, \mathbf{e}) = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ for $\mathbf{A} = \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \end{bmatrix}$, where $\mathbf{H} \in \mathbb{Z}_q^{(m-k) \times k}$
- Parameters $k + n = m$: $n = m - k$, $m - n = k$
- Input: set $\mathbf{e} = \mathbf{x}$ and pick random $\mathbf{s} \in \mathbb{Z}_q^k$

Equivalence of SIS and LWE

- Equivalent HNF variant of SIS/LWE [M'01]:
 - $f'_{\mathbf{H}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{A} = [\mathbf{I} \mid -\mathbf{H}]$, where $\mathbf{H} \in \mathbb{Z}_q^{n \times (m-n)}$
 - $g'_{\mathbf{H}}(\mathbf{s}, \mathbf{e}) = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ for $\mathbf{A} = \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \end{bmatrix}$, where $\mathbf{H} \in \mathbb{Z}_q^{(m-k) \times k}$
- Parameters $k + n = m$: $n = m - k$, $m - n = k$
- Input: set $\mathbf{e} = \mathbf{x}$ and pick random $\mathbf{s} \in \mathbb{Z}_q^k$
- Can compute $g'_{\mathbf{H}}(\mathbb{Z}_q, \mathbf{x}) \mapsto f'_{\mathbf{H}}(\mathbf{x})$

$$\begin{aligned}
 f'_{\mathbf{H}}(g'_{\mathbf{H}}(\mathbf{s}, \mathbf{x})) &= [\mathbf{I} \mid -\mathbf{H}] \left(\begin{bmatrix} \mathbf{H} \\ \mathbf{I} \end{bmatrix} \mathbf{s} + \mathbf{x} \right) \\
 &= (\mathbf{I}\mathbf{H} - \mathbf{H}\mathbf{I})\mathbf{s} + [\mathbf{I} \mid -\mathbf{H}]\mathbf{x} = f'_{\mathbf{H}}(\mathbf{x})
 \end{aligned}$$

Equivalence of SIS and LWE

- Equivalent HNF variant of SIS/LWE [M'01]:
 - $f'_{\mathbf{H}}(\mathbf{x}) = f_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{A} = [\mathbf{I} \mid -\mathbf{H}]$, where $\mathbf{H} \in \mathbb{Z}_q^{n \times (m-n)}$
 - $g'_{\mathbf{H}}(\mathbf{s}, \mathbf{e}) = g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ for $\mathbf{A} = \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \end{bmatrix}$, where $\mathbf{H} \in \mathbb{Z}_q^{(m-k) \times k}$
- Parameters $k + n = m$: $n = m - k$, $m - n = k$
- Input: set $\mathbf{e} = \mathbf{x}$ and pick random $\mathbf{s} \in \mathbb{Z}_q^k$
- Can compute $g'_{\mathbf{H}}(\mathbb{Z}_q, \mathbf{x}) \mapsto f'_{\mathbf{H}}(\mathbf{x})$

$$\begin{aligned} f'_{\mathbf{H}}(g'_{\mathbf{H}}(\mathbf{s}, \mathbf{x})) &= [\mathbf{I} \mid -\mathbf{H}] \left(\begin{bmatrix} \mathbf{H} \\ \mathbf{I} \end{bmatrix} \mathbf{s} + \mathbf{x} \right) \\ &= (\mathbf{I}\mathbf{H} - \mathbf{H}\mathbf{I})\mathbf{s} + [\mathbf{I} \mid -\mathbf{H}]\mathbf{x} = f'_{\mathbf{H}}(\mathbf{x}) \end{aligned}$$

- Similarly, $f'_{\mathbf{H}}(\mathbf{x}) \mapsto g'_{\mathbf{H}}(\mathbb{Z}_q^k, \mathbf{x}) = g'_{\mathbf{H}}(\mathbf{s}, \mathbf{x}) + g'_{\mathbf{H}}(\mathbb{Z}_q^k, \mathbf{0})$, for $\mathbf{s} = -\mathbf{x}_2$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \quad \mathbf{s} = -\mathbf{x}_2 \quad g'_{\mathbf{H}}(\mathbf{s}, \mathbf{x}) = \begin{bmatrix} -\mathbf{H}\mathbf{x}_2 + \mathbf{x}_1 \\ -\mathbf{x}_2 + \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} f'_{\mathbf{H}}(\mathbf{x}) \\ \mathbf{0} \end{bmatrix}$$

Hardness of SIS/LWE

- $f_{\mathbf{A}}$ and $g_{\mathbf{A}}$ are essentially the same function, parametrized by dimensions $k + n = m$, modulus q and bound $\|\mathbf{x}\| \leq \beta$

Hardness of SIS/LWE

- $f_{\mathbf{A}}$ and $g_{\mathbf{A}}$ are essentially the same function, parametrized by dimensions $k + n = m$, modulus q and bound $\|\mathbf{x}\| \leq \beta$
- SIS [A'96] usually formulated using $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ax}$
 - Larger β , resulting in a compression (hash) function
 - Collision resistant based on hardness of n -dim. lattices

Hardness of SIS/LWE

- $f_{\mathbf{A}}$ and $g_{\mathbf{A}}$ are essentially the same function, parametrized by dimensions $k + n = m$, modulus q and bound $\|\mathbf{x}\| \leq \beta$
- SIS [A'96] usually formulated using $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ax}$
 - Larger β , resulting in a compression (hash) function
 - Collision resistant based on hardness of n -dim. lattices
- LWE [R'05] usually formulated using $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x}) = \mathbf{As} + \mathbf{x}$
 - Smaller β , resulting in an injective function. (No collisions!)
 - Hard to invert based on hardness of k -dim. lattices.

Hardness of SIS/LWE

- $f_{\mathbf{A}}$ and $g_{\mathbf{A}}$ are essentially the same function, parametrized by dimensions $k + n = m$, modulus q and bound $\|\mathbf{x}\| \leq \beta$
- SIS [A'96] usually formulated using $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ax}$
 - Larger β , resulting in a compression (hash) function
 - Collision resistant based on hardness of n -dim. lattices
- LWE [R'05] usually formulated using $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x}) = \mathbf{As} + \mathbf{x}$
 - Smaller β , resulting in an injective function. (No collisions!)
 - Hard to invert based on hardness of k -dim. lattices.
- Proof techniques and applications are quite different depending on whether β is small or large.

Hardness of SIS/LWE

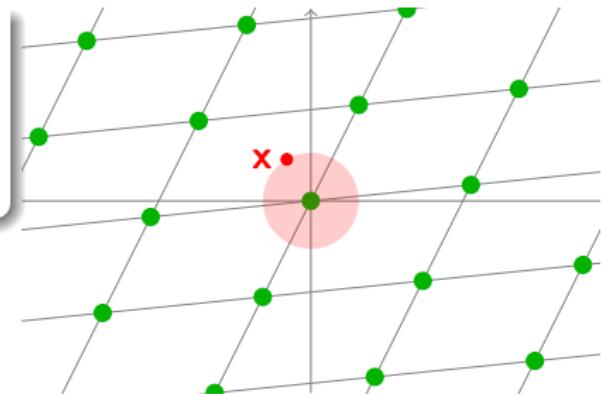
- $f_{\mathbf{A}}$ and $g_{\mathbf{A}}$ are essentially the same function, parametrized by dimensions $k + n = m$, modulus q and bound $\|\mathbf{x}\| \leq \beta$
- SIS [A'96] usually formulated using $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ax}$
 - Larger β , resulting in a compression (hash) function
 - Collision resistant based on hardness of n -dim. lattices
- LWE [R'05] usually formulated using $g_{\mathbf{A}}(\mathbf{s}, \mathbf{x}) = \mathbf{As} + \mathbf{x}$
 - Smaller β , resulting in an injective function. (No collisions!)
 - Hard to invert based on hardness of k -dim. lattices.
- Proof techniques and applications are quite different depending on whether β is small or large.
- One can use $f_{\mathbf{A}}$ both for SIS and LWE

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice \mathcal{L}

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$



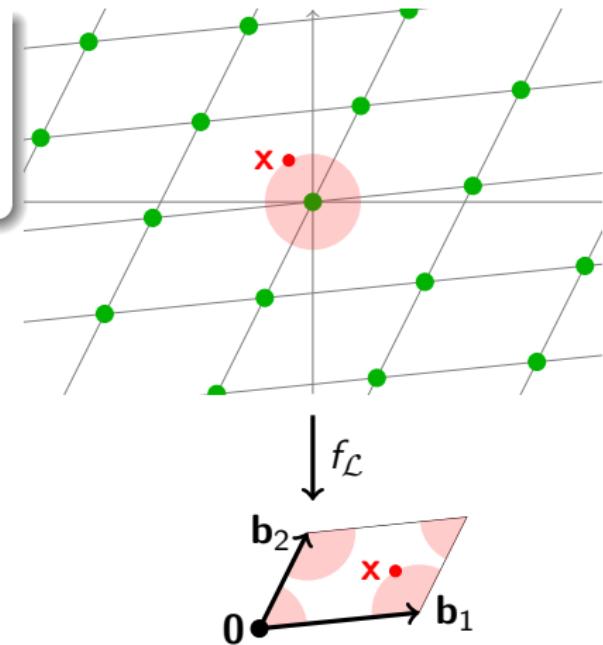
SIS/LWE as CVP

Candidate OWF

Key: a hard lattice \mathcal{L}

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \bmod \mathcal{L}$



SIS/LWE as CVP

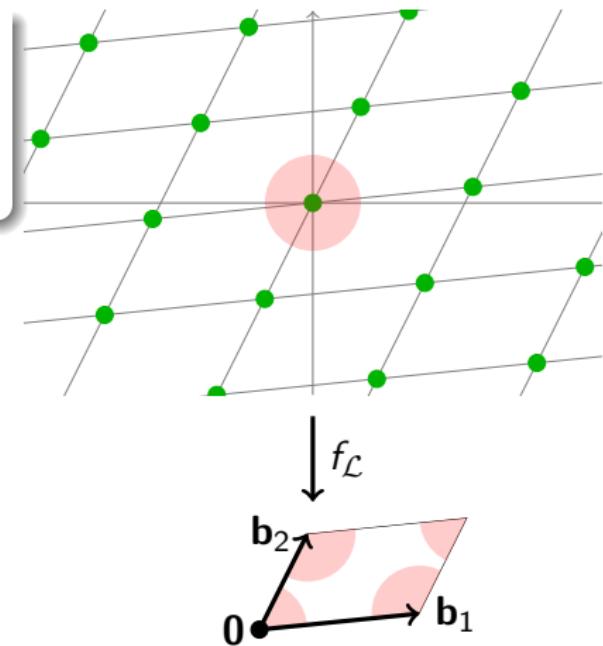
Candidate OWF

Key: a hard lattice \mathcal{L}

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \bmod \mathcal{L}$

- $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective



SIS/LWE as CVP

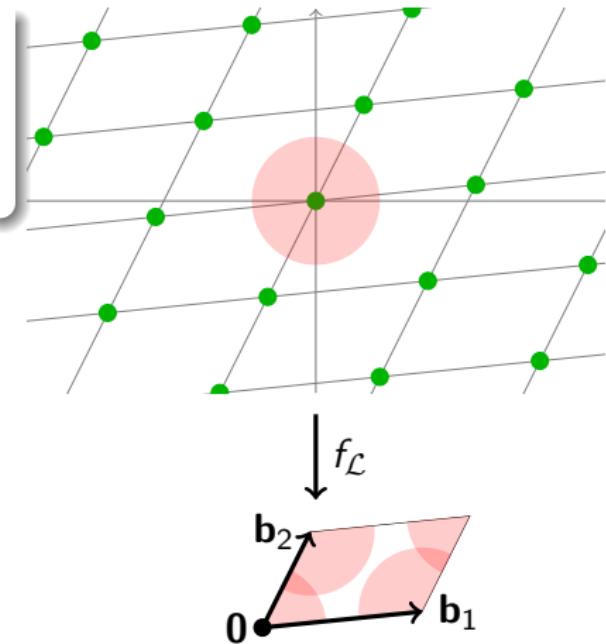
Candidate OWF

Key: a hard lattice \mathcal{L}

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \bmod \mathcal{L}$

- $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective
- $\beta > \lambda_1/2$: $f_{\mathcal{L}}$ is not injective



SIS/LWE as CVP

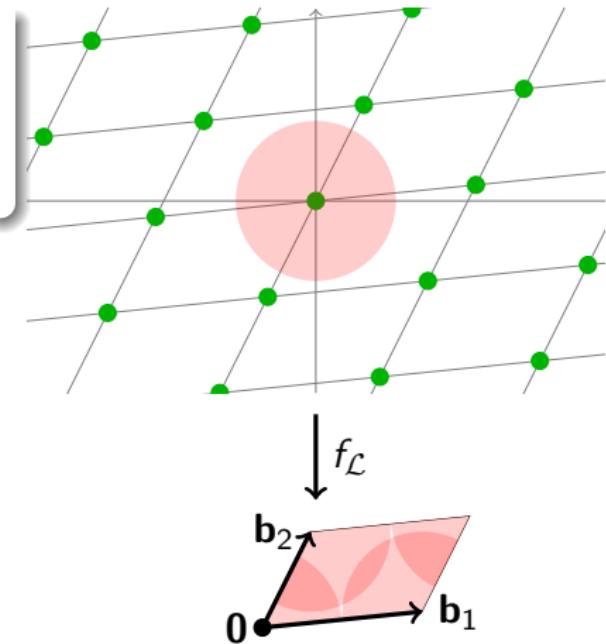
Candidate OWF

Key: a hard lattice \mathcal{L}

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \bmod \mathcal{L}$

- $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective
- $\beta > \lambda_1/2$: $f_{\mathcal{L}}$ is not injective
- $\beta \geq \mu$: $f_{\mathcal{L}}$ is surjective



SIS/LWE as CVP

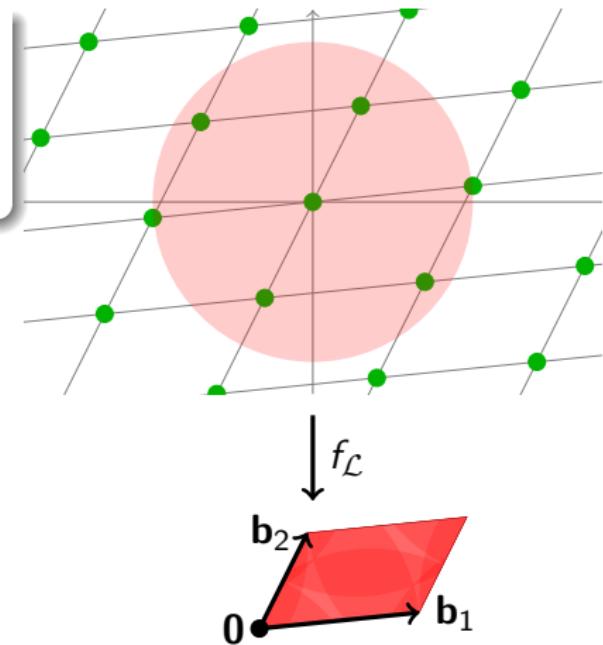
Candidate OWF

Key: a hard lattice \mathcal{L}

Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \bmod \mathcal{L}$

- $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective
- $\beta > \lambda_1/2$: $f_{\mathcal{L}}$ is not injective
- $\beta \geq \mu$: $f_{\mathcal{L}}$ is surjective
- $\beta \gg \mu$: $f_{\mathcal{L}}(\mathbf{x})$ is almost uniform



SIS/LWE as CVP

Candidate OWF

Key: a hard lattice \mathcal{L}

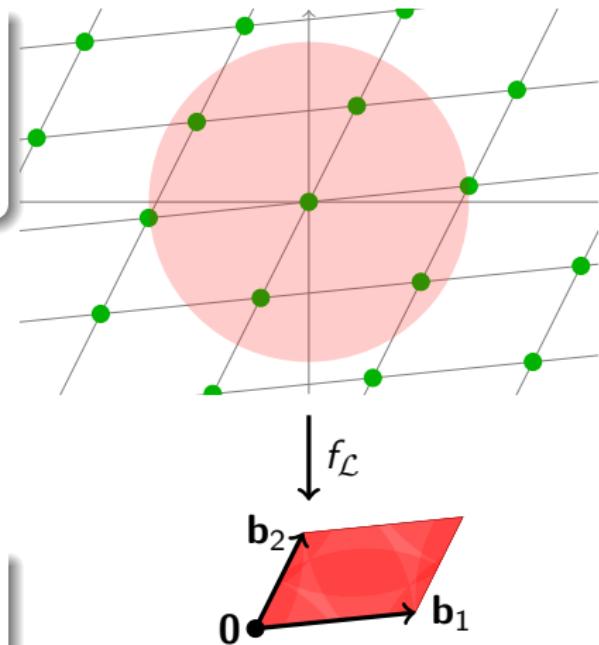
Input: \mathbf{x} , $\|\mathbf{x}\| \leq \beta$

Output: $f_{\mathcal{L}}(\mathbf{x}) = \mathbf{x} \bmod \mathcal{L}$

- $\beta < \lambda_1/2$: $f_{\mathcal{L}}$ is injective
- $\beta > \lambda_1/2$: $f_{\mathcal{L}}$ is not injective
- $\beta \geq \mu$: $f_{\mathcal{L}}$ is surjective
- $\beta \gg \mu$: $f_{\mathcal{L}}(\mathbf{x})$ is almost uniform

Question

Are these functions cryptographically hard to invert?



SIS Property: Regularity

$f : X \rightarrow Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Property: Regularity

$f : X \rightarrow Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Function

$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^m, \quad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ax} \bmod q \in \mathbb{Z}_q^n$$

SIS Property: Regularity

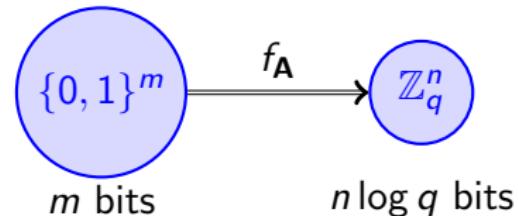
$f : X \rightarrow Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Function

$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^m, \quad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$$

Pairwise independence:

- Fix $\mathbf{x}_1 \neq \mathbf{x}_2 \in \{0, 1\}^m$,
- Random \mathbf{A}
- $f_{\mathbf{A}}(\mathbf{x}_1)$ and $f_{\mathbf{A}}(\mathbf{x}_2)$ are independent.



SIS Property: Regularity

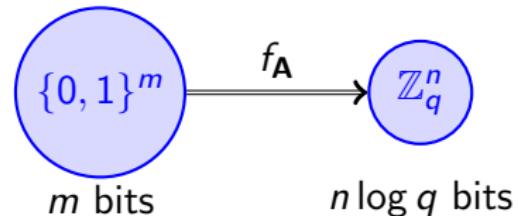
$f : X \rightarrow Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Function

$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^m, \quad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$$

Pairwise independence:

- Fix $\mathbf{x}_1 \neq \mathbf{x}_2 \in \{0, 1\}^m$,
- Random \mathbf{A}
- $f_{\mathbf{A}}(\mathbf{x}_1)$ and $f_{\mathbf{A}}(\mathbf{x}_2)$ are independent.



Lemma (Leftover Hash Lemma)

Pairwise Independence + Compression \implies Regular

SIS Property: Regularity

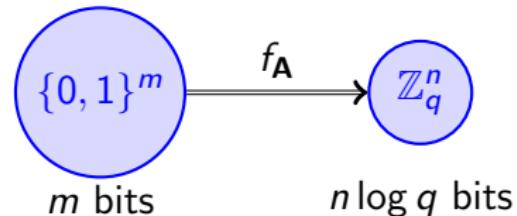
$f : X \rightarrow Y$ is regular if all $y \in Y$ have same $|f^{-1}(y)|$.

SIS Function

$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^m, \quad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$$

Pairwise independence:

- Fix $\mathbf{x}_1 \neq \mathbf{x}_2 \in \{0, 1\}^m$,
- Random \mathbf{A}
- $f_{\mathbf{A}}(\mathbf{x}_1)$ and $f_{\mathbf{A}}(\mathbf{x}_2)$ are independent.



Lemma (Leftover Hash Lemma)

Pairwise Independence + Compression \implies Regular

$f_{\mathbf{A}} : (U(\{0, 1\}^n)) \approx U(\mathbb{Z}_q^n)$ maps uniform to uniform.

SIS Application: Commitment

- Choose $\mathbf{A}_1, \mathbf{A}_2$ at random

SIS Application: Commitment

- Choose $\mathbf{A}_1, \mathbf{A}_2$ at random
- message $\mathbf{m} \in \{0, 1\}^m$ and randomness $\mathbf{r} \in \{0, 1\}^m$

SIS Application: Commitment

- Choose $\mathbf{A}_1, \mathbf{A}_2$ at random
- message $\mathbf{m} \in \{0, 1\}^m$ and randomness $\mathbf{r} \in \{0, 1\}^m$
- Commitment: $C(\mathbf{m}, \mathbf{r}) = f_{[\mathbf{A}_1, \mathbf{A}_2]}(\mathbf{m}, \mathbf{r}) = \mathbf{A}_1\mathbf{m} + \mathbf{A}_2\mathbf{r}$.

SIS Application: Commitment

- Choose $\mathbf{A}_1, \mathbf{A}_2$ at random
- message $\mathbf{m} \in \{0, 1\}^m$ and randomness $\mathbf{r} \in \{0, 1\}^m$
- Commitment: $C(\mathbf{m}, \mathbf{r}) = f_{[\mathbf{A}_1, \mathbf{A}_2]}(\mathbf{m}, \mathbf{r}) = \mathbf{A}_1\mathbf{m} + \mathbf{A}_2\mathbf{r}$.
- Hiding Property: $C(\mathbf{m})$ hides the message because $\mathbf{A}_2\mathbf{r} = f_{\mathbf{A}_2}(\mathbf{r}) \approx U(\mathbb{Z}_q^n)$

SIS Application: Commitment

- Choose $\mathbf{A}_1, \mathbf{A}_2$ at random
- message $\mathbf{m} \in \{0, 1\}^m$ and randomness $\mathbf{r} \in \{0, 1\}^m$
- Commitment: $C(\mathbf{m}, \mathbf{r}) = f_{[\mathbf{A}_1, \mathbf{A}_2]}(\mathbf{m}, \mathbf{r}) = \mathbf{A}_1\mathbf{m} + \mathbf{A}_2\mathbf{r}$.
- Hiding Property: $C(\mathbf{m})$ hides the message because $\mathbf{A}_2\mathbf{r} = f_{\mathbf{A}_2}(\mathbf{r}) \approx U(\mathbb{Z}_q^n)$
- Binding Property: Finding $(m, r) \neq (m', r')$ such that $C(\mathbf{m}, \mathbf{r}) = C(\mathbf{m}', \mathbf{r}')$ breaks the collision resistance of $f_{[\mathbf{A}_1, \mathbf{A}_2]}$

SIS Property: (Approximate) Linear Homomorphism

SIS Function

$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^m, \quad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$$

- The SIS function is linearly homomorphic:

$$f_{\mathbf{A}}(\mathbf{x}_1) + f_{\mathbf{A}}(\mathbf{x}_2) = f_{\mathbf{A}}(\mathbf{x}_1 + \mathbf{x}_2)$$

SIS Property: (Approximate) Linear Homomorphism

SIS Function

$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^m, \quad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$$

- The SIS function is linearly homomorphic:

$$f_{\mathbf{A}}(\mathbf{x}_1) + f_{\mathbf{A}}(\mathbf{x}_2) = f_{\mathbf{A}}(\mathbf{x}_1 + \mathbf{x}_2)$$

- Homomorphism is only approximate:
 - If $\mathbf{x}_1, \mathbf{x}_2$ are small, then also $\mathbf{x}_1 + \mathbf{x}_2$ is small
 - However, $\mathbf{x}_1 + \mathbf{x}_2$ can be slightly larger than $\mathbf{x}_1, \mathbf{x}_2$
 - Domain of $f_{\mathbf{A}}$ is not closed under $+$

SIS Property: (Approximate) Linear Homomorphism

SIS Function

$$\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \quad \mathbf{x} \in \{0, 1\}^m, \quad f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$$

- The SIS function is linearly homomorphic:

$$f_{\mathbf{A}}(\mathbf{x}_1) + f_{\mathbf{A}}(\mathbf{x}_2) = f_{\mathbf{A}}(\mathbf{x}_1 + \mathbf{x}_2)$$

- Homomorphism is only approximate:
 - If $\mathbf{x}_1, \mathbf{x}_2$ are small, then also $\mathbf{x}_1 + \mathbf{x}_2$ is small
 - However, $\mathbf{x}_1 + \mathbf{x}_2$ can be slightly larger than $\mathbf{x}_1, \mathbf{x}_2$
 - Domain of $f_{\mathbf{A}}$ is not closed under $+$
- $f_{\mathbf{A}}$ is also key-homomorphic:

$$f_{\mathbf{A}_1}(\mathbf{x}) + f_{\mathbf{A}_2}(\mathbf{x}) = f_{\mathbf{A}_1 + \mathbf{A}_2}(\mathbf{x})$$

SIS Application: One-Time Signatures

- Extend $f_{\mathbf{A}}$ to matrices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_l]$:

$$f_{\mathbf{A}}(\mathbf{X}) = [f_{\mathbf{A}}(\mathbf{x}_1), \dots, f_{\mathbf{A}}(\mathbf{x}_l)] = \mathbf{A}\mathbf{X} \pmod{q}$$

SIS Application: One-Time Signatures

- Extend $f_{\mathbf{A}}$ to matrices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_l]$:

$$f_{\mathbf{A}}(\mathbf{X}) = [f_{\mathbf{A}}(\mathbf{x}_1), \dots, f_{\mathbf{A}}(\mathbf{x}_l)] = \mathbf{A}\mathbf{X} \pmod{q}$$

- Key Generation:
 - Public Parameter: SIS function key \mathbf{A}
 - Secret Key: $sk = (\mathbf{X}, \mathbf{x})$ two (small) inputs to $f_{\mathbf{A}}$
 - Public Key: $pk = (\mathbf{Y} = f_{\mathbf{A}}(\mathbf{X}), \mathbf{y} = f_{\mathbf{A}}(\mathbf{x}))$ image of sk under $f_{\mathbf{A}}$

SIS Application: One-Time Signatures

- Extend $f_{\mathbf{A}}$ to matrices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_l]$:

$$f_{\mathbf{A}}(\mathbf{X}) = [f_{\mathbf{A}}(\mathbf{x}_1), \dots, f_{\mathbf{A}}(\mathbf{x}_l)] = \mathbf{AX} \pmod{q}$$

- Key Generation:
 - Public Parameter: SIS function key \mathbf{A}
 - Secret Key: $sk = (\mathbf{X}, \mathbf{x})$ two (small) inputs to $f_{\mathbf{A}}$
 - Public Key: $pk = (\mathbf{Y} = f_{\mathbf{A}}(\mathbf{X}), \mathbf{y} = f_{\mathbf{A}}(\mathbf{x}))$ image of sk under $f_{\mathbf{A}}$
- Message: short vector $\mathbf{m} \in \{0, 1\}^l$
- $Sign(sk, \mathbf{m}) = \mathbf{Xm} + \mathbf{x}$, linear combination of secret key

SIS Application: One-Time Signatures

- Extend $f_{\mathbf{A}}$ to matrices $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_l]$:

$$f_{\mathbf{A}}(\mathbf{X}) = [f_{\mathbf{A}}(\mathbf{x}_1), \dots, f_{\mathbf{A}}(\mathbf{x}_l)] = \mathbf{AX} \pmod{q}$$

- Key Generation:
 - Public Parameter: SIS function key \mathbf{A}
 - Secret Key: $sk = (\mathbf{X}, \mathbf{x})$ two (small) inputs to $f_{\mathbf{A}}$
 - Public Key: $pk = (\mathbf{Y} = f_{\mathbf{A}}(\mathbf{X}), \mathbf{y} = f_{\mathbf{A}}(\mathbf{x}))$ image of sk under $f_{\mathbf{A}}$
- Message: short vector $\mathbf{m} \in \{0, 1\}^l$
- $Sign(sk, \mathbf{m}) = \mathbf{Xm} + \mathbf{x}$, linear combination of secret key
- $Verify(pk, \mathbf{m}, \sigma)$ uses homomorphic properties to check that

$$f_{\mathbf{A}}(\sigma) = f_{\mathbf{A}}(\mathbf{Xm} + \mathbf{x}) = f_{\mathbf{A}}(\mathbf{X})\mathbf{m} + f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ym} + \mathbf{y}$$

Pseudorandomness of LWE

LWE(k, q, m, χ) distribution: $[\mathbf{A}, \mathbf{b}] \in \mathbb{Z}_q^{m \times (k+1)}$ where

- $\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times k}$
- $\mathbf{s} \leftarrow \mathbb{Z}_q^k$, $\mathbf{e} \leftarrow \chi^m$
- $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$

Definition (Search LWE)

Given $[\mathbf{A}, \mathbf{b}]$ recover \mathbf{s} and $\mathbf{e} = \mathbf{b} - \mathbf{A}\mathbf{s}$

Definition (Decision LWE)

Distinguish $[\mathbf{A}, \mathbf{b}]$ from the uniform distribution over $\mathbb{Z}_q^{m \times (k+1)}$

Pseudorandomness of LWE

LWE(k, q, m, χ) distribution: $[\mathbf{A}, \mathbf{b}] \in \mathbb{Z}_q^{m \times (k+1)}$ where

- $\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times k}$
- $\mathbf{s} \leftarrow \mathbb{Z}_q^k$, $\mathbf{e} \leftarrow \chi^m$
- $\mathbf{b} = \mathbf{As} + \mathbf{e}$

Definition (Search LWE)

Given $[\mathbf{A}, \mathbf{b}]$ recover \mathbf{s} and $\mathbf{e} = \mathbf{b} - \mathbf{As}$

Definition (Decision LWE)

Distinguish $[\mathbf{A}, \mathbf{b}]$ from the uniform distribution over $\mathbb{Z}_q^{m \times (k+1)}$

Theorem (Search to Decision Reduction (informal))

For a wide range of parameters, if Search LWE is hard, then Decision LWE is hard.

Encrypting with LWE

Idea: if $[\mathbf{A}, \mathbf{b}]$ is pseudorandom, then we can use it to mask a message

Private Key Encryption

- $\text{Gen}(k)$: output random $\mathbf{s} \leftarrow \mathbb{Z}_q^k$
- $\text{Enc}_{\mathbf{s}}(\mathbf{m})$:
 - Choose $\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times k}$ and $\mathbf{e} \leftarrow \chi^m$ at random
 - Let $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$
 - Output $[\mathbf{A}, \mathbf{b} + \mathbf{m}]$

Encrypting with LWE

Idea: if $[\mathbf{A}, \mathbf{b}]$ is pseudorandom, then we can use it to mask a message

Private Key Encryption

- $\text{Gen}(k)$: output random $\mathbf{s} \leftarrow \mathbb{Z}_q^k$
- $\text{Enc}_{\mathbf{s}}(\mathbf{m})$:
 - Choose $\mathbf{A} \leftarrow \mathbb{Z}_q^{m \times k}$ and $\mathbf{e} \leftarrow \chi^m$ at random
 - Let $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$
 - Output $[\mathbf{A}, \mathbf{b} + \mathbf{m}]$
- $\text{Dec}'_{\mathbf{s}}([\mathbf{A}, \mathbf{c}]) = \mathbf{c} - \mathbf{A}\mathbf{s} = \mathbf{m} + \mathbf{e}$
- Problems:
 - Decryption is “approximately” correct [CKKS 2016]
 - A passive adversary can completely break the scheme [Li, M. 2021]
- Solution: encode \mathbf{m} with an error correcting code

Regev (private key) encryption

- Plaintext modulus: $p \ll q$
- Message: $\mathbf{m} \in \mathbb{Z}_p^m$
- Scaling factor: $\Delta = \left\lceil \frac{q}{p} \right\rceil$
- $\text{Enc}_s(\mathbf{m}) = [\mathbf{A}, \mathbf{b} + \Delta\mathbf{m}]$ where $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$
- $\text{Dec}_s([\mathbf{A}, \mathbf{c}]) = \left\lceil \frac{\mathbf{c} - \mathbf{A}\mathbf{s}}{\Delta} \right\rceil \pmod{p}$

Regev (private key) encryption

- Plaintext modulus: $p \ll q$
- Message: $\mathbf{m} \in \mathbb{Z}_p^m$
- Scaling factor: $\Delta = \left\lceil \frac{q}{p} \right\rceil$
- $\text{Enc}_s(\mathbf{m}) = [\mathbf{A}, \mathbf{b} + \Delta\mathbf{m}]$ where $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \pmod{q}$
- $\text{Dec}_s([\mathbf{A}, \mathbf{c}]) = \left\lceil \frac{\mathbf{c} - \mathbf{A}\mathbf{s}}{\Delta} \right\rceil \pmod{p}$

Theorem (Correctness)

If $\|\chi\|_\infty < \Delta/2$ then

$$\text{Dec}_s(\text{Enc}_s(\mathbf{m})) = \left\lceil \frac{(\mathbf{A}\mathbf{s} + \mathbf{e} + \Delta\mathbf{m}) - \mathbf{A}\mathbf{s}}{\Delta} \right\rceil = \mathbf{m} + \left\lceil \frac{\mathbf{e}}{\Delta} \right\rceil = \mathbf{m}.$$

Additive Homomorphism

The sum of two encryption

$$\text{Enc}_s(\mathbf{m}_1) = [\mathbf{A}_1, \mathbf{A}_1 \mathbf{s} + \mathbf{e}_1 + \frac{q}{p} \mathbf{m}_1]$$

$$\text{Enc}_s(\mathbf{m}_2) = [\mathbf{A}_2, \mathbf{A}_2 \mathbf{s} + \mathbf{e}_2 + \frac{q}{p} \mathbf{m}_2]$$

is an encryption of the sum

$$\text{Enc}_s(\mathbf{m}_1) + \text{Enc}_s(\mathbf{m}_2) = [\mathbf{A}, \mathbf{A} \mathbf{s} + \mathbf{e} + \frac{q}{p} \mathbf{m}] = \text{Enc}_s(\mathbf{m}_1 + \mathbf{m}_2)$$

where

- $\mathbf{A} = \mathbf{A}_1 + \mathbf{A}_2 \pmod{q}$
- $\mathbf{e} = \mathbf{e}_1 + \mathbf{e}_2 \pmod{q}$
- $\mathbf{m} = \mathbf{m}_1 + \mathbf{m}_2 \pmod{p}$

Error growth

When adding two encryptions

$$\text{Enc}_s(\mathbf{m}_1; \mathbf{e}_1) + \text{Enc}_s(\mathbf{m}_2; \mathbf{e}_2) = \text{Enc}_s(\mathbf{m}_1 + \mathbf{m}_2; \mathbf{e}_1 + \mathbf{e}_2)$$

with small errors $\|\mathbf{e}_1\|, \|\mathbf{e}_2\| \leq \beta$, the result is an encryption of $\mathbf{m}_1 + \mathbf{m}_2$ with slightly larger error

$$\|\mathbf{e}_1 + \mathbf{e}_2\| \leq \|\mathbf{e}_1\| + \|\mathbf{e}_2\| \leq 2\beta.$$

Error growth

When adding two encryptions

$$\text{Enc}_s(\mathbf{m}_1; \mathbf{e}_1) + \text{Enc}_s(\mathbf{m}_2; \mathbf{e}_2) = \text{Enc}_s(\mathbf{m}_1 + \mathbf{m}_2; \mathbf{e}_1 + \mathbf{e}_2)$$

with small errors $\|\mathbf{e}_1\|, \|\mathbf{e}_2\| \leq \beta$, the result is an encryption of $\mathbf{m}_1 + \mathbf{m}_2$ with slightly larger error

$$\|\mathbf{e}_1 + \mathbf{e}_2\| \leq \|\mathbf{e}_1\| + \|\mathbf{e}_2\| \leq 2\beta.$$

Remarks:

- If $\mathbf{e}_1, \mathbf{e}_2$ are random and independent, their sum grows more like $\sqrt{2}\beta$
- If $|\chi| \ll (q/p)$, we can add several ciphertexts, and the results will still decrypt correctly
- If we keep adding ciphertexts, the error may become too big, and decryption will fail

Linear/Affine functions?

Start from a fresh ciphertext with small $\|\mathbf{e}\|_\infty \leq \beta \ll \Delta$

$$\text{Enc}_s(\mathbf{m}) = [\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e} + \Delta\mathbf{m}]$$

What about multiplying ciphertexts by a constant or computing linear or affine function?

Linear/Affine functions?

Start from a fresh ciphertext with small $\|\mathbf{e}\|_\infty \leq \beta \ll \Delta$

$$\text{Enc}_s(\mathbf{m}) = [\mathbf{A}, \mathbf{As} + \mathbf{e} + \Delta\mathbf{m}]$$

What about multiplying ciphertexts by a constant or computing linear or affine function?

$$t \cdot \text{Enc}_s(\mathbf{m}) = [(t\mathbf{A}), (t\mathbf{A})\mathbf{s} + t\mathbf{e} + \Delta(t\mathbf{m})] = \text{Enc}_s(t\mathbf{m})$$

$$\mathbf{T} \cdot \text{Enc}_s(\mathbf{m}) = [(\mathbf{T}\mathbf{A}), (\mathbf{T}\mathbf{A})\mathbf{s} + \mathbf{Te} + \Delta(\mathbf{Tm})] = \text{Enc}_s(\mathbf{Tm})$$

$$\begin{aligned} \mathbf{T} \cdot \text{Enc}_s(\mathbf{m}) + [\mathbf{0}, \Delta\mathbf{c}] &= [(\mathbf{T}\mathbf{A}), (\mathbf{T}\mathbf{A})\mathbf{s} + \mathbf{Te} + \Delta(\mathbf{Tm} + \mathbf{c})] \\ &= \text{Enc}_s(\mathbf{Tm} + \mathbf{c}) \end{aligned}$$

Linear/Affine functions?

Start from a fresh ciphertext with small $\|\mathbf{e}\|_\infty \leq \beta \ll \Delta$

$$\text{Enc}_s(\mathbf{m}) = [\mathbf{A}, \mathbf{As} + \mathbf{e} + \Delta\mathbf{m}]$$

What about multiplying ciphertexts by a constant or computing linear or affine function?

$$t \cdot \text{Enc}_s(\mathbf{m}) = [(t\mathbf{A}), (t\mathbf{A})\mathbf{s} + t\mathbf{e} + \Delta(t\mathbf{m})] = \text{Enc}_s(t\mathbf{m})$$

$$\mathbf{T} \cdot \text{Enc}_s(\mathbf{m}) = [(\mathbf{T}\mathbf{A}), (\mathbf{T}\mathbf{A})\mathbf{s} + \mathbf{Te} + \Delta(\mathbf{Tm})] = \text{Enc}_s(\mathbf{Tm})$$

$$\begin{aligned} \mathbf{T} \cdot \text{Enc}_s(\mathbf{m}) + [\mathbf{0}, \Delta\mathbf{c}] &= [(\mathbf{T}\mathbf{A}), (\mathbf{T}\mathbf{A})\mathbf{s} + \mathbf{Te} + \Delta(\mathbf{Tm} + \mathbf{c})] \\ &= \text{Enc}_s(\mathbf{Tm} + \mathbf{c}) \end{aligned}$$

Remarks:

- It works, but error grows to $\|\mathbf{Te}\|_\infty \leq m \cdot \|\mathbf{T}\|_\infty \cdot \beta$
- We need \mathbf{T} to be small for final result to be correct

Public Key Encryption (Regev 2005)

We will use homomorphic properties to transform private key encryption to public key encryption

- Start from LWE private key encryption scheme (Gen, Enc, Dec)
- Set parameters n, k, q, χ so to support the addition of w ciphertexts

Public Key Encryption scheme (Gen', Enc', Dec):

- Public key: $\mathbf{P} = \text{Enc}_{\mathbf{s}}(\mathbf{0})$
- $\text{Enc}'_{\mathbf{P}}(\mathbf{m}) = [\mathbf{0}, \Delta\mathbf{m}] + \mathbf{R} \cdot \mathbf{P}$ where $\mathbf{R} \leftarrow \{0, 1\}^{w' \times w}$

Public Key Encryption (Regev 2005)

We will use homomorphic properties to transform private key encryption to public key encryption

- Start from LWE private key encryption scheme (Gen, Enc, Dec)
- Set parameters n, k, q, χ so to support the addition of w ciphertexts

Public Key Encryption scheme (Gen', Enc', Dec):

- Public key: $\mathbf{P} = \text{Enc}_s(\mathbf{0})$
- $\text{Enc}'_{\mathbf{P}}(\mathbf{m}) = [\mathbf{0}, \Delta\mathbf{m}] + \mathbf{R} \cdot \mathbf{P}$ where $\mathbf{R} \leftarrow \{0, 1\}^{w' \times w}$

Theorem (Correctness)

$$\text{Enc}'_{\mathbf{P}}(\mathbf{m}) = [\mathbf{0}, \Delta\mathbf{m}] + \mathbf{R} \text{Enc}_s(\mathbf{0}) = \text{Enc}_s(\mathbf{m} + \mathbf{R} \cdot \mathbf{0}) = \text{Enc}_s(\mathbf{m})$$

Theorem (Security)

If w is large enough, $\text{Enc}'_{\mathbf{P}}(\mathbf{m}) \approx \text{Enc}_s(\mathbf{m}; \chi')$.

Optimized Public Key Encryption (Lindner,Peikert 2011)

- LWE PKE = “Symmetric Encryption + Linearity”
- We can also describe it directly in terms of matrices:
 - Public Key: $\mathbf{P} = g_{\mathbf{A}}(\mathbf{S}, \mathbf{E}) = [\mathbf{A}, \mathbf{B} = \mathbf{A}\mathbf{S} + \mathbf{E}]$
 - Encryption (of 0): $\text{Enc}_{\mathbf{P}}(0)^t = \mathbf{P}^t \mathbf{R} = f_{\mathbf{P}^t}(\mathbf{R})$

Optimized Public Key Encryption (Lindner,Peikert 2011)

- LWE PKE = “Symmetric Encryption + Linearity”
- We can also describe it directly in terms of matrices:
 - Public Key: $\mathbf{P} = g_{\mathbf{A}}(\mathbf{S}, \mathbf{E}) = [\mathbf{A}, \mathbf{B} = \mathbf{AS} + \mathbf{E}]$
 - Encryption (of 0): $\text{Enc}_{\mathbf{P}}(0)^t = \mathbf{P}^t \mathbf{R} = f_{\mathbf{P}^t}(\mathbf{R})$
- We can use a smaller dimensional \mathbf{A}, \mathbf{P} (and improve efficiency) using the SIS/HNF variant of LWE:
 - $\mathbf{A}, \mathbf{S}, \mathbf{E}, \mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3 \in \mathbb{Z}_q^{k \times k}$
 - Public Key: $\mathbf{P} = [\mathbf{A}, f_{[\mathbf{A}, \mathbf{I}]}(\mathbf{S}, \mathbf{E})] = [\mathbf{A}, \mathbf{B} = \mathbf{AS} + \mathbf{E}] \in \mathbb{Z}_q^{k \times 2k}$
 - Expanded public key: $[\mathbf{P}^t, \mathbf{I}] \in \mathbb{Z}_q^{2k \times 3k}$

Optimized Public Key Encryption (Lindner,Peikert 2011)

- LWE PKE = “Symmetric Encryption + Linearity”
- We can also describe it directly in terms of matrices:
 - Public Key: $\mathbf{P} = g_{\mathbf{A}}(\mathbf{S}, \mathbf{E}) = [\mathbf{A}, \mathbf{B} = \mathbf{A}\mathbf{S} + \mathbf{E}]$
 - Encryption (of 0): $\text{Enc}_{\mathbf{P}}(0)^t = \mathbf{P}^t \mathbf{R} = f_{\mathbf{P}^t}(\mathbf{R})$
- We can use a smaller dimensional \mathbf{A}, \mathbf{P} (and improve efficiency) using the SIS/HNF variant of LWE:
 - $\mathbf{A}, \mathbf{S}, \mathbf{E}, \mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3 \in \mathbb{Z}_q^{k \times k}$
 - Public Key: $\mathbf{P} = [\mathbf{A}, f_{[\mathbf{A}, \mathbf{I}]}(\mathbf{S}, \mathbf{E})] = [\mathbf{A}, \mathbf{B} = \mathbf{A}\mathbf{S} + \mathbf{E}] \in \mathbb{Z}_q^{k \times 2k}$
 - Expanded public key: $[\mathbf{P}^t, \mathbf{I}] \in \mathbb{Z}_q^{2k \times 3k}$
 - Encryption (of 0):

$$\text{Enc}_{\mathbf{P}}(0)^t = f_{[\mathbf{P}^t, \mathbf{I}]}(\mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3) = \mathbf{P}^t \mathbf{R}_1 + \begin{bmatrix} \mathbf{R}_2 \\ \mathbf{R}_3 \end{bmatrix} \in \mathbb{Z}_q^{2k \times k}$$
- This is the blueprint followed by the ML-KEM (Kyber) cryptosystem standardized by NIST, but with $\mathbb{Z}_q^{k \times k}$ replaced by more compact “algebraically structured” matrices

Gadgets

Questions:

- Can we encrypt messages $\mathbf{m} \in \mathbb{Z}_q$ with plaintext modulus $p = q$?
- Can we multiply ciphertext by any $t \in \mathbb{Z}_q$ with error growth $\ll q$?

Gadgets

Questions:

- Can we encrypt messages $\mathbf{m} \in \mathbb{Z}_q$ with plaintext modulus $p = q$?
- Can we multiply ciphertext by any $t \in \mathbb{Z}_q$ with error growth $\ll q$?

Assume for simplicity $q = 2^\ell$. Define the “gadget” vector

$$\mathbf{g}^t = [1, 2, 4, 8, \dots, 2^i, \dots, 2^{\ell-1}]$$

This vector has two fundamental properties:

Gadgets

Questions:

- Can we encrypt messages $\mathbf{m} \in \mathbb{Z}_q$ with plaintext modulus $p = q$?
- Can we multiply ciphertext by any $t \in \mathbb{Z}_q$ with error growth $\ll q$?

Assume for simplicity $q = 2^\ell$. Define the “gadget” vector

$$\mathbf{g}^t = [1, 2, 4, 8, \dots, 2^i, \dots, 2^{\ell-1}]$$

This vector has two fundamental properties:

- ① Any $c \in \mathbb{Z}_q$ can be written as $\mathbf{x}^t \cdot \mathbf{g}$ for some small $\mathbf{x} \in \{0, 1\}^\ell$ (written $\mathbf{x} = \mathbf{g}^{-1}(c)$).

Gadgets

Questions:

- Can we encrypt messages $\mathbf{m} \in \mathbb{Z}_q$ with plaintext modulus $p = q$?
- Can we multiply ciphertext by any $t \in \mathbb{Z}_q$ with error growth $\ll q$?

Assume for simplicity $q = 2^\ell$. Define the “gadget” vector

$$\mathbf{g}^t = [1, 2, 4, 8, \dots, 2^i, \dots, 2^{\ell-1}]$$

This vector has two fundamental properties:

- ① Any $c \in \mathbb{Z}_q$ can be written as $\mathbf{x}^t \cdot \mathbf{g}$ for some small $\mathbf{x} \in \{0, 1\}^\ell$ (written $\mathbf{x} = \mathbf{g}^{-1}(c)$).
- ② Given $\mathbf{c} = \mathbf{g} \cdot \mathbf{m} + \mathbf{e}$ for some $\|\mathbf{e}\|_\infty < q/4$, we can recover $\mathbf{m} \in \mathbb{Z}_q$ (written $\mathbf{m} = \lceil \mathbf{c} \rfloor_{\mathbf{g}}$)

The “Gadget-LWE” encryption scheme

Similar to LWE, but using the gadget vector \mathbf{g} instead of scaling factor Δ to encode the message.

- Plaintext modulus $p = q$
- $\text{Enc}_{\mathbf{s}}^{\mathbf{g}}(m) = [\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e} + \mathbf{g} \cdot m]$
- $\text{Dec}_{\mathbf{s}}^{\mathbf{g}}([\mathbf{A}, \mathbf{c}]) = \lceil \mathbf{c} - \mathbf{A}\mathbf{s} \rfloor_{\mathbf{g}}$

The “Gadget-LWE” encryption scheme

Similar to LWE, but using the gadget vector \mathbf{g} instead of scaling factor Δ to encode the message.

- Plaintext modulus $p = q$
- $\text{Enc}_s^{\mathbf{g}}(m) = [\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e} + \mathbf{g} \cdot m]$
- $\text{Dec}_s^{\mathbf{g}}([\mathbf{A}, \mathbf{c}]) = \lceil \mathbf{c} - \mathbf{A}\mathbf{s} \rfloor_{\mathbf{g}}$

Bonus: we can multiply ciphertexts by arbitrary constants (or linear transformations)

$$\begin{aligned}
 c \odot \text{Enc}_s^{\mathbf{g}}(m) &= \mathbf{g}^{-1}(c)^t \cdot \text{Enc}_s(\mathbf{g}m) \\
 &= \text{Enc}_s(\mathbf{g}^{-1}(c)^t \cdot \mathbf{g} \cdot m) \\
 &= \text{Enc}_s(c \cdot m)
 \end{aligned}$$

The “Gadget-LWE” encryption scheme

Similar to LWE, but using the gadget vector \mathbf{g} instead of scaling factor Δ to encode the message.

- Plaintext modulus $p = q$
- $\text{Enc}_{\mathbf{s}}^{\mathbf{g}}(m) = [\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e} + \mathbf{g} \cdot m]$
- $\text{Dec}_{\mathbf{s}}^{\mathbf{g}}([\mathbf{A}, \mathbf{c}]) = \lceil \mathbf{c} - \mathbf{A}\mathbf{s} \rfloor_{\mathbf{g}}$

Bonus: we can multiply ciphertexts by arbitrary constants (or linear transformations)

$$\begin{aligned}
 \mathbf{c} \odot \text{Enc}_{\mathbf{s}}^{\mathbf{g}}(m) &= \mathbf{g}^{-1}(\mathbf{c})^t \cdot \text{Enc}_{\mathbf{s}}(\mathbf{g}m) \\
 &= \text{Enc}_{\mathbf{s}}(\mathbf{g}^{-1}(\mathbf{c})^t \cdot \mathbf{g} \cdot m) \\
 &= \text{Enc}_{\mathbf{s}}(\mathbf{c} \cdot m)
 \end{aligned}$$

Similarly: $(\mathbf{g} \cdot \mathbf{c}) \odot \text{Enc}_{\mathbf{s}}^{\mathbf{g}}(m) = \text{Enc}_{\mathbf{s}}(\mathbf{g}cm) = \text{Enc}_{\mathbf{s}}^{\mathbf{g}}(cm)$

The “Gadget-LWE” encryption scheme

Similar to LWE, but using the gadget vector \mathbf{g} instead of scaling factor Δ to encode the message.

- Plaintext modulus $p = q$
- $\text{Enc}_{\mathbf{s}}^{\mathbf{g}}(m) = [\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e} + \mathbf{g} \cdot m]$
- $\text{Dec}_{\mathbf{s}}^{\mathbf{g}}([\mathbf{A}, \mathbf{c}]) = \lceil \mathbf{c} - \mathbf{A}\mathbf{s} \rfloor_{\mathbf{g}}$

Bonus: we can multiply ciphertexts by arbitrary constants (or linear transformations)

$$\begin{aligned}
 \mathbf{c} \odot \text{Enc}_{\mathbf{s}}^{\mathbf{g}}(m) &= \mathbf{g}^{-1}(\mathbf{c})^t \cdot \text{Enc}_{\mathbf{s}}(\mathbf{g}m) \\
 &= \text{Enc}_{\mathbf{s}}(\mathbf{g}^{-1}(\mathbf{c})^t \cdot \mathbf{g} \cdot m) \\
 &= \text{Enc}_{\mathbf{s}}(\mathbf{c} \cdot m)
 \end{aligned}$$

Similarly: $(\mathbf{g} \cdot \mathbf{c}) \odot \text{Enc}_{\mathbf{s}}^{\mathbf{g}}(m) = \text{Enc}_{\mathbf{s}}(\mathbf{g}cm) = \text{Enc}_{\mathbf{s}}^{\mathbf{g}}(cm)$

Remark: error grows by $\ell = \log_2 q$ instead of q because $\mathbf{g}^{-1}(\mathbf{c}) \in \{0, 1\}^{\ell}$

Other gadgets

- The “powers-of-two” gadget is just the most common example.
- Easily generalize to arbitrary base:
 $\mathbf{g}^t = [1, B, B^2, \dots, B^{\log_B q-1}] \in \mathbb{Z}^\ell$, gives a trade-off between storage $\ell = \log_B q$ and error growth $B \cdot \ell$

Other gadgets

- The “powers-of-two” gadget is just the most common example.
- Easily generalize to arbitrary base:
 $\mathbf{g}^t = [1, B, B^2, \dots, B^{\log_B q-1}] \in \mathbb{Z}^\ell$, gives a trade-off between storage $\ell = \log_B q$ and error growth $B \cdot \ell$
- Another useful option is the “Chinese Remainder Theorem” (CRT) gadget $\mathbf{g}^t = [q/p_1, \dots, q/p_\ell]$ where $q = \prod_i p_i$
- You can even combine a scaling factor $\Delta = q/p$ and a gadget $\mathbf{g} \pmod{p}$, and encode $m \in \mathbb{Z}_p$ as $\Delta \cdot (\mathbf{g}m) \in \mathbb{Z}_q^\ell$.
- Many optimizations and variants in lattice-based cryptography can be seen simply as a different choice of gadget \mathbf{g}

Application: Key-Switching

The key-switching problem: $\text{Enc}_s^g(m) \mapsto \text{Enc}_z^g(m)$

- You have a ciphertext $\mathbf{C} = \text{Enc}_s^g(m) = [\mathbf{A}, \mathbf{b}]$ under a key s
- You want to publish some information \mathbf{W} that can be used to change the encryption key to some other z , without leaking any information

Application: Key-Switching

The key-switching problem: $\text{Enc}_s^g(m) \mapsto \text{Enc}_z^g(m)$

- You have a ciphertext $\mathbf{C} = \text{Enc}_s^g(m) = [\mathbf{A}, \mathbf{b}]$ under a key s
- You want to publish some information \mathbf{W} that can be used to change the encryption key to some other z , without leaking any information

Solution: $\mathbf{W} = \text{Enc}_z^g(\begin{bmatrix} -s \\ 1 \end{bmatrix})$

Theorem (Key-Switching)

$$\text{Enc}_s^g \odot \mathbf{W} = \text{Enc}_z^g(m)$$

Application: Key-Switching

The key-switching problem: $\text{Enc}_s^g(m) \mapsto \text{Enc}_z^g(m)$

- You have a ciphertext $\mathbf{C} = \text{Enc}_s^g(m) = [\mathbf{A}, \mathbf{b}]$ under a key s
- You want to publish some information \mathbf{W} that can be used to change the encryption key to some other z , without leaking any information

Solution: $\mathbf{W} = \text{Enc}_z^g(\begin{bmatrix} -s \\ 1 \end{bmatrix})$

Theorem (Key-Switching)

$$\text{Enc}_s^g \odot \mathbf{W} = \text{Enc}_z^g(m)$$

$$\begin{aligned} \mathbf{C} \odot \mathbf{W} &= \mathbf{C} \odot \text{Enc}_z^g(\begin{bmatrix} -s \\ 1 \end{bmatrix}) = \text{Enc}_z(\mathbf{C} \cdot \begin{bmatrix} -s \\ 1 \end{bmatrix}) \\ &= \text{Enc}_z(\mathbf{b} - \mathbf{A}s) = \text{Enc}_z(\mathbf{g}m + \mathbf{e}) = \text{Enc}_z^g(m) \end{aligned}$$

So far: summary

- SIS, LWE: hard lattice problems on random q -ary lattices $\Lambda_q(\mathbf{A})$
- Technical tool: Lattice gadgets
- Strong linear homomorphic properties
- Typical applications:
 - SIS: collision resistant hashing
 - LWE: encryption
- Main issue: Efficiency!

1 Introduction

2 Part 1 (geometry)

- Lattices and Lattice Problems
- Random Lattices (SIS and LWE)
- Cryptographic Applications
- Lattice Gadgets

3 Part 2 (algebra)

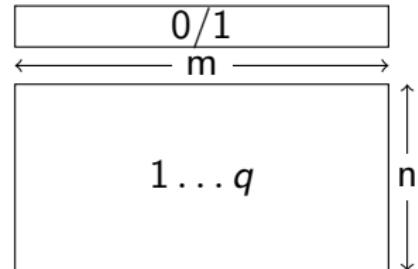
- Structured Matrices and Polynomials
- RingSIS and RingLWE
- FFT and NTT
- Example: Kyber (ML-KEM)

Part 2: Algebraic Lattices

- Structured matrices and Polynomial Rings
- RingSIS and RingLWE
- Algorithms: FFT and NTT
- Example: Kyber (ML-KEM)

Efficiency of Ajtai's function

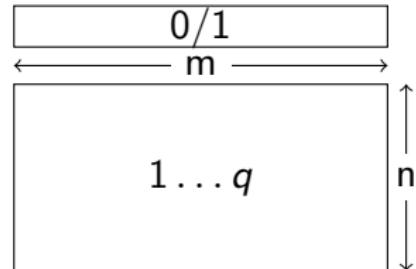
- $q = n^{O(1)}$, $m = O(n \log n) > n \log_2 q$
- E.g., $n = 64$, $q = 2^8$, $m = 1024$
- f_A maps 1024 bits to 512.



Efficiency of Ajtai's function

- $q = n^{O(1)}$, $m = O(n \log n) > n \log_2 q$
- E.g., $n = 64$, $q = 2^8$, $m = 1024$
- f_A maps 1024 bits to 512.
- Key size:

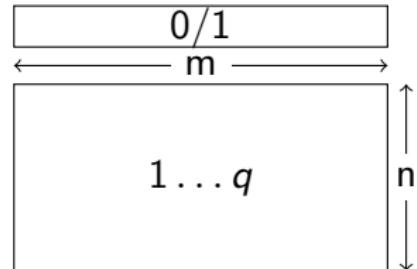
$$nm \log q = O(n^2 \log^2 n) = 2^{19} = 64KB$$
- Runtime: $nm = O(n^2 \log n) = 2^{16}$
 arithmetic operations



Efficiency of Ajtai's function

- $q = n^{O(1)}$, $m = O(n \log n) > n \log_2 q$
- E.g., $n = 64$, $q = 2^8$, $m = 1024$
- f_A maps 1024 bits to 512.
- Key size:

$$nm \log q = O(n^2 \log^2 n) = 2^{19} = 64KB$$
- Runtime: $nm = O(n^2 \log n) = 2^{16}$
 arithmetic operations
- Usable, but inefficient
- Source of inefficiency: quadratic dependency in n



Problem

Can we do better than $O(n^2)$ complexity?

Efficient lattice based hashing

Idea: use structured matrix $\mathbf{A} = [\mathbf{A}^{(1)} \mid \dots \mid \mathbf{A}^{(m/n)}]$, $\mathbf{A}^{(i)} \in \mathbb{Z}_q^{n \times n}$.

Theorem (Micciancio 2002)

$f_{\mathbf{A}}$ is a one-way function, provided SVP and SIVP are hard to approximate within $\gamma \approx n$ in the worst case over cyclic lattices

$$\mathbf{A}^{(i)} = \begin{bmatrix} a_1^{(i)} & a_n^{(i)} & \cdots & a_2^{(i)} \\ a_2^{(i)} & a_1^{(i)} & \cdots & a_3^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ a_n^{(i)} & a_{n-1}^{(i)} & \cdots & a_1^{(i)} \end{bmatrix}$$

- Similar idea first used by NTRU (1998)
- Novelty in Micciancio (2002): provably hard to invert

Efficient lattice based hashing

Idea: use structured matrix $\mathbf{A} = [\mathbf{A}^{(1)} \mid \dots \mid \mathbf{A}^{(m/n)}]$, $\mathbf{A}^{(i)} \in \mathbb{Z}_q^{n \times n}$.

Theorem (Micciancio 2002)

$f_{\mathbf{A}}$ is a *one-way* function, provided SVP and SIVP are hard to approximate within $\gamma \approx n$ in the worst case over *cyclic* lattices

$$\mathbf{A}^{(i)} = \begin{bmatrix} a_1^{(i)} & a_n^{(i)} & \cdots & a_2^{(i)} \\ a_2^{(i)} & a_1^{(i)} & \cdots & a_3^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ a_n^{(i)} & a_{n-1}^{(i)} & \cdots & a_1^{(i)} \end{bmatrix}$$

- Similar idea first used by NTRU (1998)
- Novelty in Micciancio (2002): provably hard to invert

Can you find a collision? $(\bmod 10)$

1	4	3	8	6	4	9	0	2	6	4	5	3	2	7	1
8	1	4	3	0	6	4	9	5	2	6	4	1	3	2	7
3	8	1	4	9	0	6	4	4	5	2	6	7	1	3	2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Can you find a collision? $(\bmod 10)$

1	0	0	-1	-1	1	1	0	0	0	1	1	1	0	0	-1	0	
1	4	3	8	6	4	9	0	2	6	4	5	3	2	7	1	5	
8	1	4	3	0	6	4	9	5	2	6	4	1	3	2	7	4	
3	8	1	4	9	0	6	4	4	5	2	6	7	1	3	2	8	
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3	6	

Can you find a collision? $(\bmod 10)$

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	0
1	4	3	8	6	4	9	0	2	6	4	5	3	2	7	1	0	0	0	0
8	1	4	3	0	6	4	9	5	2	6	4	1	3	2	7	0	0	0	0
3	8	1	4	9	0	6	4	4	5	2	6	7	1	3	2	0	0	0	0
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3	0	0	0	0

Can you find a collision? $(\text{mod } 10)$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	4	3	8	6	4	9	0	2	6	4	5	3	2	7	1
8	1	4	3	0	6	4	9	5	2	6	4	1	3	2	7
3	8	1	4	9	0	6	4	4	5	2	6	7	1	3	2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

6
6
6
6

9
9
9
9

7
7
7
7

3
3
3
3

Can you find a collision? $(\text{mod } 10)$

1	1	1	1	-1	-1	-1	-1	0	0	0	0	1	1	1	1	
1	4	3	8	6	4	9	0	2	6	4	5	3	2	7	1	0
8	1	4	3	0	6	4	9	5	2	6	4	1	3	2	7	0
3	8	1	4	9	0	6	4	4	5	2	6	7	1	3	2	0
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3	0

$$+ 1 \times \begin{bmatrix} 6 \\ 6 \\ 6 \\ 6 \\ 6 \end{bmatrix}$$

$$- 1 \times \begin{bmatrix} 9 \\ 9 \\ 9 \\ 9 \\ 9 \end{bmatrix}$$

$$+ 0 \times \begin{bmatrix} 7 \\ 7 \\ 7 \\ 7 \\ 7 \end{bmatrix}$$

$$+ 1 \times \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{bmatrix}$$

Remarks about proofs of security

- This function is essentially the compression function of hash function LASH, modeled after NTRU
- You can still “prove” security based on average case assumption: Breaking the above hash function is as hard as finding short vectors in a random lattice $\Lambda([\mathbf{A}^{(1)} | \dots | \mathbf{A}^{(m/n)}])$
- ... but we know the function is broken: The underlying random lattice distribution is weak!
- Conclusion: Assuming that a problem is hard on average-case is a really tricky business!

Can you find a collision now? $(\text{mod } 10)$

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1		
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7		
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2		
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3		

Can you find a collision now? $(\bmod 10)$

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors in the corresponding random lattices

Can you find a collision now? $(\bmod 10)$

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	-4	-3	-8	6	-4	-9	-0	2	-6	-4	-5	3	-2	-7	-1		
8	1	-4	-3	0	6	-4	-9	5	2	-6	-4	1	3	-2	-7		
3	8	1	-4	9	0	6	-4	4	5	2	-6	7	1	3	-2		
4	3	8	1	4	9	0	6	6	4	5	2	2	7	1	3		

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors in the corresponding random lattices

Theorem (LM'07, PR'07)

*Provably collision resistant, assuming the **worst case** hardness of approximating SVP and SIVP over **anti-cyclic** lattices.*

Polynomial rings

- $\mathbb{Z}[X]$: set of polynomials with integer coefficients
- Monic polynomial $f(X) = X^d + f_{d-1}X^{d-1} + \dots + f_1 \cdot X + f_0 \in \mathbb{Z}[X]$
- $a(X) \pmod{f(X)}$ has degree $< d$
- $R = \mathbb{Z}[X]/f(X) \cong \mathbb{Z}^d$

Polynomial rings

- $\mathbb{Z}[X]$: set of polynomials with integer coefficients
- Monic polynomial $f(X) = X^d + f_{d-1}X^{d-1} + \dots + f_1 \cdot X + f_0 \in \mathbb{Z}[X]$
- $a(X) \pmod{f(X)}$ has degree $< d$
- $R = \mathbb{Z}[X]/f(X) \equiv \mathbb{Z}^d$
- Matrix representation

$$M_{a(X)} = \left[(a(X)), (X \cdot a(X)), \dots, (X^{d-1} \cdot a(X)) \right] \in \mathbb{Z}^{d \times d}$$

where $X^i \cdot a(X)$ is reduced $\pmod{f(X)}$

- $c(X) = a(X) \cdot b(X) \pmod{f(X)}$ then

$$M_{a(X)} \cdot b(X) = c(X)$$

$$M_{a(X)} \cdot M_{b(X)} = M_{c(X)}$$

Examples

- If $f(X) = X^d - 1$, then $X^d \equiv 1$ and

$$M_a = \begin{bmatrix} a_0 & a_{d-1} & \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{d-1} & a_{d-2} & \cdots & a_0 \end{bmatrix}$$

Examples

- If $f(X) = X^d - 1$, then $X^d \equiv 1$ and

$$M_a = \begin{bmatrix} a_0 & a_{d-1} & \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{d-1} & a_{d-2} & \cdots & a_0 \end{bmatrix}$$

- If $f(X) = X^d + 1$, then $X^d \equiv -1$ and

$$M_a = \begin{bmatrix} a_0 & -a_{d-1} & \cdots & -a_1 \\ a_1 & a_0 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{d-1} & a_{d-2} & \cdots & a_0 \end{bmatrix}$$

- What makes $X^d + 1$ better than $X^d - 1$?

Choosing $f(X)$

- $f(X) = X^d - 1$
 - Factors into $X^d - 1 = (X - 1) \cdot (X^{d-1} + X^{d-2} + \dots + X + 1)$
 - Ability to find collisions is closely related to existence of linear factor $(X - 1)$

Choosing $f(X)$

- $f(X) = X^d - 1$
 - Factors into $X^d - 1 = (X - 1) \cdot (X^{d-1} + X^{d-2} + \dots + X + 1)$
 - Ability to find collisions is closely related to existence of linear factor $(X - 1)$
- $f(X) = X^d + 1$
 - When $d = 2^k$, the polynomial $f(X)$ is irreducible
 - This is the most common choice in cryptography
 - Efficient, easier to implement
 - These are called “power-of-two” cyclotomic rings

Choosing $f(X)$

- $f(X) = X^d - 1$
 - Factors into $X^d - 1 = (X - 1) \cdot (X^{d-1} + X^{d-2} + \dots + X + 1)$
 - Ability to find collisions is closely related to existence of linear factor $(X - 1)$
- $f(X) = X^d + 1$
 - When $d = 2^k$, the polynomial $f(X)$ is irreducible
 - This is the most common choice in cryptography
 - Efficient, easier to implement
 - These are called “power-of-two” cyclotomic rings
- One may use other irreducible $f(X)$
 - For example, $f(X) = X^{p-1} + X^{p-2} + \dots + X + 1$
 - Less convenient, harder to implement
- From now on assume $R = \mathbb{Z}[X]/(X^d + 1) \equiv \mathbb{Z}^d$ with $d = \dim(R) = 2^k$

Algebraic Number Theory

- $K = \mathbb{Q}[X]/f(X) \equiv \mathbb{Q}^d$ is called an Algebraic Number Field
 - May be defined for any irreducible $f(X) \in \mathbb{Z}[X]$
 - Here we focus on $f(X) = X^d + 1$ for $d = 2^k$
- $R \subset K$ is the “Ring of integers” of K
- Very special case: $d = 1 = 2^0$
 - $\mathbb{Q}[X]/(X + 1) = \mathbb{Q}$
 - $\mathbb{Z}[X]/(X + 1) = \mathbb{Z}$
- R generalizes $\mathbb{Z} \subset \mathbb{Q}$ to higher dimension $d = \dim(R)$
 - Ring element $a(X) \in R$ can be stored as vector in \mathbb{Z}^d
 - It represents a (structured) matrix in $\mathbb{Z}^{d \times d}$.
 - For $d = 256$ or higher, this is a huge saving in storage
- You don't need to know Algebraic Number Theory to understand Lattice-based cryptography

RingSIS

- Just like SIS, but using R instead of \mathbb{Z}
- Let $R_q = R/qR = \mathbb{Z}_q[X]/f(X)$
- Given $\mathbf{A} \in R^{n \times m}$, find “short” $\mathbf{x} \in R^m$ such that $\mathbf{A}\mathbf{x} = \mathbf{0} \pmod{q}$
- What is a “short” ring element $a(X) \in R$?

RingSIS

- Just like SIS, but using R instead of \mathbb{Z}
- Let $R_q = R/qR = \mathbb{Z}_q[X]/f(X)$
- Given $\mathbf{A} \in R^{n \times m}$, find “short” $\mathbf{x} \in R^m$ such that $\mathbf{Ax} = \mathbf{0} \pmod{q}$
- What is a “short” ring element $a(X) \in R$?
 - For power-of-two cyclotomic rings R , just take the norm of the coefficient vector $\|\mathbf{a}\|$

RingSIS

- Just like SIS, but using R instead of \mathbb{Z}
- Let $R_q = R/qR = \mathbb{Z}_q[X]/f(X)$
- Given $\mathbf{A} \in R^{n \times m}$, find “short” $\mathbf{x} \in R^m$ such that $\mathbf{Ax} = \mathbf{0} \pmod{q}$
- What is a “short” ring element $a(X) \in R$?
 - For power-of-two cyclotomic rings R , just take the norm of the coefficient vector $\|\mathbf{a}\|$
- Effective dimension $\mathbf{A} \in \mathbb{Z}_q^{nd \times md}$
 - For large d , it is enough to take $n = 1$ and $m = 2n \log_2 q = 2 \log_2 q$
 - For $d = 256$, $q = 2^{16}$, now \mathbf{A} only takes $64d$ B = 16 KB, instead of $64d^2$ B = 4 MB.

RingLWE

- Similar, like LWE but using R instead of \mathbb{Z}
- Let $R_q = R/qR = \mathbb{Z}_q[X]/f(X)$
- Distribution $[\mathbf{A}, \mathbf{As} + \mathbf{e}]$ where $\mathbf{A} \leftarrow R_q^{m \times k}$, $\mathbf{s} \leftarrow R_q^k$, and $\mathbf{e} \leftarrow \chi^{dm}$
 - Search RingLWE: Find \mathbf{s} and $\mathbf{e} = \mathbf{b} - \mathbf{As}$
 - Decisional RingLWE: distinguish $[\mathbf{A}, \mathbf{b}]$ from uniformly random $R_q^{m \times (k+1)}$
 - Security level is the effective secret dimension dn

RingLWE

- Similar, like LWE but using R instead of \mathbb{Z}
- Let $R_q = R/qR = \mathbb{Z}_q[X]/f(X)$
- Distribution $[\mathbf{A}, \mathbf{As} + \mathbf{e}]$ where $\mathbf{A} \leftarrow R_q^{m \times k}$, $\mathbf{s} \leftarrow R_q^k$, and $\mathbf{e} \leftarrow \chi^{dm}$
 - Search RingLWE: Find \mathbf{s} and $\mathbf{e} = \mathbf{b} - \mathbf{As}$
 - Decisional RingLWE: distinguish $[\mathbf{A}, \mathbf{b}]$ from uniformly random $R_q^{m \times (k+1)}$
 - Security level is the effective secret dimension dn
- Can set $k = 1$: distinguish $[\mathbf{a}, \mathbf{a} \cdot s + \mathbf{e}_i]$ from uniform $R_q^{m \times 2}$
 - The secret $s \in R_q$ is just a ring element
 - d serves as a security parameter
- When $k > 1$, this is sometime called ModuleLWE.

Running time

- Using $a(X)$ instead of $M_{a(X)}$ reduces storage (for keys, ciphertexts, etc.) from $O(d^2)$ to $O(d)$.
- What about running time?

Running time

- Using $a(X)$ instead of $M_{a(X)}$ reduces storage (for keys, ciphertexts, etc.) from $O(d^2)$ to $O(d)$.
- What about running time?
 - Computing the product $a(X) \cdot b(X)$ using the naive algorithm still takes time $O(d^2)$
 - This can be reduced to $O(d \log d)$

Running time

- Using $a(X)$ instead of $M_{a(X)}$ reduces storage (for keys, ciphertexts, etc.) from $O(d^2)$ to $O(d)$.
- What about running time?
 - Computing the product $a(X) \cdot b(X)$ using the naive algorithm still takes time $O(d^2)$
 - This can be reduced to $O(d \log d)$
- Approach:
 - Convert ring elements $a(X) \in R$ between their “coefficient representation $[a_0, \dots, a_{d-1}]$ and their evaluation representation

$$(a(\omega_0), \dots, a(\omega_{d-1}))$$

- Note that in the evaluation representation, multiplication is componentwise

$$(a \cdot b)(\omega_i) = a(\omega_i) \cdot b(\omega_i)$$

and can be computed with d scalar multiplications

FFT based multiplication

- The polynomial $f(X)$ has d complex roots $\omega_j = \exp((2j + 1)\pi i/n)$

FFT based multiplication

- The polynomial $f(X)$ has d complex roots $\omega_j = \exp((2j + 1)\pi i/n)$
- Using these $\omega_0, \dots, \omega_{d-1}$ as evaluation points has two advantages
 - ① Polynomial multiplication happens modulo $f(X)$ because $f(\omega_i) = 0$
 - ② The mapping between the coefficient and evaluation representation can be computed in time $O(d \log d)$ using the Fast Fourier Transform (FFT) algorithm

FFT based multiplication

- The polynomial $f(X)$ has d complex roots $\omega_j = \exp((2j+1)\pi i/n)$
- Using these $\omega_0, \dots, \omega_{d-1}$ as evaluation points has two advantages
 - ① Polynomial multiplication happens modulo $f(X)$ because $f(\omega_i) = 0$
 - ② The mapping between the coefficient and evaluation representation can be computed in time $O(d \log d)$ using the Fast Fourier Transform (FFT) algorithm
- Compute the polynomial product $a(X) \cdot b(X) \pmod{f(X)}$ as

$$a(X) \cdot b(X) = \mathbf{fft}^{-1}(\mathbf{fft}(a) \circ \mathbf{fft}(b))$$

where \circ is componentwise multiplication.

- Total running time is $2 \cdot O(d \log d) + O(d) = O(d \log d)$ arithmetic operations on *complex numbers*

The Number Theoretic Transform (NTT)

- We want to multiply polynomials in $R_q = \mathbb{Z}_q[X]/f(X)$
- Choose prime q such that $q \equiv 1 \pmod{2d}$
 - Since $2d$ divides $q - 1 = |\mathbb{Z}_q^*|$, there is an element $\omega \in \mathbb{Z}_q^*$ of order $2d$
 - The values $\omega_j = \omega^{2j+1} \in \mathbb{Z}_q$ are roots of $f(\omega_j) = 0 \pmod{q}$
 - We can perform the FFT computation in \mathbb{Z}_q , using ω
- This is called the Number Theoretic Transform

$$\mathbf{ntt}: \mathbb{Z}_q^d \rightarrow \mathbb{Z}_q^d$$

- The effective use of NTT to efficiently implement (Ring) lattice cryptography first introduced and popularized by the SWIFFT hash function (Lyubashevsky, M., Peikert, Rosen, 2008)

Applications

- All cryptographic applications of SIS and LWE are immediately adapted to the RingSIS/RingLWE setting: just use R instead of \mathbb{Z}

Applications

- All cryptographic applications of SIS and LWE are immediately adapted to the RingSIS/RingLWE setting: just use R instead of \mathbb{Z}
- How do you build lattice gadgets in the ring setting? e.g., how do you adapt $\mathbf{g} = (1, 2, 4, \dots) \in \mathbb{Z}^w$ to R ?

Applications

- All cryptographic applications of SIS and LWE are immediately adapted to the RingSIS/RingLWE setting: just use R instead of \mathbb{Z}
- How do you build lattice gadgets in the ring setting? e.g., how do you adapt $\mathbf{g} = (1, 2, 4, \dots) \in \mathbb{Z}^w$ to R ?
 - Simply note that $\mathbb{Z} \subset R$, so any $\mathbf{g} \in \mathbb{Z}^w$ is also a vector $\mathbf{g} \in R^w$
 - Scalars $a(X) = a_0 \in \mathbb{Z}$ are mapped to diagonal matrices $M_a = a_0 \cdot \mathbf{I}$
 - For example, the powers-of-two gadget becomes

$$\mathbf{G} = [\mathbf{I}, 2\mathbf{I}, 4\mathbf{I}, \dots]^t$$

- All gadget algorithms (inversion, decomposition) work on ring elements componentwise, on the coefficients of the input polynomial $a(X) = [a_0, \dots, a_{d-1}]$

Applications

- All cryptographic applications of SIS and LWE are immediately adapted to the RingSIS/RingLWE setting: just use R instead of \mathbb{Z}
- How do you build lattice gadgets in the ring setting? e.g., how do you adapt $\mathbf{g} = (1, 2, 4, \dots) \in \mathbb{Z}^w$ to R ?
 - Simply note that $\mathbb{Z} \subset R$, so any $\mathbf{g} \in \mathbb{Z}^w$ is also a vector $\mathbf{g} \in R^w$
 - Scalars $a(X) = a_0 \in \mathbb{Z}$ are mapped to diagonal matrices $M_a = a_0 \cdot \mathbf{I}$
 - For example, the powers-of-two gadget becomes

$$\mathbf{G} = [\mathbf{I}, 2\mathbf{I}, 4\mathbf{I}, \dots]^t$$

- All gadget algorithms (inversion, decomposition) work on ring elements componentwise, on the coefficients of the input polynomial $a(X) = [a_0, \dots, a_{d-1}]$
- Error is measured in the coefficient representation:
 - Gadget operations should always be performed on the coefficient representation
 - Can use **ntt** and **ntt⁻¹** to convert between coefficient and evaluation representation

Coefficient vs Evaluation representation

- Ring elements can be equivalently represented as
 - coefficient vectors $[a_0, \dots, a_{d-1}] \in \mathbb{Z}_q^d$, or
 - evaluation vectors $[a(\omega_0), \dots, a(\omega_{d-1})] \in \mathbb{Z}_q^d$
- Both representations are equally compact, but
 - the coefficient representation supports the evaluation of gadget operations
 - the evaluation representation allows to perform ring arithmetics (additions and multiplications) in linear time $O(d)$
- One can convert between the two representations in time $O(d \log d)$ using **ntt**, **ntt⁻¹**, and this is often the bottleneck in practical implementations of lattice cryptography

Kyber PKE – Parameters

- Core component of ML-KEM
- Parameters:
 - Ring dimension $d = 2^8 = 256$
 - 12-bit prime modulus $q = 3329 = 13 \cdot 256 + 1$
 - secret dimension: $k = 2, 3, 4$
- Technically, a full NTT would have required $2d = 512$ to divide $q - 1$, but 256 is good enough for efficient implementation

Kyber PKE – Parameters

- Core component of ML-KEM
- Parameters:
 - Ring dimension $d = 2^8 = 256$
 - 12-bit prime modulus $q = 3329 = 13 \cdot 256 + 1$
 - secret dimension: $k = 2, 3, 4$
- Technically, a full NTT would have required $2d = 512$ to divide $q - 1$, but 256 is good enough for efficient implementation
- Ring $R_q = \mathbb{Z}_q[X]/(X^{256} + 1)$
- Storage (per ring element): $d \cdot \log_2 q = 256 \cdot 12 = 3072$ bits
- Security level: $k \cdot d = 512, 768, 1024$

Kyber PKE – Algorithms

- Same as [LP'11] in the ring setting, but precompute **ntt** when useful/possible

Kyber PKE – Algorithms

- Same as [LP'11] in the ring setting, but precompute **ntt** when useful/possible
- Key generation: $\text{Gen} = (\hat{\mathbf{s}}, [\hat{\mathbf{A}}, \hat{\mathbf{b}}])$
 - $\hat{\mathbf{A}} = \text{ntt}(\mathbf{A}) \in R_q^{k \times k}$, generated from a short seed $\rho \in \{0, 1\}^{256}$
 - $\mathbf{s}, \mathbf{e} \in R_q^k$, chosen from distribution χ_1 on small elements
 - $\hat{\mathbf{s}} = \text{ntt}(\mathbf{s})$, $\hat{\mathbf{e}} = \text{ntt}(\mathbf{e})$
 - $\hat{\mathbf{b}} = \hat{\mathbf{A}} \circ \hat{\mathbf{s}} + \hat{\mathbf{e}} \in R_q^k$

Kyber PKE – Algorithms

- Same as [LP'11] in the ring setting, but precompute **ntt** when useful/possible
- Key generation: $\text{Gen} = (\hat{\mathbf{s}}, [\hat{\mathbf{A}}, \hat{\mathbf{b}}])$
 - $\hat{\mathbf{A}} = \text{ntt}(\mathbf{A}) \in R_q^{k \times k}$, generated from a short seed $\rho \in \{0, 1\}^{256}$
 - $\mathbf{s}, \mathbf{e} \in R_q^k$, chosen from distribution χ_1 on small elements
 - $\hat{\mathbf{s}} = \text{ntt}(\mathbf{s})$, $\hat{\mathbf{e}} = \text{ntt}(\mathbf{e})$
 - $\hat{\mathbf{b}} = \hat{\mathbf{A}} \circ \hat{\mathbf{s}} + \hat{\mathbf{e}} \in R_q^k$
- Encryption $\text{Enc}_{[\hat{\mathbf{A}}, \hat{\mathbf{b}}]}(m) = (\mathbf{u}, \mathbf{v})$:
 - $\mathbf{r} \leftarrow \chi_1^k$, $\mathbf{e} \leftarrow \chi_2^{k+1}$
 - $$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \text{ntt}^{-1} \left(\begin{bmatrix} \hat{\mathbf{A}}^t \\ \hat{\mathbf{b}}^t \end{bmatrix} \circ \text{ntt}(\mathbf{r}) \right) + \mathbf{e} + \begin{bmatrix} \mathbf{0} \\ \Delta \mathbf{m} \end{bmatrix}$$

Kyber PKE – Algorithms

- Same as [LP'11] in the ring setting, but precompute **ntt** when useful/possible
- Key generation: $\text{Gen} = (\hat{s}, [\hat{\mathbf{A}}, \hat{\mathbf{b}}])$
 - $\hat{\mathbf{A}} = \text{ntt}(\mathbf{A}) \in R_q^{k \times k}$, generated from a short seed $\rho \in \{0, 1\}^{256}$
 - $\mathbf{s}, \mathbf{e} \in R_q^k$, chosen from distribution χ_1 on small elements
 - $\hat{\mathbf{s}} = \text{ntt}(\mathbf{s})$, $\hat{\mathbf{e}} = \text{ntt}(\mathbf{e})$
 - $\hat{\mathbf{b}} = \hat{\mathbf{A}} \circ \hat{\mathbf{s}} + \hat{\mathbf{e}} \in R_q^k$
- Encryption $\text{Enc}_{[\hat{\mathbf{A}}, \hat{\mathbf{b}}]}(m) = (\mathbf{u}, v)$:
 - $\mathbf{r} \leftarrow \chi_1^k$, $\mathbf{e} \leftarrow \chi_2^{k+1}$
 - $\begin{bmatrix} \mathbf{u} \\ v \end{bmatrix} = \text{ntt}^{-1}(\begin{bmatrix} \hat{\mathbf{A}}^t \\ \hat{\mathbf{b}}^t \end{bmatrix} \circ \text{ntt}(\mathbf{r})) + \mathbf{e} + \begin{bmatrix} \mathbf{0} \\ \Delta \mathbf{m} \end{bmatrix}$
- Decryption: $\text{Dec}_{\hat{s}}(\mathbf{u}, v) = \lceil (v - \text{ntt}^{-1}(\hat{s} \circ \text{ntt}(\mathbf{u}))) / \Delta \rceil$

Conclusion

- Lattice cryptography: mature area building on +20 years of research
- Algebraic lattices: key to efficient implementation
- Tools and techniques: linear algebra, gadget lattices
- Natural homomorphic properties: rich set of applications
- Ready to use Public Key Encryption (and Digital Signatures)
- Any Questions?